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Abstract: The interplay between algebraic structures and their elements have been the most 

famous and productive area of the algebraic theory of numbers. Generally, the greatest 

common divisor and least common multiple of any two positive integers are dependably  

non-zero elements. In this paper, we introduce a new pair of elements, called classical pair in 

the ring Zn whose least common multiple is zero and concentrate the properties of these pairs. 

We establish a formula for determining the number of classical pairs in Zn for various values 

of n. Further, we present an algorithm for determining all these pairs in Zn. 

Keywords: Greatest common divisor, Least common multiple, Euler-totient function, Classical 

pairs. 

2010 Mathematics Subject Classification: 97K20, 97F60, 11A07.   

1 Introduction 

Common divisors and multiples of numbers are two focal classes of positive integers which 

have appreciated incredible regard in the hypothesis of numbers. For any two positive integers 

a and b, the greatest common divisor and least common multiple of a  and b  are denoted by 

( , )a b  and [ , ]a b , respectively. But a  and b  are relatively prime if and only if ( , ) 1a b  , and 
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these relatively prime integers assume a huge job in the investigation of the theory of numbers 

and their outcomes. When dealing with a positive integer, it is clearly helpful to know its prime 

factorization. Spreading something into its smaller parts allows further insight into how each 

part and contributes to the behaviour of the whole numbers. We accomplish this decomposition 

with the help of the following result, founded in [1].  
 

Theorem 1.1. Let a  and b  be any two positive integers. Then ( , )[ , ]a b a b ab . 

 

Given a positive integer 1n  , the set ( ) { : 0 ( , ) 1}n k N k n and k n       represents the 

numbers which are relatively prime to n  and the number of elements in Ф(n) is |Ф(n)| which is 

defined as (n), the Euler-totient function [2]. The function (n) satisfies the following 

properties. 

1.  ( ) 1n n    if and only if n  is prime. 

2.  If 1 2

1 2...
r

rn p p p
  

 , then 
1

( ) 1
ip n i

n n
p


 

  
 

 .  

3.  ( )
d n

d n  .  

4.  ( ) ( ) ( )mn m n    if and only if  ( , ) 1m n  . 

 

In this paper, we are working the elements in the finite ring of integers modulo n which will 

be represented by Zn. Now we are going to represent more on definitions and terminologies 

associated with Zn and in particular the finite sets of units and zero divisors are also defined. 

First, we can generally define a ring R. Let R be a non-empty set. Then the algebraic structure 

( , , )R    is said to form a ring R as an abelian group with respect to addition ( )  together with 

multiplication ( )  such that ( , )R   is semigroup and satisfies distributive laws ( )a b c ab ac    

and ( )b c a ba ca    for all a  and b  in R, see [3] for more details of a ring R. If ab ba  for 

all ,a b R , then R is said to be commutative, and similarly, if 0ab   for all ,a b R , then R is 

called a zero ring [5], it is denoted by R0. For any finite commutative ring R with unity, we have 

R is exactly a union of three disjoint non-empty subsets. So one method is to take as simply as a 

subset U(R) of R that consists only of multiplicative inverse elements called units, that is, 

( )a U R  implies that there exists ( )b U R  such that 1ab ba  . Other than U(R), there is 

another non-empty subset Z(R) in R which does not contain zero elements '0 ' , that is, ( )a Z R  

means that there exists ( )b Z R  such that 0ab ba  . These two concepts show that 

R ( )U R {0} ( )Z R  if and only if R a finite commutative ring with unity is.  

Now we turn our attention to the elements in the finite commutative ring Zn with unity 1, 

where {0,1, 2,..., 1}nZ n  . It is important that ( ) {0} ( )n n nZ U Z Z Z . In [4], Shan and 

Wang defined mutual multiplies in Zn and establish a formula for enumerating the number of 

unordered mutual multiple pairs in Zn for all positive integers 1n  . By this motivation, we 

define and count the set of all classical pairs of elements in the ring Zn of integers modulo n. 

We conclude this section by stating two identities of U(Zn) and Z(Zn) which significantly 

helped in finding and enumerating the set of classical pairs of elements in Zn. For any positive 

integer 1n  , ( ) ( )nU Z n  and ( ) ( ) 1nZ Z n n   . 
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2 Properties of Classical pairs in nZ  

In this section, we define classical pairs of elements which are in Zn. We also show a 

connection between the classical pairs of elements in the sets of units and non-zero zero-

divisors of Zn, when 1 2

1 2...
r

rn p p p
  

  with 1, 1i i r     . 

 

Definition 2.1. Let 1n   be a positive integer and let Zn be the commutative ring of integers 

modulo n. Then two distinct non-zero elements a  and b  of Zn are said to form a classical pair 

if [ , ] 0(mod )a b n , where '0 '  is additive identity in Zn. The classical pair in Zn is denoted by 

{ , }a b  which is a 2-element subset in Zn and the set of all classical pairs in Zn is denoted by 

 { , }:[ , ] 0modn a b a b n    with cardinality 
n .  

 

Note that the additive identity '0 '  cannot form a classical pair with any (non-zero) element 

in Zn. Also, if n p , 1   is a power of a prime, then clearly any two non-zero elements of 

Zn does not form a classical pair, and thus 0
p

  .  

Following is a more substantial example for existing established classical pairs in Zn. 
 

Example 2.2. In the ring Z6, the numbers 2 and 3 form a classical pair, since 

[2,3] 6 0(mod6)  . Similarly, 3 and 4 forms another classical pair, since [3,4] 0(mod6) . On 

the other hand, 2 and 4 do not form a classical pair, since [2,4] 8  0(mod6) . Hence 6 2  . 

 

Here, clearly observe that when two elements a and b which are in Zn does not form a 

classical pair {a, b} if either a divides b, or, b divides a. Another way, if [ , ] 0(mod )a b n , then 

a does not divides b and b does not divides a. But the converse of this observation may not be 

true. For instance, 2 does not divide 3 in Z12 and [2, 3] 6 0(mod12) .    

 

Lemma 2.3. If u  and v  are two distinct units of the ring Zn, then { , }u v  is not a classical pair 

of Zn. 

Proof. Suppose { , }u v  is a classical pair in Zn. Then, by Definition 2.1, [ , ] 0(mod )u v n . 

Consequently, n divides [ , ]u v . There exists nq Z  such that [ , ]u v nq . In view of Theorem 1.1, 

( , )nq u v uv  ( , )
uv

u v
nq

   , 1
u v

uv nq uv nq

 
 

 
   , 1

nq nq

v u

 
 

 
. 

This means that, 
nq

v
 and 

nq

u
 are relative prime. Therefore, u and v are divisors of nq.  

It is clear that u and v are not units of Zn. So, our assumption is not true, and hence 

[ , ]u v  0(mod )n .   

 

 By Lemma 2.3, we conclude that the elements of ( )nU Z  does not form a classical pair. So, 

our required classical pair exists in ( )nZ Z  only. For general positive integers a  and b  in Zn, 
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we have ( , ) 0a b   and [ , ] 0a b  . But for some pairs of a and b in Zn the condition 

[ , ] 0(mod )a b n  may be satisfied, while the condition ( , )a b  0(mod )n  is not satisfied. 

 

Lemma 2.4. If a  and b  are any two non-zero elements of Zn, then ( , )a b  0(mod )n . 

Proof. Let a n  and b n , since a , nb Z . Then ( , )a b n  and hence ( , )a b  0(mod )n .   

  

Recall that a ring 0R  is called a zero ring if 0ab   for all 
0,a b R  and 0 is additive identity 

in 0R . In [5], the author Buck introduced zero rings and studied its basic properties. However, 
0

nZ  is a zero ring if and only if 
2n p . Now we prove that each non-zero pair of elements in 

0

nZ  form a classical pair. 

 

Lemma 2.5. Every pair of non-zero elements in 0

nZ  form a classical pair. 

Proof. For each pair a  and b  of non-zero elements in 0

nZ , by Lemma 2.3 and Lemma 2.4, 

0 0(mod )ab ab n   [ , ]( , ) 0(mod )a b a b n  [ , ] 0(mod )a b n  , since ( , )a b  0(mod )n  

{ , }a b  is a classical pair of 0

nZ .  

 

Example 2.6. The set of all classical pairs in the zero-ring 0

25 {0, 5, 10, 15, 20}Z   is  

{{5,10}, {5,15}, {5,20}, {10,15}, {10,20},{15,20}} . 

3 Enumeration of classical pairs in Zn 

In this section, we determine and enumerate all classical pairs which are 2-element subsets of 

the ring Zn and the zero-ring 0

nZ . First, we think the set n  of all classical pairs of Zn is 

{{ , }: [ , ] 0(mod )}n a b a b n   and its cardinality n . By the previous section, 0
p

  for 

every prime power p
, 1  . But 0pq   for two distinct primes p  and q . We generalize the 

enumeration process of classical pairs in nZ  and obtain a formula for enumerating the number 

of classical pairs in Zn when 1 2

1 2 ... , 1r

rn p p p r
  

  .  

Recently, the authors Sajana and Bharathi explored many results in [6]. The set ( )nZ Z  of all 

non-zero zero divisors of Zn can be written as the disjoint union of the sets dS 's for all d  in D , 

where { : ( ) ( )}d nS x Z x d    and the set D  denotes the set of all non-trivial proper divisors 

of the positive integer n. They obtained the result 
d

n
S

d

 

  
 

, d D  .  

The set D  can be written as the disjoint union of the sets D1 and D2, where 

1 1 1{ :[ , ]D d D d d   10(mod ), }n d d D   and 2 2 2{ :[ , ] 0(mod ),D d D d d n    for some 

2 }d d D  , the set ( )nZ Z  can be written as the disjoint union of the sets 1 1( )I D  and 2 2( )I D , 

where 1 1 1( ) { : ( ) ( ), }nI D x Z x d d D     and 2 2 2( ) { : ( ) ( ), }nI D x Z x d d D    . Similarly 

in 1D , every element in 1 1( )I D  having the least common multiple incongruent to zero modulo 
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n  with every other element in Zn. This implies that the elements in the classical pairs are the 

elements in the set 2 2( )I D .  

First, we determine a formula for counting the number of classical pairs in the zero-ring 0

nZ . 

Define 0 { : 0(mod ) for all }n n nZ a Z ab n b Z    . Therefore, 0 {0}nZ   if and only if 

2n p and 2

0 {0, ,2 ,3 ,..., ( 1)}
p

Z p p p p p  . 

Theorem 3.1. The number of classical pairs in the zero-ring 0

nZ  is 
1

2

p  
 
 

, where 
2n p . 

Proof. Without loss of generality, we have the non-trivial zero-ring 0

nZ  is isomorphic 2

0

p
Z  and 

2

0

p
Z p . In view of the Lemma 2.5, every pair of non-zero elements in 2

0

p
Z  form a classical 

pair, and the total number of non-zero elements in 2

0

p
Z  is 1p  . Since, 0(mod )ab n  if and 

only if [ , ] 0(mod )a b n . It follows that each pair { , }a b  in 2

0

p
Z  satisfies the condition 

[ , ] 0(mod )a b n . Hence the number of classical pairs in 2

0

p
Z  is 

1 ( 1)( 2)

2 2

p p p   
 

 
.         

 The following Lemma gives the cardinality of the set of all classical pairs of the ring Zn for 

p
, 1  . 

 

Lemma 3.2. The cardinality of 
p

 , the set of all classical pairs of the ring 
p

Z  , 1   is 

0.
p

   

Proof. We have ( ) {0} ( )n n nZ U Z Z Z and from Lemma 2.3 no pair of elements in ( )nU Z  

form a classical pair. Let n p , then we have ( )nZ Z  , if 1   and 1 1( ) ( )nZ Z I D , if 

1  , see [6]. By the definition of 1 1( )I D , no pair of elements form a classical pair. Therefore, 

0.n      

 

Next, we generalize the formula for enumerating the number of classical pairs in Zn, when 

1 2

1 2 ... , 1r

rn p p p r
  

  . Note that, 

  11 2 1 1 1 2
1 2 1 1 2 1 2

2 20

...
p p p p p p p

S S S S     

 



 

   

 

               
1 1

1 1 2

...
n n

p p p
 

 
   

      
   

1 2 1

1 2

n

p p
 




 
 
   

               
1 2

2 20 1 2

n

p p
 

 


 

 
  

 
 , since d

n
S

d

 

  
 

, d D  .                                     

 

Theorem 3.3. If 1 2

1 2 ... , 1r

rn p p p r
  

   and 1i   for all 1 i r  , then the cardinality of the 

Zn set of all classical pairs in the ring is 

1 21

1 2(2 1)( 1)( 1)...( 1)rr

n rp p p
         11 22

1 2 1(2 1) ( 1)( 1)...( 1)mr

mp p p
  

    
1 2( 1)

1 2... (2 1) ( 1)( 1)r r p p
      . 
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Proof. Let 1 2

1 2 ... , 1r

rn p p p r
  

  , then the set 2 2( )I D  can be written as the disjoint union of 

the following sets: 

31 2

31 2
1 2 3

1 2 3...
0 ,

2,3,...,

{ :( ) ( ... ),0 , 2,3,..., }r

r
r

i i

n r i ip p p p

i r

S x Z x p p p p i r  

  

 

 
 


       

31 2

31 2
1 2 3

1 2 3...
0 ,

1,3,...,

{ :( ) ( ... ),0 , 1,3,..., }r

r
r

i i

n r i ip p p p

i r

S x Z x p p p p i r  

  

 

 
 


      ,..., 

1 2 1

1 2 1
1 2 1

1 2 1...
0 ,

1,2,..., 1

{ :( ) ( ... ),0 , 1,2,..., 1},r r

r r
r r

i i

n r r i ip p p p

i r

S x Z x p p p p i r   

   

 

 






 
 

        

31 2 4

31 2 4
1 2 3 4

1 2 3 4...
0 ,

3,4,...,

{ :( ) ( ... ),0 , 3,4,..., }r

r
r

i i

n r i ip p p p p

i r

S x Z x p p p p p i r   

   

 

 
 


      , 

31 2 4

31 2 4
1 2 3 4

1 2 3 4...
0 ,

2,4,...,

{ :( ) ( ... ),0 , 2,4,..., },...,r

r
r

i i

n r i ip p p p p

i r

S x Z x p p p p p i r   

   

 

 
 


       

2 11 2

2 11 2
1 2 2 1

1 2 2 1...
0 ,

1,2,..., 2

{ :( ) ( ... ),0 ,m m r

m m r
m m r

i i

n m m r i ip p p p p

i r

S x Z x p p p p p   

   

 

  

 
 

 

 
 

    

1,2,..., 2}i r  ,...,  

1 2 1

1 2 1
1 2 1

1 2 1...
0

{ :( ) ( ... ),0 },r r

r r
r r

r r

n r r r rp p p p
S x Z x p p p p   

   

 

 






 

    
 

1 2 2 1

1 2 2 1
1 2 2 1

1 1

1 2 2 1 1 1...
0

{ :( ) ( ... ),0 },...,r r r

r r r
r r r

r r

n r r r r rp p p p p
S x Z x p p p p p    

    

 

  

 
 

 

   

 

       

31 2

31 2
1 2 3

1 1

1 2 3 1 1...
0

{ :( ) ( ... ),0 }.r

r
r

n rp p p p
S x Z x p p p p  

  

 

 
 

      

 The cardinality of the set of all classical pairs in the ring Zn is 

 n 
3 31 2 1 2

1 2 3 1 2 3

1 1

... ...
0 , 0

2,3,...,

1

2
r r

r r

i i

p p p p p p p p

i r

S S      

      









 31 2 4
1 2 3 4 ...

0 ,
3,4,...,

r
r

i i

p p p p p

i r

S    

  




 

     

3 3 31 2 4 1 2 1 2
1 2 3 4 1 2 3 1 2 3

1 1 2 2

... ... ...
0 , 0 0

1,2

...
r r r

r r r

i i

p p p p p p p p p p p p p

i

S S S           

          


 
 

   
 
  

  

   
1 2 1 1 2 1

1 2 1 1 2 1... ...
0 0 ,

1,2,..., 1

r r r r
r r r r

r r i i

p p p p p p p p

i r

S S       

   

 
 

   
 








       

   
1 2 2 1

1 2 2 1...
0 ,

1,2,..., 2

r r r
r r r

i i

p p p p p

i r

S     

 

 
 

 
 

... 
1 2 2 1

1 2 2 1

1 1

...
0

r r r
r r r

r r

p p p p p
S     

 

 
 

  




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    =
3 31 2 1 2

1 10 , 01 2 3 1 2 3
2,3,...,

1

12 ... ...r r

i i r r
i r

r n n

p p p p p p p p
      

   

 
   



              



         

   
31 2 4

0 , 1 2 3 4
3,4,...,

2 ... r

i i r
i r

r n

p p p p p
   

 


 


  
  

   


31 2 4
0 , 1 2 3 4

1,2

... r

i i r
i

n

p p p p p
   

 


 


 
 

 
   

   
31 2 4

0 , 1 2 3 4
3,4,...,

1

1 ... r

i i r
i r

r n

p p p p p
   

 


 


   
  

   
 

31 2

1 10 1 2 3

...
... r

r

n

p p p p
  

 


 

 
  

 
  

   
1 2 1 1 2 1

0 0 ,1 2 1 1 2 1
1,2,..., 1

1 ... ...r r r r

r r i ir r r r
i r

r n n

r p p p p p p p p
       

   

 
 

    
 

    
    

     
    

   
1 2 1 1 2 2 1

0 0 ,1 2 1 1 2 2 1
1,2,..., 2

1

2 ... ...r r r r r

r r i ir r r r r
i r

r n n

r p p p p p p p p p
        

   

 
  

     
 

     
    

     
    

   ...   

  
1 2 1 1 2 2 1

1 10 01 2 1 1 2 2 1

( 2)

1 ... ...r r r r r

r r r rr r r r r

r r n n

p p p p p p p p p
        

   

 
  

      

      
    

     
    

 

       =  1 1 2 2

1 2

0 ,
1,2,...,

1
... ...

1 2 12
r r

i i

r

i r

r r r
p p p

r

     

 

   

 



                       

      

   

 
1 1 1

...
1 2 2

r r r

r

         
        

      
 3 31 1 4 4

1 3 4

0 ,
1,3,4,...,

... r r

i i

r

i r

p p p p
      

 

   

 


 

 1 1

1

0 ,
1,

( 2)

1
r r r r

i i

r r

i r r

r r
p p

   

 

   



 
 


   

   


  . 

 

 We have ... 2 2
1 2 1

r
r r r

r

     
         

     
 and simplifying the above, we obtain 

1 21

1 2(2 1)( 1)( 1)...( 1)rr

n rp p p
         1 2 12

1 2 1(2 1) ( 1)( 1)...( 1)rr

rp p p
   

      
 1 2( 1)

1 2(2 1) ( 1)( 1)r r p p
      .  

 

Corollary 3.4. If 1 2

1 2n p p
 

  and 1i   for all 1 2i  , then the cardinality of the set of all 

classical pairs in the ring Zn is 1 2

1 2( 1)( 1)n p p
     . 

Proof. For 1 2

1 2n p p
 

 , the set 2 2( )I D  can be written as the disjoint union of the sets 
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1 2

1 2
1 2

2 2

1 2 2 2

0

{ :( ) ( ), 0 }np p
S x Z x p p 

 

 

 
 

      

and  

1 2

1 2
1 2

1 1

1 2 1 1

0

{ :( ) ( ), 0 }np p
S x Z x p p 

 

 

 
 

     . 

 Now the cardinality of the set of all classical pairs in the ring Zn is      

  
n 

1 2 1 2
1 2 1 2

2 2 1 10 0

1

2 p p p p
S S   

      

 
 
  
                 

         
1 2 1 2

2 2 1 10 01 2 1 2

21

12

n n

p p p p
   

   

 
   

     
      

      
   
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2 2 1 1

2 1

0 0

21

12
p p

   

   

  

   

  
   

  
   

            1 1 2 2
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21
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   

 

  

 
 

 
      
  

   

                          1 2 1 2 1 11 1

1 2 1 2 1 2 1 1

21
...

12
p p p p p p p p

          
 

      
 

...   

                2 2 1

1 2 2 2... (1)p p p p
     

       1

1p
  1 1

1p
 

 ...   

                 2 2 1

1 2 2 2... (1)p p p p
          


 

    1 2

1 2

21

12
p p

 
 

  
 

     1 1 1

1 1 1... (1)p p p
    

      2

2p
    2 1

2p
 

  

      2... (1) (1)p     


                                                       (since  
d n

d n  )  

     1 2 1 22

1 2 1 2

1
2 2 ( ) 1

2
p p p p

        
 

               (by using 2
2

2 2
1

 
  

 
,  1 1  ) 

                     1 2

1 21 1p p
 

   .                                                  

 

Example 3.5. For the ring 10 {0,1,2,3,4,5,6,7,8,9}, 10 2.5Z   , the set  2 2 2 5I D S S , 

where 2 10{ :S x Z  ( ) (2)}x   {2,4,6,8}  and 5 10{ :S x Z  ( ) (5)} {5}x   . Clearly, every  

element in S2 having the least common multiple congruent to zero modulo 10 with every 

element in S5 and also these are the only classical pairs in Z10. So, the set of all classical pairs in 

10Z  is 
10 {{2,5},{4,5},{5,6},{5,8}}   with cardinality 4. Also from the above formula, we 

have 10 (2 1)(5 1) 4.      



67 

4 Algorithm 

In this section, we present an algorithm for determining all the classical pairs in Zn depends on 

the value of n and gave the outputs when running the program in C-language for various values 

of n based on the algorithm. 

 

Algorithm 4.1. 

Step 1: Start 

Step 2: Initialize variables n, i, j, a, b, minMultiple, lcm, r 

Step 3: Read the value of n 

Step 4: i ← 2 

Step 5: j ← i+1 

Step 6: a ← i, b ← j, minMultiple ← (a > b) ? a : b 

Step 7: While always be true 

Step 8: If (minMultiple % a=0) and (minMultiple % b =0), then goto Step 9 else goto Step 14 

Step 9: lcm ← minMultiple 

Step 10: r ← (lcm % n) 

Step 11: If (r = 0), then goto Step 12 else goto Step 13 

Step 12: Print Classical pair 

Step 13: Break 

Step 14: Increment minMultiple 

Step 15: Goto Step 8 

Step 16: If (j < n), then goto Step 17 else goto Step 19 

Step 17: j ← j+1 

Step 18: Goto Step 6 

Step 19: If (i < n), then goto Step 20 else goto Step 22 

Step 20: i ← i+1 

Step 21: Goto Step 5 

Step 22: Stop 

 

Outputs 4.2. The obtained outputs for various values of n are: 

(i).  For given number 10n  , then the output is 

       Classical pairs:{2,3},{3,4} 

(ii). For given number 12n  , then the output is 

       Classical pairs:{3,4},{3,8},{4,6},{4,9},{6,8},{8,9}.  

5 Conclusion 

In this paper, we characterized and examined the classical pairs of a finite commutative ring. 

Additionally, we acquired a recipe for finding the cardinality of the arrangement of every 

classical pair of a Zn for all values of n. At long last, the outcomes were confirmed with 

appropriate precedents by utilizing the calculation of C-program. 



68 

Acknowledgements 

All the authors thank to the peer reviewers for their valuable suggestions to improve the 

presentation of this paper. 

References 

[1] Rosen, K. H. (2019). Elementary Number Theory and Its Applications, 6th Edition. 

Pearson New International Edition. 

[2] Chalapathi, T., & Kiran Kumar, R. V. M. S. S. (2016). Graph structures of Euler totient 

numbers. Daffodil International Journal of Science and Technology. 11 (2), 19–29. 

[3] Beachy, J. A., & Blair, W. D. (2006). Abstract Algebra, 3rd Edition. Waveland Press Inc.  

[4] Shan, Z., Wang, E. T. H. (1999). Mutual multiplies in Zn. Mathematics Magazine, 72 (2), 

143–145. 

[5] Buck, W. K. (2004). Cyclic Rings. Master Thesis, Eastern Illinois University. 

[6] Sajana, S., & Bharathi, D. (2019). Number theoretic properties of the commutative ring 

Zn. Int. J. Res. Ind. Eng. 8 (1), 77–88. 



69 

Appendix 

Here, we present a program in C-language for finding all the Classical pairs in Zn for various 

values of 𝑛. 

 

 1 #include<stdio.h> 

 2 int main() 

 3 { 

 4  int n, i, j, a, b, minMultiple, lcm, r; 

 5  printf("enter n value:"); 

 6           scanf("%d", &n); 

 7           printf("Classical Pairs:"); 

 8     for(i=2; i<n; i++) 

 9     { 

10     for(j=i+1; j<n; j++) 

11     { 

12           a = i; 

13  b = j; 

14          // maximum number between a and b is stored in minMultiple 

15  minMultiple = (a>b) ? a : b; 

16        // Always true 

17         while(1) 

18         { 

19         if (minMultiple%a==0 && minMultiple%b==0) 

20         { 

21                 //lCM of the two numbers will be stored in minMultiple 

22             lcm = minMultiple; 

23             r = (lcm%n); 

24      if( r == 0 ) 

25     { 

26        printf("{%d,%d},",a,b); 

27       } 

28             break; 

29         } 

30         ++minMultiple; 

31         } 

32  }  

33  } 

34 return 0; 

35 } 

  


