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1 Introduction

The Fibonacci numbers was introduced by Leonardo (1170-1240) in his book Liber Abbaci
that was published in 1202. Fibonacci and Lucas numbers have recently been studied by many
authors.
The generalized second order sequences {U,,} and {V,,}, are defined for n > 0 and nonzero
integer number p by
Upny1 =pU, + U,y and Vo = pV,, + V4,

in which Uy = 0, U; = 1 and Vy = 2, V] = p, respectively.
The Binet formulae are
U, = Sl and V,, = o" + 8",
a—p

where o, 5 = (p £ \/p?> +4)/2.
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Especially, when p = 1, then U,, = F,, (the n-th Fibonacci number) and V,, = L,, (the n-th
Lucas number).

In [7], E. Kili¢ and P. Stanica derived the following recurrence relations for the sequences
{Ukn} and {Vj,, }. For k > 0, n > 0,

Urni1) = ViUgn + (=1 Upnory and Vigna 1y = ViVin + (=1 Vi,

where the initial conditions of the sequences { Uy, } and {V},} are 0, Uy, and 2, Vj, respectively.
The Binet formulae are

B Oékm o 5kn

U = and Vj,, = o + ",
a—f3

respectively.

Dual numbers were introduced in the 19th century by Clifford as a tool for his geometrical
investigations [5] and provided us with a powerful tool for the analysis of complex numbers. It
was used dual numbers and dual vectors on line geometry and kinematics [4,16,17]. Also, in [17],
the geometric sense of dual numbers were studied in detail. Recently, dual numbers have been
the subject of many studies especially in kinematics, robotic technology, quantum physics and
mechanics. The dual numbers extend to the real numbers has the form

d=a+ea”,

where ¢ is the dual unit and €2 = 0 and ¢ # 0. In [13], Horadam introduced Fibonacci and
Lucas quaternions. Many works have related to these quaternions considered by several authors
(see, [1-3,11,12,14,15]). In [6], A. Cohen et al. showed that there were some applications of the
“automatic differrentiation” property of the dual numbers in kinematics.

Hyper-dual numbers are a larger dimensional extension of dual numbers in a similar way that
the quaternions are a larger dimensional extension of ordinary complex numbers. Firstly, J. A.
Fike et al. introduced hyper-dual numbers in [8—10]. Hyper-dual numbers were defined like dual
numbers but with the following difference: a hyper-dual number has four components unlike a
dual number that has two components.

A hyper-dual number T = (z, x2, x3, 4) and two dual units €1, €5, as follows:

T = X1+ Togy + T30 + 48169, (1)

where
el =& = (a182)" = 0, (2)
and
€1, €2, €162 # 0.
The algebra of hyper-dual numbers is a ring with the following addition and multiplication

operations:

THy=x1+y1+ (xo+y2)er+ (x3+ys)ex + (x4 + ya) 169,

Txy = T+ (Tye +2oyr) €1+ (T1ys + T3y1) €2
+ (T1Ys + T2ys + T3y + Tay1) €169.
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From these definitions, other mathematical operations can be defined, such as the multiplica-

1 1 To T3 2372373 T4
== — — —5&1 — —5¢&2 + £1€9.

tive inverse of 7:

3 2
Ty Ty

Hyper-dual numbers can be used to compute exact first- and second-order derivatives to
evaluate gradients and Hessians for optimization methods. For d = hjie; + hoey + Ogq64, the
Taylor series becomes

f@+d) = f(z) + hif'(2)er + haf (w)er + aha f" (x)e120.

In [5], A. Cohen et al. augmented the hyper-dual units in (2), as a combination of two “simple”
dual numbers, to read as follows:

e = €1, € = ey,
e = (1) =(e")" =0,
g, e e’ £ 0.
Now, the equation in (1) can be written as the follows:
T = (21 + x061) + " (23 + 2461) .

In the present paper, we define hyper-dual generalized Fibonacci numbers and give the Binet
formulae, the generating functions. Moreover, we obtain some basic identities for these numbers.

2 Hyper-dual generalized Fibonacci numbers

In this section, we define hyper-dual generalized Fibonacci and Lucas numbers and give basic
properties of them.

Definition 1. Hyper-dual generalized Fibonacci and Lucas numbers are defined by
Ukn = Ukn + Urnin)€1 + Urny2)€2 + Urni3)€162,
and
Vin = Vin + Vimener + Vima2)€2 + Vimes)€1€2,
respectively, where {Uy,, } and {V}.,} are as above.

Now, we will give some properties of the hyper-dual generalized Fibonacci and Lucas num-
bers.

Theorem 2.1. Let A[j;m and A‘;;m be hyper-dual generalized Fibonacci and Lucas numbers,

respectively. The Binet formulae for these numbers have the forms
— kn _ RRkn
U n = —Bﬁ
a—p
and
an = aakn + Bﬂkna

where @ = 1 + aFe; + a?ey +aFeie5 and B = 1 + [Feq + By +5%e,.
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Proof. By the Binet formula for {Uy,, } , we have

fﬁkn
= Upn + Uk(n+1)€1 + Ukn+2)€2 + Ugne3)€1€2
_ pkn k(n+1) kE(n+1) ak(n+2) _ Rk(n+2)

= ﬁ + /6 &1+ 5 €9

a—p a—p a—p

ak(n—i—?)) _ k(n—&-B)8 )

a_p 1€2
o (1 + Oékéfl + OéQk&TQ + Oégkﬁlé‘g) Oékm — (1 + 6k€1 + 52k€2 + 63k81€2) ﬁkzn
= " )
We complete the proof. Similarly, the other result can be obtained. ]

Lemma 2.2. For n,m € 7, then

Urnim) + (D" Uty = VinUsm, 3)
‘/lc(n+m)+(_1>km+1 Vk;(n—m) = AUankrm

where A = V2 4+ 4 (—1)"".

Theorem 2.3. Let A[j;m and A‘;;m be hyper-dual generalized Fibonacci and Lucas numbers,
respectively. We have the following identities;

/[\]/k(n+2) = kaﬁk(rwl) + (—1)k+1 (N]kn, 4)
Vi) = Vi Vigen) + (=D Vi, &)
Uorn = (D" (Utw = Vi Uo) (©)

Vi = (—=1)F" (an - AUImAU/o) :

Uk(n—l—m) + (_ )km-l-l Uk(n m) Ukm an7

and
vk(ner) + ( )km+1 Vk(n m) Akamfﬁkm

Proof. We will glve the proof of (6). Using the Binet formula for the hyper-dual generalized
Fibonacci number Uy, and o*" 35" = (—1)" | we have

. aafkn - Bﬂfkn n aﬂkn o Bakn

Vo =45 o= g

Since @ = 1 + ofe; + a® ey +aFeieo and B = 1+ BFey + ey +8%ee,, we get

~(-1)
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U—kn
(=t k a—k ok k p—3k kn
- a-8 <<1+(_1) fler+ B Vet (1) 0 5152)5
- <]- + (_1)k O-/_kf‘:l + (I_2k52 + (—].)k Ol_3k€182> Ozk">
= (- <Ulm (-1 Ukin-1)€1 + Ukn—2)&2 + (—1)F Uk(n,g)qeg)
= (-1 ( Ugn — <Uk(n+1) — (=1 Uk(n—l)) 1 — (Uknr2) — Uk(n—2)) €2

- <Uk(n+3) —(-1)* Uk(n—S)) 61€2> -

By (3), we get

A(jfkn = (-1 )ImJrl ( Ukn — UxViner — Ui Vinea — U3kan€1€2>
= (=1 (Ui = Vin (Uo + Uses + Uiy + Uge122)
= (=" (TUkn = Vin Uo)
Thus, the desired result is obtained. Similarly, the proofs of the other results are given. U

Theorem 2.4. The generation functions for hyper-dual generalized Fibonacci and Lucas numbers
Uiy, and V', are

A(jg + <A(j]C - fﬁo%) x f‘70 + </Vk - vO%c) x
- and h(z) = :
1 —Vir + (—1)" 22 1 — Vi + (—1)"2?

g(z) =

respectively.
Proof. Let
g( ): U0+ Uk.’L'+ ngl'z—i‘"'—i‘ Ukn$n+

be the generatmg function of the hyper-dual generalized Fibonacci number U kn- Since the orders
of U k(n—1) and U k(n—2) are 1 and 2 less than the order of U kn, respectively and (4), we have

zg(x) and 2%g(x) :
Vizg(x) = AUQVML‘ + Aﬁk%$2 + A(jngkx?’ + ...Aﬁk(n,l)%x” + ...
(—1)*2%g(x) = Uo(—1) 2+ Up (-1 2> + ... Ugno) (—1)" 2™ + ...
Then we have
<1 — Vi + (—1)kx2> g(x) = Uy + (A(jk — AUoVk) T
Thus, the proof is complete. Similarly, by (5), the other generating function is obtained. ]

Theorem 2.5. Let AU/;m and AV/;m be hyper-dual generalized Fibonacci and Lucas numbers,
respectively. For m,n,r € 7,

— -~ -~ n U, 'r’U m—n ~ 2 2

Uk(nJrr) Uikm — Ugn Uk(err) = (_1)k % ( Vo — AUvO > ) (7
—~ ~ ~ ~ ni1 AUk Ugm—n) [ ~2 —~2

Vignin) Vim = Vin Vamary = (=17 % <V0 — AU, ) :



and

U v Y77 n VkrUk m—n ~ 2 —~2
Uk(n-i—?”) Vkm - an Uk(m+r) = (—1)k +l # ( ) 7

1 Vo — AUy
where {Uy,, } and {V}.,} are as above.

Proof. By Binet formula for the hyper-dual generalized Fibonacci number Ekn, we have

Uk(n—i—r) Ukm - Ukn Uk(m—‘rr)

B oo k(n+r) _ Bﬁk n+r) _ B/@km aokn /Bﬁkn o k(m+r) ﬁﬁk m+r)
a a—pf a—ﬁ a—p a—p

1 — m4n+r —n n+r m — n+r m 32 m4n+r
- W{O‘Q‘W ) @Bk ghm Rk ghm B ghmn)

—@2ak(m+n+r) + agak(err)ﬁkn + aﬁaknﬁk(m+r) . B2ﬁk(m+n+r)} )

Using the equality o*" 8% = (—=1)"" | we write

_ap

A(jk(n—s—r)f(\jkm - /—i]/kn/_\(jk(m—ﬁ—r) - ( ﬁkT) (akmﬁkn - aknﬁkm)
(a = )
(—1)*"ap (ar — " ) pk(m—n)
_ 6 r) ( (m—n) B m—n ) ]
(a—p)°
Since af = M and Binet formula of the sequence {Uy, } , we have
Tr Tr T 11 n U rU m—n
Ubtnsr) Uk = Ut Ungmany = (1) S0 (7 = AT,
which completes the proof. Similarly, the other results are given. [

When r = 1 in (7), we have the following conclusion.
Corollary 2.5.1 (d’Ocagne’s Identity). Let fﬁ;m be a hyper-dual generalized Fibonacci number.
Form,n € Z,

4

Taking n, n — r instead of m, n in (7), respectively, we have the following conclusion.

— —~ — ~ ~ 2 -2
Uk(n+1) Ukm — Ukn Uk(m+1) = (_1) (‘/() - AUO ) .

Corollary 2.5.2 (Catalan’s Identity). Let A(j;m be a hyper-dual generalized Fibonacci number.
Forn,r € Z,

n—r) Ul?r

—9 ~ 2 ~2
Upn = Uktnr) Uknsny = (=D (Vo —aly).
Taking n — 1 instead of m and r = 1 in (7), we have the following conclusion.

Corollary 2.5.3 (Cassini Identity). Let AU/;m be a hyper-dual generalized Fibonacci number. For
n € 7,

— — —9 n U? / ~2 —~2
Uktnar) Unnet) — Uy = (1) Zk <V° — Al ) '
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Theorem 2.6. Let Aﬁkn and Al;;m be hyper-dual generalized Fibonacci and Lucas numbers,
respectively. Then

n d ka -~ ~ k:a ~
Zﬁk Ly = U = (=1)™ Ukp—a) = Ur(an+1)+6) + (=1)™" Uk(an+p)
ai+ 1_ Vka (_ )ka ,
Xn:v - Vio — (=)™ ‘7k(b a) Vk (n+1)+b) T (—1)* %(amb)
k(ai+b — .
i 1 — Vi + (— 1)

Proof. Observe that

n aO[ (aitbd) _ Bﬁk(az-{—b

Z Uk(aerb =

=0 a-— B
_ (aakbzak _Bﬂkaﬁkai)
=0 =0
_ . kbl — oka (n+1) B ﬁﬁkb _ Bka(nJrl)
1 — Bka
1 _ /Bka _ a(n+1) + Bk’aaka(nJrl))
B 6 1 — Vig + (—1)F
Bﬁkb (1 /Bka (n+1) + Oékaﬂka n+1))
1 — Vg + (=)™ '
By definition of hyper-dual generalized Fibonacci numbers ﬁkn, we write
T~ Uip — (—1)™ Upr—ay — Urtatminy+s) + (=1 Uk(anin)
Z Uk(ai+b) = ka )
P 1 —Via+(—1)
which completes the proof. Similarly, the desired result is obtained. ]
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