
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Vol. 26, 2020, No. 1, 191–198
DOI: 10.7546/nntdm.2020.26.1.191-198

On hyper-dual generalized Fibonacci numbers
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1 Introduction

The Fibonacci numbers was introduced by Leonardo (1170–1240) in his book Liber Abbaci
that was published in 1202. Fibonacci and Lucas numbers have recently been studied by many
authors.

The generalized second order sequences {Un} and {Vn} , are defined for n > 0 and nonzero
integer number p by

Un+1 = pUn + Un−1 and Vn+1 = pVn + Vn−1,

in which U0 = 0, U1 = 1 and V0 = 2, V1 = p, respectively.
The Binet formulae are

Un =
αn − βn

α− β
and Vn = αn + βn,

where α, β = (p±
√
p2 + 4)/2.
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Especially, when p = 1, then Un = Fn (the n-th Fibonacci number) and Vn = Ln (the n-th
Lucas number).

In [7], E. Kılıç and P. Stanica derived the following recurrence relations for the sequences
{Ukn} and {Vkn}. For k ≥ 0, n > 0,

Uk(n+1) = VkUkn + (−1)k+1 Uk(n−1) and Vk(n+1) = VkVkn + (−1)k+1 Vk(n−1),

where the initial conditions of the sequences {Ukn} and {Vkn} are 0, Uk, and 2, Vk, respectively.
The Binet formulae are

Ukn =
αkn − βkn

α− β
and Vkn = αkn + βkn,

respectively.
Dual numbers were introduced in the 19th century by Clifford as a tool for his geometrical

investigations [5] and provided us with a powerful tool for the analysis of complex numbers. It
was used dual numbers and dual vectors on line geometry and kinematics [4,16,17]. Also, in [17],
the geometric sense of dual numbers were studied in detail. Recently, dual numbers have been
the subject of many studies especially in kinematics, robotic technology, quantum physics and
mechanics. The dual numbers extend to the real numbers has the form

d = a+ εa∗,

where ε is the dual unit and ε2 = 0 and ε 6= 0. In [13], Horadam introduced Fibonacci and
Lucas quaternions. Many works have related to these quaternions considered by several authors
(see, [1–3,11,12,14,15]). In [6], A. Cohen et al. showed that there were some applications of the
“automatic differrentiation” property of the dual numbers in kinematics.

Hyper-dual numbers are a larger dimensional extension of dual numbers in a similar way that
the quaternions are a larger dimensional extension of ordinary complex numbers. Firstly, J. A.
Fike et al. introduced hyper-dual numbers in [8–10]. Hyper-dual numbers were defined like dual
numbers but with the following difference: a hyper-dual number has four components unlike a
dual number that has two components.

A hyper-dual number x̃ = (x1, x2, x3, x4) and two dual units ε1, ε2, as follows:

x̃ = x1 + x2ε1 + x3ε2 + x4ε1ε2 , (1)

where
ε2

1 = ε2
2 = (ε1ε2)2 = 0, (2)

and
ε1, ε2, ε1ε2 6= 0.

The algebra of hyper-dual numbers is a ring with the following addition and multiplication
operations:

x̃+ ỹ = x1 + y1 + (x2 + y2) ε1 + (x3 + y3) ε2 + (x4 + y4) ε1ε2,

x̃ ∗ ỹ = x1y1 + (x1y2 + x2y1) ε1 + (x1y3 + x3y1) ε2

+ (x1y4 + x2y3 + x3y2 + x4y1) ε1ε2.
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From these definitions, other mathematical operations can be defined, such as the multiplica-
tive inverse of x̃:

1

x̃
=

1

x1

− x2

x2
1

ε1 −
x3

x2
1

ε2 +

(
2x2x3

x3
1

− x4

x2
1

)
ε1ε2.

Hyper-dual numbers can be used to compute exact first- and second-order derivatives to
evaluate gradients and Hessians for optimization methods. For d = h1ε1 + h2ε2 + 0ε1ε2, the
Taylor series becomes

f(x+ d) = f(x) + h1f
′(x)ε1 + h2f

′(x)ε2 + h1h2f
′′(x)ε1ε2.

In [5], A. Cohen et al. augmented the hyper-dual units in (2), as a combination of two “simple”
dual numbers, to read as follows:

ε = ε1; ε∗ = ε2,

ε2 = (ε∗)2 = (εε∗)2 = 0,

ε, ε∗, εε∗ 6= 0.

Now, the equation in (1) can be written as the follows:

x̃ = (x1 + x2ε1) + ε∗ (x3 + x4ε1) .

In the present paper, we define hyper-dual generalized Fibonacci numbers and give the Binet
formulae, the generating functions. Moreover, we obtain some basic identities for these numbers.

2 Hyper-dual generalized Fibonacci numbers

In this section, we define hyper-dual generalized Fibonacci and Lucas numbers and give basic
properties of them.

Definition 1. Hyper-dual generalized Fibonacci and Lucas numbers are defined by

Ũkn = Ukn + Uk(n+1)ε1 + Uk(n+2)ε2 + Uk(n+3)ε1ε2,

and
Ṽ kn = Vkn + Vk(n+1)ε1 + Vk(n+2)ε2 + Vk(n+3)ε1ε2,

respectively, where {Ukn} and {Vkn} are as above.

Now, we will give some properties of the hyper-dual generalized Fibonacci and Lucas num-
bers.

Theorem 2.1. Let Ũkn and Ṽ kn be hyper-dual generalized Fibonacci and Lucas numbers,
respectively. The Binet formulae for these numbers have the forms

Ũkn =
ααkn − ββkn

α− β
and

Ṽ kn = ααkn + ββkn,

where α = 1 + αkε1 + α2kε2 +α3kε1ε2 and β = 1 + βkε1 + β2kε2 +β3kε1ε2.
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Proof. By the Binet formula for {Ukn} , we have

Ũkn

= Ukn + Uk(n+1)ε1 + Uk(n+2)ε2 + Uk(n+3)ε1ε2

=
αkn − βkn

α− β
+
αk(n+1) − βk(n+1)

α− β
ε1 +

αk(n+2) − βk(n+2)

α− β
ε2

+
αk(n+3) − βk(n+3)

α− β
ε1ε2

=

(
1 + αkε1 + α2kε2 + α3kε1ε2

)
αkn −

(
1 + βkε1 + β2kε2 + β3kε1ε2

)
βkn

α− β
.

We complete the proof. Similarly, the other result can be obtained.

Lemma 2.2. For n,m ∈ Z, then

Uk(n+m) + (−1)km+1 Uk(n−m) = VknUkm, (3)

Vk(n+m) + (−1)km+1 Vk(n−m) = ∆UknUkm,

where ∆ = V 2
k + 4 (−1)k+1 .

Theorem 2.3. Let Ũkn and Ṽ kn be hyper-dual generalized Fibonacci and Lucas numbers,
respectively. We have the following identities;

Ũk(n+2) = Vk Ũk(n+1) + (−1)k+1 Ũkn, (4)

Ṽ k(n+2) = Vk Ṽ k(n+1) + (−1)k+1 Ṽ kn, (5)

Ũ−kn = (−1)kn+1
(
Ũkn − Vkn Ũ0

)
, (6)

Ṽ −kn = (−1)kn
(
Ṽ kn −∆Ukn Ũ0

)
,

Ũk(n+m) + (−1)km+1 Ũk(n−m) = Ukm Ṽ kn,

and

Ṽ k(n+m) + (−1)km+1 Ṽ k(n−m) = ∆Ukm Ũkn.

Proof. We will give the proof of (6). Using the Binet formula for the hyper-dual generalized
Fibonacci number Ũkn and αknβkn = (−1)kn , we have

Ũ−kn =
αα−kn − ββ−kn

α− β
= (−1)kn

αβkn − βαkn

α− β
.

Since α = 1 + αkε1 + α2kε2 +α3kε1ε2 and β = 1 + βkε1 + β2kε2 +β3kε1ε2, we get
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Ũ−kn

=
(−1)kn

α− β

((
1 + (−1)k β−kε1 + β−2kε2 + (−1)k β−3kε1ε2

)
βkn

−
(

1 + (−1)k α−kε1 + α−2kε2 + (−1)k α−3kε1ε2

)
αkn
)

= (−1)kn+1
(
Ukn + (−1)k Uk(n−1)ε1 + Uk(n−2)ε2 + (−1)k Uk(n−3)ε1ε2

)
= (−1)kn+1

(
Ũkn −

(
Uk(n+1) − (−1)k Uk(n−1)

)
ε1 −

(
Uk(n+2) − Uk(n−2)

)
ε2

−
(
Uk(n+3) − (−1)k Uk(n−3)

)
ε1ε2

)
.

By (3), we get

Ũ−kn = (−1)kn+1
(
Ũkn − UkVknε1 − U2kVknε2 − U3kVknε1ε2

)
= (−1)kn+1

(
Ũkn − Vkn (U0 + Ukε1 + U2kε2 + U3kε1ε2)

)
= (−1)kn+1

(
Ũkn − Vkn Ũ0

)
.

Thus, the desired result is obtained. Similarly, the proofs of the other results are given.

Theorem 2.4. The generation functions for hyper-dual generalized Fibonacci and Lucas numbers
Ũkn and Ṽ kn are

g(x) =
Ũ0 +

(
Ũk − Ũ0Vk

)
x

1− Vkx+ (−1)k x2
and h(x) =

Ṽ 0 +
(
Ṽ k − Ṽ 0Vk

)
x

1− Vkx+ (−1)k x2
,

respectively.

Proof. Let
g(x) = Ũ0 + Ũkx+ Ũ2kx

2 + · · ·+ Ũknx
n + · · ·

be the generating function of the hyper-dual generalized Fibonacci number Ũkn. Since the orders
of Ũk(n−1) and Ũk(n−2) are 1 and 2 less than the order of Ũkn, respectively and (4), we have
xg(x) and x2g(x) :

Vkxg(x) = Ũ0Vkx+ ŨkVkx
2 + Ũ2kVkx

3 + ... Ũk(n−1)Vkx
n + ...

(−1)k x2g(x) = Ũ0 (−1)k x2 + Ũk (−1)k x3 + ... Ũk(n−2) (−1)k xn + ....

Then we have (
1− Vkx+ (−1)k x2

)
g(x) = Ũ0 +

(
Ũk − Ũ0Vk

)
x.

Thus, the proof is complete. Similarly, by (5), the other generating function is obtained.

Theorem 2.5. Let Ũkn and Ṽ kn be hyper-dual generalized Fibonacci and Lucas numbers,
respectively. For m,n, r ∈ Z,

Ũk(n+r) Ũkm − Ũkn Ũk(m+r) = (−1)kn
UkrUk(m−n)

4

(
Ṽ0

2
−∆Ũ0

2
)
, (7)

Ṽ k(n+r) Ṽ km − Ṽ kn Ṽ k(m+r) = (−1)kn+1 ∆UkrUk(m−n)

4

(
Ṽ0

2
−∆Ũ0

2
)
,
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and

Ũk(n+r) Ṽ km − Ṽ kn Ũk(m+r) = (−1)kn+1 VkrUk(m−n)

4

(
Ṽ0

2
−∆Ũ0

2
)
,

where {Ukn} and {Vkn} are as above.

Proof. By Binet formula for the hyper-dual generalized Fibonacci number Ũkn, we have

Ũk(n+r) Ũkm − Ũkn Ũk(m+r)

=
ααk(n+r) − ββk(n+r)

α− β
ααkm − ββkm

α− β
− ααkn − ββkn

α− β
ααk(m+r) − ββk(m+r)

α− β

=
1

(α− β)2

{
α2αk(m+n+r) − αβαk(n+r)βkm − αββk(n+r)αkm + β

2
βk(m+n+r)

−α2αk(m+n+r) + αβαk(m+r)βkn + αβαknβk(m+r) − β2
βk(m+n+r)

}
.

Using the equality αknβkn = (−1)kn , we write

Ũk(n+r) Ũkm − Ũkn Ũk(m+r) =
αβ

(α− β)2

(
αkr − βkr

) (
αkmβkn − αknβkm

)
=

(−1)kn αβ

(α− β)2

(
αkr − βkr

) (
αk(m−n) − βk(m−n)

)
.

Since αβ = Ṽ0
2
−∆Ũ0

2

4
and Binet formula of the sequence {Ukn} , we have

Ũk(n+r) Ũkm − Ũkn Ũk(m+r) = (−1)kn
UkrUk(m−n)

4

(
Ṽ0

2
−∆Ũ0

2
)
,

which completes the proof. Similarly, the other results are given.

When r = 1 in (7), we have the following conclusion.

Corollary 2.5.1 (d’Ocagne’s Identity). Let Ũkn be a hyper-dual generalized Fibonacci number.
For m,n ∈ Z,

Ũk(n+1) Ũkm − Ũkn Ũk(m+1) = (−1)kn
UkUk(m−n)

4

(
Ṽ0

2
−∆Ũ0

2
)
.

Taking n, n− r instead of m,n in (7), respectively, we have the following conclusion.

Corollary 2.5.2 (Catalan’s Identity). Let Ũkn be a hyper-dual generalized Fibonacci number.
For n, r ∈ Z,

Ũ
2

kn − Ũk(n−r) Ũk(n+r) = (−1)k(n−r) U
2
kr

4

(
Ṽ0

2
−∆Ũ0

2
)
.

Taking n− 1 instead of m and r = 1 in (7), we have the following conclusion.

Corollary 2.5.3 (Cassini Identity). Let Ũkn be a hyper-dual generalized Fibonacci number. For
n ∈ Z,

Ũk(n+1) Ũk(n−1) − Ũ
2

kn = (−1)kn+k+1 U
2
k

4

(
Ṽ0

2
−∆Ũ0

2
)
.
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Theorem 2.6. Let Ũkn and Ṽ kn be hyper-dual generalized Fibonacci and Lucas numbers,
respectively. Then

n∑
i=0

Ũk(ai+b) =
Ũkb − (−1)ka Ũk(b−a) − Ũk(a(n+1)+b) + (−1)ka Ũk(an+b)

1− Vka + (−1)ka
,

n∑
i=0

Ṽ k(ai+b) =
Ṽkb − (−1)ka Ṽk(b−a) − Ṽk(a(n+1)+b) + (−1)ka Ṽk(an+b)

1− Vka + (−1)ka
.

Proof. Observe that

n∑
i=0

Ũk(ai+b) =
n∑

i=0

ααk(ai+b) − ββk(ai+b)

α− β

=
1

α− β

(
ααkb

n∑
i=0

αkai − ββkb

n∑
i=0

βkai

)

=
1

α− β

(
ααkb1− αka(n+1)

1− αka
− ββkb1− βka(n+1)

1− βka

)
=

1

α− β

{
ααkb

(
1− βka − αka(n+1) + βkaαka(n+1)

)
1− Vka + (−1)ka

−
ββkb

(
1− αka − βka(n+1) + αkaβka(n+1)

)
1− Vka + (−1)ka

}
.

By definition of hyper-dual generalized Fibonacci numbers Ũkn, we write

n∑
i=0

Ũk(ai+b) =
Ũkb − (−1)ka Ũk(b−a) − Ũk(a(n+1)+b) + (−1)ka Ũk(an+b)

1− Vka + (−1)ka
,

which completes the proof. Similarly, the desired result is obtained.
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