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Abstract: In this article, we study the functions ω(n) and Ω(n), where n is an s-full number.
For example, we prove that the square-full numbers with Ω(n) even are in greater proportion than
the square-full numbers with Ω(n) odd. The methods used are elementary.
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1 Introduction and preliminary notes

Let us consider the prime factorization of a positive integer n = qs11 · · · qsrr , where qi
(i = 1, . . . , r) (r ≥ 1) are the different primes in the prime factorization and si (i = 1, . . . , r)

are the multiplicities or exponents. We need the following well-known arithmetical functions:
ω(n) = r that is the number of different prime factors in the prime factorization of n,
Ω(n) = s1 + · · · + sr that is the total number of prime factors in the prime factorization of
n, u(n) = q1 · · · qr that denotes the kernel of n and w(n) = (q1 + 1) · · · (qr + 1). Note that w(n)

is the sum of the positive divisors of the kernel of n.
The functions ω(n) and Ω(n) were studied by G. H. Hardy and S. Ramanujan in 1917 [6].

They obtained the following formulas∑
n≤x

ω(n) = x log log x+Mx+ o(x),
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∑
n≤x

Ω(n) = x log log x+

(
M +

∑
p

1

p(p− 1)

)
x+ o(x),

where M is Mertens’s constant. In the same paper they define the normal order of an arithmetical
function and they prove that the normal order of ω(n) and Ω(n) is log log n.

Let Ωp(x) be the number of positive integers n not exceeding x such that Ω(n) is even and
Ωi(x) the number of positive integers n not exceeding x such that Ω(n) is odd. The following
asymptotic formulas are well-known

Ωi(x) =
1

2
x+ o(x), Ωp(x) =

1

2
x+ o(x).

That is, these two sets of positive integers have density 1/2.
Let ωp(x) be the number of positive integers n not exceeding x such that ω(n) is even and

ωi(x) is the number of positive integers n not exceeding x such that ω(n) is odd. Recently, R.
Jakimczuk [10] proved that also these two sets of positive integers have density 1/2. That is

ωi(x) =
1

2
x+ o(x), ωp(x) =

1

2
x+ o(x).

A number is h-full if all the distinct primes in its prime factorization have multiplicity (or
exponent) greater than or equal to h. If h = 2 the numbers are called square-full. The square-full
numbers were studied by P. Erdős and G. Szekeres [3] and many other authors. For example, P.
T. Bateman and E. Grosswald [1], A. Ivić and P. Shiu (see [8] and [9]), S. W. Golomb [5], etc.
Also, recently, R. Jakimczuk [12] studied the kernel of h-full numbers. See also the reference [2].
An elementary proof on the distribution of h-full numbers is established here.

In this article, we study the functions Ω(n) and ω(n) on the h-full numbers. In particular,
on the square-full numbers. For example, between other results, we prove that the square-full
numbers n with Ω(n) even are in greater proportion than the square-full numbers n with Ω(n)

odd.
We shall need the following theorems on the distribution of square-free numbers. In this note

a square-free number will be denoted q1.

Theorem 1.1. Let Q1(x) be the number of square-free numbers not exceeding x, we have

Q1(x) =
∑
q1≤x

1 =
6

π2
x+ o(x).

Let Qp(x) be the number of square-free n not exceeding x such that Ω(n) = ω(n) is even and let
Qi(x) be the number of square-free n not exceeding x such that Ω(n) = ω(n) is odd. We have
(prime number theorem)

Qp(x) =
1

2

6

π2
x+ o(x),

Qi(x) =
1

2

6

π2
x+ o(x).

Proof. See [7, chapter XVIII].
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In this note a square-free multiple of the different and fixed primes q1, . . . , qs, that is multiple
of the square-free q1q2 · · · qs, will be denoted qq1···qs .

Theorem 1.2. LetQq1···qs(x) be the number of square-free not exceeding xmultiple of the different
and fixed primes q1, q2, . . . , qs , we have

Qq1q2···qs(x) =
∑

qq1q2···qs≤x

1 =
6

π2

s∏
i=1

1

qi + 1
x+ o(x).

Proof. See [11].

Let (MP )q1···qs(x) be the number of square-free n not exceeding x multiple of q1 · · · qs such
that Ω(n) = ω(n) is even. On the other hand, let (MI)q1···qs(x) be the number of square-free
n not exceeding x multiple of q1 · · · qs such that Ω(n) = ω(n) is odd. We have the following
theorem.

Theorem 1.3. The following asymptotic formulas hold.

(MP )q1···qs(x) =
1

2

6

π2

s∏
i=1

1

qi + 1
x+ o(x),

(MI)q1···qs(x) =
1

2

6

π2

s∏
i=1

1

qi + 1
x+ o(x).

Proof. See [10].

Theorem 1.4. If α > 0 the following two series of positive terms are convergent

∞∑
n=1

1

w(n)nα
,

∞∑
n=1

1

u(n)nα

and besides the following two equations hold

∞∑
n=1

1

w(n)nα
=
∏
p

(
1 +

1

(p+ 1)(pα − 1)

)
,

∞∑
n=1

1

u(n)nα
=
∏
p

(
1 +

1

p(pα − 1)

)
,

where the notation
∏
p

means that the product runs over all positive primes p.

Proof. We have
∞∑
n=1

1

w(n)nα
=
∏
p

(
1 +

1

(p+ 1)pα
+

1

(p+ 1)(pα)2
+

1

(p+ 1)(pα)3
+ · · ·

)

=
∏
p

(
1 +

1

(p+ 1)pα

(
1

1− 1
pα

))
=
∏
p

(
1 +

1

(p+ 1)(pα − 1

)
.
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Now, the product ∏
p

(
1 +

1

(p+ 1)(pα − 1)

)
converges to a positive number, since the series of positive terms∑

p

1

(p+ 1)(pα − 1)

clearly converges. The theorem is proved.

2 Main results

Let h ≥ 2 be an arbitrary but fixed positive integer. A number is h-full if all the distinct primes
in its prime factorization have multiplicity (or exponent) greater than or equal to h. That is, the
number qs11 · · · qsrr is h-full if si ≥ h (i = 1, . . . , r) (r ≥ 1). We shall denote a general h-full
number nh. If h = 2, the numbers are called square-full. The h-kernel of the h-full number nh we
define in the form (u(nh))

h and the h-remainder in the form nh
(u(nh))h

. Note that the h-remainder
is 1 if and only if the h-full number is of the form (q1 · · · qr)h.

Let Ah(x) be the number of h-full numbers not exceeding x.

Theorem 2.1. Let h ≥ 2 be an arbitrary but fixed positive integer. The following asymptotic
formula holds

Ah(x) =
∑
nh≤x

1 =
6

π2
C0,hx

1
h + o

(
x

1
h

)
, (1)

where

C0,h =
∞∑
n=1

1

w(n)

1

n
1
h

=
∏
p

(
1 +

1

(p+ 1)(p
1
h − 1)

)
(w(1) = 1). (2)

Proof. Let us consider the prime factorization of a positive integer a ≥ 2

a = qs11 q
s2
2 · · · qstt ,

where q1, q2, . . . , qt are the different primes in the prime factorization of a. We put

a′ = q1q2 · · · qt

and
a′′ = (q1 + 1)(q2 + 1) · · · (qt + 1).

If a = 1, then we put a′ = a′′ = 1.
Therefore, we have (see Theorem 1.1 and Theorem 1.2)∑

qa′≤x

1 =
6

π2

1

a′′
x+ o (x) . (3)
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Let us consider the set H of all h-full numbers nh not exceeding x. Now, let us consider the
set Ta of all h-full numbers nh not exceeding x with the same h-remainder a, that is,
Ta = {nh : nh ≤ x, vh(nh) = a}. Note that if a1 6= a2 we have Ta1 ∩ Ta2 = φ, that is, the sets
Ta1 and Ta2 are disjoint. Suppose that Ax (depending on x) is the greatest h-remainder among the
numbers in the set H . Then

Ax⋃
a=1

Ta = H.

Therefore, the sets Ta are partitions of the set H . Note that some Ta can be empty.
The set of the h-kernel of the numbers in the set Ta will be denoted by Sa. Hence,

Sa =
{
qha′ : qha′ ≤

x

a

}
=

{
qha′ : qa′ ≤

x(1/h)

a(1/h)

}
. (4)

The series
∑∞

a=1
1
a′′

1

a
1
h

converges (see Theorem 1.4). Hence

∞∑
a=1

1

a′′
1

a
1
h

= C0,h. (5)

We choose B such that (see Theorem 1.4)
∞∑

a=B+1

1

a′′
1

a
1
h

< ε (6)

and

π2

6

∞∑
a=B+1

1

a′a
1
h

< ε. (7)

Therefore, we have (see (3), (4), (5) and (6))

Ah(x) =

A(x)∑
a=1

 ∑
qa′≤

x(1/h)

a(1/h)

1

 =
B∑
a=1

 ∑
qa′≤

x(1/h)

a(1/h)

1



+

A(x)∑
a=B+1

 ∑
qa′≤

x(1/h)

a(1/h)

1

 =
B∑
a=1

(
1

a′′
6

π2

x
1
h

a
1
h

)
+ o

(
x

1
h

)

+

A(x)∑
a=B+1

 ∑
qa′≤

x(1/h)

a(1/h)

1

 =
6

π2
x

1
h

(
B∑
a=1

1

a′′
1

a
1
h

)
+ o

(
x

1
h

)

+

A(x)∑
a=B+1

 ∑
qa′≤

x(1/h)

a(1/h)

1

 =
6

π2
x

1
hC0,h −

6

π2
x

1
h

(
∞∑

a=B+1

1

a′′
1

a
1
h

)

+ o(1)
6

π2
x

1
h +

A(x)∑
a=B+1

 ∑
qa′≤

x(1/h)

a(1/h)

1

 . (8)
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Equation (8) can be written in the form

Ah(x)
6
π2x

1
h

− C0,h = −

(
∞∑

a=B+1

1

a′′
1

a
1
h

)
+ o(1)

+

∑A(x)
a=B+1

(∑
qa′≤

x(1/h)

a(1/h)

1

)
6
π2x

1
h

. (9)

We have (see (8) and (7))

0 ≤
A(x)∑
a=B+1

 ∑
qa′≤

x(1/h)

a(1/h)

1

 ≤ A(x)∑
a=B+1

 ∑
q1≤ x(1/h)

a′a(1/h)

1



≤
A(x)∑
a=B+1

 ∑
n≤ x(1/h)

a′a(1/h)

1

 ≤ A(x)∑
a=B+1

(
x(1/h)

a′a(1/h)

)

= x
1
h

A(x)∑
a=B+1

1

a′a
1
h

≤ 6

π2
x

1
h
π2

6

∞∑
a=B+1

1

a′a
1
h

≤ ε
6

π2
x

1
h . (10)

We choose x0 such that if x ≥ x0 then |o(1)| < ε in equation (9). Equations (9), (6) and (10) give∣∣∣∣∣Ah(x)
6
π2x

1
h

− C0,h

∣∣∣∣∣ ≤ 3ε.

Therefore, since ε is arbitrarily small, we have

lim
x→∞

Ah(x)
6
π2x

1
h

= C0,h.

That is (1). The theorem is proved.

Remark 2.2. If h = 2 then it is well-known that the constant can be written in terms of the
Riemann zeta function ζ(s), that is, the value of the constant is ζ(3/2)

ζ(3)
. This can be obtained from

our formulas (16) and (17), since

6

π2
C0,2 =

∏
p

((
1− 1

p2

)(
1 +

1

(p+ 1)(p1/2 − 1)

))

=
∏
p

(
1− 1

p2
+
p1/2 + 1

p2

)
=
∏
p

(
1 +

1

p3/2

)
=
∏
p

(
1

1−p−3/2

1
1−p−3

)

=
ζ(3/2)

ζ(3)
= 2.1732543125...

See [4, page 112].
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Let ωp,h(x) be the number of h-full numbers nh not exceeding x such that ω(nh) is even and
let ωi,h(x) be the number of h-full numbers nh not exceeding x such that ω(nh) is odd. We have
the following theorem.

Theorem 2.3. The following asymptotic formulas hold.

ωp,h(x) =
1

2

6

π2
C0,hx

1
h + o

(
x

1
h

)
, (11)

ωi,h(x) =
1

2

6

π2
C0,hx

1
h + o

(
x

1
h

)
. (12)

Proof. The proof of (11) is the same as the proof of Theorem 2.1. Equation (3) is replaced by
(Theorem 1.1 and Theorem 1.3) ∑

qa′≤x
ω(qa′ )≡0 (mod 2)

1 =
1

2

6

π2

1

a′′
x+ o(x).

If a = 1 we put a′ = a′′ = 1. The proof of (12) is by difference using (11) and Theorem 2.1 or
using the equation ∑

qa′≤x
ω(qa′ )≡1 (mod 2)

1 =
1

2

6

π2

1

a′′
x+ o(x).

The theorem is proved.

Let Ωh,r(x) be the number of h-full numbers nh not exceeding x such that Ω(nh) ≡ r (mod h)

(r = 0, . . . , h− 1). We have the following theorem.

Theorem 2.4. The following asymptotic formulas hold.

Ωh,r(x) =
6

π2
C0,h,rx

1
h + o

(
x

1
h

)
(r = 0, . . . , h− 1),

where the constants C0,h,r are given by the series

C0,h,r =
∑

Ω(n)≡r (mod h)

1

w(n)

1

n
1
h

(r = 0, . . . , h− 1)

and

h−1∑
r=0

C0,h,r = C0,h.

Proof. Since the total number of prime factors in the h-kernel is multiple of h, the proof is the
same as the proof of Theorem 2.1, where we consider only the h-remainder a such that Ω(a) ≡ r

(mod h). If a = 1 we put a′ = a′′ = 1 and Ω(a) = Ω(1) = 0, therefore Ω(1) ≡ 0 (mod h). The
theorem is proved.

27



Let Ωp,h(x) be the number of h-full numbers nh not exceeding x such that Ω(nh) is even and
let Ωi,h(x) be the number of h-full numbers nh not exceeding x such that Ω(nh) is odd. We have
the following theorem.

Theorem 2.5. If h is even, then

Ωp,h(x) =
6

π2
Dh,0x

1
h + o

(
x

1
h

)
,

Ωi,h(x) =
6

π2
Dh,1x

1
h + o

(
x

1
h

)
,

where the constants are given by the series

Dh,0 =
∑

Ω(n)≡0 (mod 2)

1

w(n)

1

n
1
h

= 1 +
∑

n>1, Ω(n)≡0 (mod 2)

1

w(n)

1

n
1
h

,

Dh,1 =
∑

Ω(n)≡1 (mod 2)

1

w(n)

1

n
1
h

,

and

Dh,0 +Dh,1 = C0,h.

If h is odd, then

Ωp,h(x) =
1

2

6

π2
C0,hx

1
h + o

(
x

1
h

)
, (13)

Ωi,h(x) =
1

2

6

π2
C0,hx

1
h + o

(
x

1
h

)
,

Proof. If h is even, then the total number of prime factors in the h-kernel is even, therefore, the
proof is the same as the proof of Theorem 2.4. If h is odd, in the proof of equation (13) we
consider two cases.
Case 1. ω(qa′) ≡ 0(mod 2) and Ω(a) ≡ 0(mod 2).
Case 2. ω(qa′) ≡ 1(mod 2) and Ω(a) ≡ 1(mod 2).
Hence, the theorem is proved.

If h = 2 (square-full numbers), we shall prove in the next theorem that D2,0 > D2,1 and
consequently the proportion of square-full numbers not exceeding x with a total even number of
prime factors is greater than the proportion of square-full numbers not exceeding x with a total
odd number of prime factors.

Theorem 2.6. The following inequality holds.

D2,0 > D2,1. (14)
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Proof. We have

∞∑
n=1

1

w(n)

1

n
=
∏
p

(
1 +

1

(p+ 1)p
+

1

(p+ 1)p2
+ · · ·

)
=
∏
p

(
1

1− 1
p2

)
=
π2

6
. (15)

Let us consider the pairs (a, b): (1, 1), (2, 3), (2, 5), (2, 7), (3, 5), (2, 11), (3, 7), (2, 13).
Note that by Remark 2.2 we have

6

π2
D2,0 +

6

π2
D2,1 =

6

π2
C0,2 = 2.1732543125... (16)

Now (see (16))

6

π2
D2,0 >

6

π2

∑
(a,b)

(
∞∑
n=1

1

w(abn2)

1√
abn2

)

>

(
6

π2

∞∑
n=1

1

w(n)

1

n

)1 +
∑

(a,b)6=(1,1)

1

(a+ 1)(b+ 1)

1√
ab


>

1

2

6

π2
C0,2 = 1.086627...

since by (15) we have

6

π2

∞∑
n=1

1

w(n)

1

n
= 1.

Therefore (14) holds. The theorem is proved.

3 Conclusion

In this article we have studied the distribution of h-full numbers by use of an elementary method.
By use of the same elementary method we have proved theorems on the functions ω(n) and Ω(n)

defined on the sequence of h-full numbers. In particular, if h = 2 then we have obtained that the
square-full numbers with Ω(n) even are in greater proportion than the square-full numbers with
Ω(n) odd.
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