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Abstract: In this paper it is shown that there is a plurality of irrational values of the roots of a 

quadratic equation with equal modulus coefficients 1||||  qp  having properties of the 

numbers of Phidias ...61803.0  and ...61803.1  It is shown that it is also possible to 

construct a set of sequences possessing the basic properties of the Fibonacci and Lucas 

sequences. 
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1 Introduction 

It is known [4, 8, 18] that the roots of a quadratic equation (QE) 

 02  qpxх  (1) 

are irrational if the discriminant  

  qpD 42    (2) 

is not equal to the exact square. For the values of coefficients 1,1  qp , equation (1) 

implies proportional equality 
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known as the proportion of the golden section of an integer L = 1 into two unequal parts x and 

1 – x. When you split an integer L, the golden ratio is written as 
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where, by introducing the coefficients of relative variable L 
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we get a system of QE 
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solutions are based on theorems Viete’s, expressing the basic laws of the golden ratios in the 

form of equations: 
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Quantitatively, the golden section is described by the positive values of the roots 

     ....618.051
2

1
  and     ...618.151

2

1
 (8) 

and for the positive values of the roots (4) by the Viete’s theorem give: 
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Relations (9) express the main properties of the golden section. 

This task was developed in many works, the results of which are systematized, for 

example, in monographs [4, 8, 18] et al. The golden numbers Ф and   are currently used in 

modern research, quantum [21] and spin [1] physics, in new field of quasicrystals [14], fractal 

geometry [6], algebra of numbers [5, 16, 20]. The American mathematician G. Bergman [2] 

built a system of calculus, in which the number of Phidias plays the role of the basis. The 

publications [3, 12, 13, 16, 17, 19] indicate that the problem of proportional division remains 

relevant in the future. In this paper shows that the numbers Ф and   with “golden” properties 

(9) are not unique, and there is a set of irrational values of the roots of the generalized quadratic 

equation (1) with modulus coefficients equal to 

 1||||  kqp , (10) 

with properties of Phidias numbers Ф and .  
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2 Theoretical model and discussion 

To substantiate this assertion, we formulate the division model (4) as  
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which has not been investigated recently in the literature, and introduce the coefficient of 

relative changes: 
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Substituting Eq. (12) into Eq. (11), we obtain the square equation for )(k  and )(k  with 

solutions: 
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 (13) 

similar to the gold ones for numbers   and   (7), as confirmed in Table 1 by calculations the 

roots (13) for arbitrarily taken integers, fractional and irrational values of the coefficient k  [10]. 

 

k  )(k  )(k  )(k  )(k  

1   1.618… 0.618… 0.618…   1.618… 

2   2.732… 0.732… 0.732…   2.732… 

3.14...     3.937 0.797 0.937   3.937 

11 11.923… 0.923… 0.923… 11.923… 

Table 1. Numerical values of roots calculated by formulas (13) 
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Figure 1. Phase diagram roots )(),( kk   
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The graphs of dependency (13) for positive solutions for positive solutions of )()( kk    

and )()( kk   are shown in Figure 1. The fact that the graphs of both solutions converge to 

a common point indicates the correctness of the proposed model of generalization of the 

proportional division of the whole into two unequal parts in the phase direction (10), which on 

the Cartesian plane qp0  is parallel to the direction of the root line 01 qp  [9]. 

3 The set of sequences with the properties 

of the Fibonacci and Lucas numbers 

Members of the Fibonacci sequence [4, 8, 18] 

 ,...5,4,3,2,1,1)1(,1)0(,11   nFFFFF nnn  (14) 

and members of the Lucas sequence  

 ,...5,4,3,2,1,3)1(,1)0(,1   nLLLLL nnn  (15) 

are related to the numbers ,  by Binet formulas [4]: 
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 , (16) 

taking into account the Cassini formula 

 1)1(
2

11   nforFFF n

nnn . (17) 

We formulate by the analogy the Binet relations, which allow us to construct with the help 

of numbers )(k  and )(k  sequences: 
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for which recurrence relations are valid 

    , 2 , 1 , , 2 , 1 , ,1 ,2    and  , 1,k n k n k n k n k n k n k kF F F k L L L k F F k         , (19) 

Cassini formula 

   1)(
2
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nknknk . (20) 

The formulas (18)(20) written down are proved by induction. Indeed, when k = 1 we 

have: 
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Consequently, the formulas (18)(20) are valid. The basis of the induction is proved. 
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By induction, any degree n of the golden proportion Ф(k) through Lucas numbers Lk,n and 

the Fibonacci Fk,n numbers can be expressed as: 

  kkFLk nknk

n 4
2

1
)( 2

,,  . (22) 

The correctness of (18)(20) is confirmed by the fact that formula (18) is followed by an 

analytical expression for calculating the terms of the Fibonacci sequence un [11] for the GP 

model 
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The results of calculations of the Fibonacci numbers and the Lucas numbers are presented 

in Table 3. As follows from Tables 2 and 3, the values of the ratios  
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fluctuate relative to the values of the gold numbers )(k , tending to them as equilibrium for 

the given GP numbers ..618.1)1(  , ..732.2)2(  , ...937.3)(   , etc. [7].  
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1       1           1  

1 1      2 2          3.14 

2 2      6 = (2+1)2 3        13 = ( + 1) 4.14 

3 1.5    16 = (6+2)2 2.667     50.7 = (13+) 3.898 

5 1.667     44 = (16+6)2 2.75 199.95 = (50.7+13) 3.945 

8 1.6   120 = (44+16)2 2.733 786.99 = (200+50.7) 3.936 

13 1.625   328 = (120+44) 2 2.732    3099 = (787+200) 3.938 

21 1.619 8952 = (328+120)2 2.732  12200 = (3099+787) 3.937 

Table 2. The numerical values of the members of the Fibonacci sequence and its ratio 
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
   

0 L(2,0) = 2   L(,0) = 2   

1 L(2,1) = 2   L(,1) =    

2     8 = (2+2)2 4 0.5 16.153 = ( +2) 5.14 0.611 

3   20 = (8+2)2 2.5 0.8 60.615 = (16+) 3.753 0.837 

4   56 = (20+8)2 2.8 0.714      241 = (60.5+16) 3.98 0.79 

5 152 = (56+20)2 2.714 0.737   948.1 = (241+61) 3.93 0.797 

6 416 = (152+56)2 2.737 2.731    3736 = (946+241) 3.94 0.798 

Table 3. Numeric values of members of Luke sequence numbers and its ratio 
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4 Conсlusion 

The irrational roots of the quadratic equation 02  qpхх  with equal modulus 

1||||  kqp  having properties of the numbers of Phidias ...61803.0  and ...61803.1  

The general model of golden section have the form 

)(

)()(

kх

kхL
k

L

kх 
  

for arbitrary values of the coefficient k. On the basic of quadratic irrationality can by 

constructive a set of sequences with the properties of the terms of the sequences Fibonacci and 

Lucas. 
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