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Abstract: Let {𝑃𝑛}𝑛=1
∞  be a sequence of paths. The odd repetition sequence denoted by  

{𝜌𝑘
𝑜: 𝑘 ∈ ℕ} is a sequence of natural numbers in which odd numbers are repeated once and defined 

by {𝜌𝑘
𝑜} = {1, 1, 2, 3, 3, 4, 5, 5, … } = {𝑖(𝑃𝑛)} where 𝑛 = 2𝑘 − 1. The even repetition sequence 

denoted by {𝜌𝑘
𝑒: 𝑘 ∈ ℕ}  is a sequence of natural numbers, in which even numbers are repeated 

once and defined by {𝜌𝑘
𝑒} = {1, 2, 2, 3, 4, 4, 5, 6, 6, … } = {𝑖(𝑃𝑛)}, where 𝑛 =  2𝑘. In this paper, 

the explicit formula that shows the values of the element of two sequences {𝜌𝑘
𝑜} and {𝜌𝑘

𝑒} that 

depends on the subscript 𝑘 were constructed. Also, the formula that relates the partial sum of the 

elements of the said sequences, which depends on the subscript 𝑘 and order of the sequence of 

paths, were established. Further, the independent domination number of the triangular grid graph 

𝑇𝑚 = (𝑉 (𝑇𝑚), 𝐸(𝑇𝑚)) will be determined using the said sequences and the two sequences will 

be evaluated in relation to the Fibonacci sequence {𝐹𝑛} along with the order of the path. 

Keywords: Odd repetition sequence, Even repetition sequence, Independent domination number, 

Fibonacci numbers, Triangular grid graph. 
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1 Introduction 

In the theory of graphs, the idea of domination introduced by Claude Berge in 1958 [5] and 

followed by Oystein Ore in 1962 [9] remains intriguing and receiving much attention to 

mathematical research. Each domination parameter has some specified property. One important 

type of domination parameter is the independent domination in graphs [3, 4, 7, 10, 13]. A graph 

𝑃𝑛 is a pair of (𝑉 (𝑃𝑛), 𝐸(𝑃𝑛)), where 𝑉(𝑃𝑛) is a finite non-empty set called the vertex-set  

of 𝑃𝑛 and 𝐸(𝑃𝑛) is a set of unordered pairs {𝑢, 𝑣} or simply 𝑢𝑣 of distinct elements from 𝐸(𝑃𝑛) 
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called the edge-set of 𝑃𝑛. A walk is a sequence 𝑢1, 𝑢2, … , 𝑢𝑛 of vertices of graph 𝐺 such that 

{𝑢𝑖, 𝑢𝑖+1} ∈ 𝐸(𝑃𝑛) for each 𝑖 =  1, 2, … , 𝑛. Vertices 𝑢1 and 𝑢𝑛 are the endpoints of the walk, 

while the vertices 𝑢2, 𝑢3, … , 𝑢𝑛−1 are internal vertices of the walk. The length of walk is the 

number of edges on the walk, i.e., the walk 𝑢1, 𝑢2, … , 𝑢𝑛 has length 𝑛 − 1. A path is a walk that 

does not repeat edges and does not end where it starts, i.e., 𝑢1 → 𝑢2 → … → 𝑢𝑛, 𝑢1 ≠ 𝑢𝑛. A path 

of order 𝑛 and length 𝑛 − 1 is denoted by 𝑃𝑛 [1, 2, 10]. Then, neighborhood of 𝑣 is the set 

𝑁𝑃𝑛(𝑣) =  𝑁(𝑣) = {𝑢 ∈ 𝑉 (𝑃𝑛): 𝑢𝑣 ∈ 𝐸(𝑃𝑛)}. If 𝑍 ⊆ 𝑉 (𝑃𝑛), then the open neighborhood  

of 𝑍 is the set 𝑁𝑃𝑛(𝑍) =  𝑁(𝑍) = ⋃𝑣∈𝑍𝑁𝑃𝑛(𝑣). The closed neighborhood of 𝑍 is 

𝑁𝑃𝑛[𝑍]  =  𝑁[𝑍]  =  𝑍⋃𝑁(𝑍). A subset 𝐷 of 𝑉 (𝑃𝑛) is a dominating set of 𝑃𝑛 if for every 

𝑣 ∈ 𝑉(𝑃𝑛)\𝐷, there exists 𝑢 ∈ 𝐷 such that 𝑢𝑣 is an edge of 𝑃𝑛, i.e., 𝑁[𝐷]  =  𝑉 (𝑃𝑛). 

The domination number of 𝑃𝑛 denoted by 𝛾(𝑃𝑛) is the smallest cardinality of the dominating set 

of 𝑃𝑛. For example, let 𝑃4 be a path of order 4, then we have 𝛾(𝑃4) = 2. Let 𝑣 ∈ 𝑉 (𝑃𝑛). 

A dominating set 𝐼 ⊆ 𝑉 (𝑃𝑛) is called an independent dominating set of 𝑃𝑛 if no two dominating 

vertices in the set are adjacent. The independent domination number of 𝑃𝑛 denoted by 𝑖(𝑃𝑛) is the 

smallest cardinality of an independent dominating set of 𝑃𝑛. An independent dominating set of 

cardinality 𝑖(𝑃𝑛) is called an i-set. For example, let 𝑃5 be a path of order 5, then we have 𝑖(𝑃5)  =

 2. The degree of vertex 𝑣 ∈ 𝑉 (𝑃𝑛), denoted by 𝑑𝑒𝑔𝑃𝑛(𝑣)  =  𝑑𝑒𝑔(𝑣), is the number of edges 

incident with 𝑣 in 𝑃𝑛. 

In combinatorics, a multiset is a collection of objects, taken without regard to order, and with 

repetitions of the same object allowed. For instance, 𝑀 = {1, 1, 2, 2, … , 9, 9} is a multiset. Since 

the order in which the objects listed in 𝑀 is immaterial, we could write 𝑀 in many other 

possibilities. A sequence is a set of numbers that follows a recurrence relation. We denote the 

first element of a sequence by 𝑎1, the second element by 𝑎2, the third element by 𝑎3, and so on. 

The n-th element is 𝑎𝑛, called the general element of the sequence. Suppose that we have a 

sequence that satisfies a certain recurrence relation and initial conditions. It is often helpful to 

know an explicit formula for the sequence, especially if we need to compute terms with very 

large subscripts or if we need to examine general properties for the sequence. The odd repetition 

sequence denoted by {𝜌𝑘
𝑜: 𝑘 ∈ ℕ} is a sequence of natural numbers in which odd numbers are 

repeated once and defined by 𝜌𝑘
𝑜 = 𝑖(𝑃𝑛) where 𝑛 = 2𝑘 − 1. For instance, if 𝑛 = 11, then it 

implies that 𝜌6
𝑜 = 𝑖(𝑃11)  =  4. The even repetition sequence denoted by {𝜌𝑘

𝑒: 𝑘 ∈ ℕ} is a 

sequence of natural numbers in which even numbers are repeated once and defined by 𝜌𝑘
𝑒 = 𝑖(𝑃𝑛) 

where 𝑛 = 2𝑘 − 1. For instance, if 𝑛 = 8, then it implies that 𝜌4
𝑜 = 𝑖(𝑃8)  =  3. Figure 1 

illustrates the sequence of paths of odd and even order n with odd and even repetition sequence 

of independent domination number, respectively. 

 

Figure 1. Sequence of paths with odd and even repetition sequence  

of independent domination number. 
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Let 𝑇𝑚 = (𝑉 (𝑇𝑚), 𝐸(𝑇𝑚)) be a triangular grid graph where 𝑚 ∈ ℕ. A graph 𝑇𝑚 is a subgraph 

of a tiling of the plane with equilateral triangles defined by the finite number of triangles called 

cells. The order of graph 𝑇𝑚 is a triangular number, that is, |𝑇𝑚|  =  
𝑚(𝑚+1)

2
, where |𝑇𝑚|  is the 

𝑚𝑡ℎ triangular number [4, 6]. Figure 2 shows the independent dominating vertices in 𝑇𝑚 that 

follow a unique configuration of odd and even repetition sequences when 𝑚 ≡ 1(𝑚𝑜𝑑 2) and 

𝑚 ≡ 0(𝑚𝑜𝑑 2), respectively. 

 

Figure 2. Independent domination number of graph 𝑇𝑚. 

A Fibonacci number 𝐹𝑛 can be obtained by the following equation, 𝐹𝑛 = 𝐹𝑛−2 + 𝐹𝑛−1, for 

𝑛 ∈ ℕ\{1, 2}, where 𝐹1 =  𝐹2 =  1 [2, 12]. The Fibonacci sequence has been widely studied by 

many researchers and covers a wide range of interests in combinatorial mathematics as it appears 

intriguing in the works of Vajda [14]. Also, the ratio of two consecutive Fibonacci numbers 

converges to the golden mean, that is, 𝜃 =
1+√5

2
. This ratio has numerous applications in modern 

science [8, 11]. 

In this paper, we developed a formula that shows the values of the two sequences {𝜌𝑘
𝑜} and 

{𝜌𝑘
𝑒} that depends on the subscript 𝑘 and the formula that relates the partial sum of the elements 

of the said sequences which depends on the subscript 𝑘 and order of the sequence of paths were 

also constructed. We also determined the independent domination number of triangular grid 

graph 𝑇𝑚 for any positive integer 𝑚 in connection to the said sequences. Also, the two sequences 

will be evaluated in relation to Fibonacci sequence {𝐹𝑛} along with the order of the sequence 

paths and discuss some important results. 

2 Results 

The following result below is immediate from the definition of independent domination number 

of path with order 𝑛 ∈ ℕ. 
 

Remark 2.1. [2] Let 𝑃𝑛 be a path of order 𝑛 ∈ ℕ. Then, 

𝑖(𝑃𝑛) =

{
 
 

 
 
𝑛

3
           𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑3)

𝑛 + 2

3
     𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑3)

𝑛 + 1

3
     𝑖𝑓 𝑛 ≡ 2(𝑚𝑜𝑑3)
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The following Theorem is constructed from Remark 2.1. This Theorem generates the odd 

repetition sequence of independent domination number in the sequence of paths with odd orders. 
 

Theorem 2.1. Let {𝑃𝑛} be a sequence path. If  𝑛 = 2𝑘 − 1 𝑤ℎ𝑒𝑟𝑒  𝑘 ∈ ℕ, then odd repetition 

sequence is obtained, that is,    

{𝜌𝑘
𝑜 =  𝑖(𝑃𝑛)}. 

Proof. To prove this theorem, we consider the following two cases below: 

Case 1. If 𝑛 ≡ 0(𝑚𝑜𝑑 3), then it implies that for all 𝑢 ∈ 𝐼 there exists 𝑣 ∈ 𝑉 (𝑃𝑛)\𝐼 such that 

𝑢𝑣 ∈ 𝐸(𝑃𝑛), 𝑑𝑒𝑔(𝑢) = 2 and by Remark 2.1, clearly, ⋂𝑗=1
𝑟 𝑁(𝑢𝑗) = ∅ where 𝑟 =

𝑛

3
. Since 𝑛 is 

odd, it obviously follows that there are 
𝑛

3
 odd dominating vertices in 𝑃𝑛. Therefore, we obtained 

an odd sequence of numbers, that is, {1, 3, 5, … }. Now, we let 𝑛 ≡ 1(𝑚𝑜𝑑 3). If 𝑛 = 1, then it 

follows that 𝑖(𝑃𝑛) = 1. Hence, the first element in the sequence is 1, that is, 𝜌1
𝑜 = 1. If 𝑛 > 1, 

then by Remark 2.1, there is a unique configuration that there exists 𝑢 ∈ 𝐼, 𝑑𝑒𝑔(𝑢) = 1 such that 

𝑢𝑣 ∈  𝐸(𝑃𝑛) where 𝑣 ∈ 𝑉(𝑃𝑛)\𝐼 and other even domination number 𝜇, that is, 𝜌𝑘
𝑜 =  𝑖(𝑃𝑛) =

𝜇 + 1 such that for all 𝑤𝑗 ∈  𝐼\{𝑢} and ⋂𝑗=1
𝑚 𝑁(𝑤𝑗) = ∅, where 𝑚 =  

𝑛−1

3
. Thus, we also obtained 

an odd sequence, that is, {1, 3, 5, … }. 

Case 2. Suppose that 𝑛 ≡ 2(𝑚𝑜𝑑 3). Obviously, we have a unique arrangement that there exists 

𝑢 ∈ 𝐼 such that deg(𝑢) = 1 and there exists another odd domination number 𝜏, that is, 

𝜌𝑘
𝑜 =  𝑖(𝑃𝑛) = 𝜏 + 1  such that for all 𝑤𝑗 ∈ 𝐼\{𝑢} and ⋂𝑗=1

𝑠 𝑁(𝑤𝑗) = ∅, where 𝑠 =
𝑛+1

3
 by 

Remark 2.1. Thus, we obtained an even sequence, that is, {2, 4, 6, … }. 

Combining the two cases, it implies that the independent domination number of the sequence of 

paths with odd order is an odd repetition sequence, that is, {𝜌𝑘
𝑜} = {1, 1, 2, 3, 3, 4, 5, 5, … }. This 

completes the proof.   

By Remark 2.1 and Theorem 2.1, the following theorem is immediate. This theorem will 

determine the element of odd repetition sequence at any 𝑛 ∈ ℕ, where the orders of the sequence 

of paths are odd numbers. 
 

Theorem 2.2. Let {𝜌𝑘
𝑜} be an odd repetition sequence where 𝑘 ∈ ℕ and {𝑃𝑛} be a sequence path 

where 𝑛 = 2𝑘 − 1. Then, 

𝜌𝑘
𝑜 = 𝑖(𝑃𝑛) =

{
 
 

 
 
2𝑘

3
           𝑖𝑓 𝑘 ≡ 0(𝑚𝑜𝑑3)

2𝑘 + 1

3
     𝑖𝑓 𝑘 ≡ 1(𝑚𝑜𝑑3)

2𝑘 − 1

3
     𝑖𝑓 𝑘 ≡ 2(𝑚𝑜𝑑3)

 

Proof. If 𝑛 = 2𝑘 − 1, then we consider the following cases: 

Case 1. Let 𝑘 ≡ 0(𝑚𝑜𝑑 3). So, 𝑘 =  3𝑎, for some 𝑎 ∈ ℕ. By Remark 2.1 and Theorem 2.1, it 

simply follows that there are 𝑎 =
𝑘

3
 odd independent domination numbers that repeat in the odd 

repetition sequence of {𝑃𝑛}. Therefore, we obtained 𝜌𝑘
𝑜 = 𝑖(𝑃𝑛) = 𝑘 − 𝑎 = 𝑘 −

𝑘

3
=

2𝑘

3
.  
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Case 2. Let 𝑘 ≡ 1(𝑚𝑜𝑑 3). Obviously we have, 𝑘 = 3𝑏 + 1, for some 𝑏 ∈ ℕ. In regards to 

Remark 2.1 and Theorem 2.1, it obviously follows that there are 𝑏 =
𝑘−1

3
 odd independent 

domination numbers that repeat in the sequence. Clearly, 𝜌𝑘
𝑜 = 𝑖(𝑃𝑛) = 𝑘 − 𝑏 = 𝑘 −

𝑘−1

3
=

2𝑘+1

3
.  

Case 3. Let 𝑘 ≡ 2(𝑚𝑜𝑑 3). Then, 𝑘 = 3𝑐 + 2, for some 𝑏 ∈ ℕ. Hence, this implies that there are 

𝑐 =
𝑘−2

3
 odd numbers that repeat in the sequence by Remark 2.1 and Theorem 2.1. Therefore, it 

implies that 𝜌𝑘
𝑜 = 𝑖(𝑃𝑛) = 𝑘 − 𝑐 − 1 = 𝑘 −

𝑘−2

3
− 1 =

2𝑘−1

3
.  

If we combine these three cases, then this completes the proof.   
 

Next, the following Corollary is direct consequence of Theorem 2.2. 
 

Corollary 2.1. For any 𝑗 ∈ ℕ, 𝜌3𝑗
𝑜 + 𝜌3𝑗+3

𝑜 = 𝜌3𝑗+1
𝑜 + 𝜌3𝑗+2

𝑜 . 

 

The following results, Corollary 2.2 and Corollary 2.3, will determine the parity of the element 

of odd repetition sequence at any subscript 𝑘. 
 

Corollary 2.2. Let 𝑛 = 2𝑘 − 1. If 𝑘 ≡ 0(𝑚𝑜𝑑 3), then𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) ≡ 0(𝑚𝑜𝑑 2). 

 

Corollary 2.3. Let 𝑛 = 2𝑘 − 1. If 𝑘 ≡ 1(𝑚𝑜𝑑 3) or 𝑘 ≡ 2(𝑚𝑜𝑑 3), then 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) ≡ 0(𝑚𝑜𝑑 2). 

 

Using the corollaries above, we arrived at the following results that determine the order of paths 

in the sequence given a particular element of the odd repetition sequence. 
 

Theorem 2.3. Let 𝑛 = 2𝑘 − 1. If 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) ≡ 0(𝑚𝑜𝑑 2), then, 𝑛 = 3𝜌𝑘

𝑜 − 1. 

Proof. We suppose that 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛), where 𝑛 = 2𝑘 − 1. If we consider that 𝜌𝑘

𝑜 ≡ 0(𝑚𝑜𝑑 2), then 

it follows that, 𝑘 ≡ 0(𝑚𝑜𝑑 3) by Corollary 2.2. By Theorem 2.2, it implies that 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) =

2𝑘

3
. 

Obviously, it follows that 𝑘 =
3𝜌𝑘

𝑜

2
. Thus, we end up with 𝑛 = 3𝜌𝑘

𝑜 − 1. This completes the  

proof.   
 

Theorem 2.4. Let 𝑛 = 2𝑘 − 1. If 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) ≡ 1(𝑚𝑜𝑑 2), then, 𝑛 = 3𝜌𝑘

𝑜 − 2 or 𝑛 = 3𝜌𝑘
𝑜 . 

Proof. Supposing 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛), where 𝑛 = 2𝑘 − 1. Now, if we consider that 𝜌𝑘

𝑜 ≡ 1(𝑚𝑜𝑑 2), then 

by Corollary 2.2 we have, 𝑘 ≡ 𝜏(𝑚𝑜𝑑 3), where 𝜏 = 1, 2 and, it implies that 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) =

2𝑘+1

3
 

or 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) =

2𝑘−1

3
 by Theorem 2.2. Clearly, it follows that 𝑘 =

3𝜌𝑘
𝑜−1

2
 or 𝑘 =

3𝜌𝑘
𝑜+1

2
. Therefore, 

𝑛 = 3𝜌𝑘
𝑜 − 2 or 𝑛 = 3𝜌𝑘

𝑜. This completes the proof.   
 

The next theorem is immediate from Theorem 2.2. This theorem determines the explicit formula 

of the partial sum of odd repetition sequence of independent domination numbers of {𝑃𝑛}. 
 

Theorem 2.5. Let 𝑆𝑘
𝑜 = ∑ 𝜌𝑗

𝑜𝑘
𝑗=1  be a partial sum of odd repetition sequence where 𝑘 ∈ ℕ and 

{𝑃𝑛} be a sequence path where 𝑛 = 2𝑘 − 1. Then,  

𝑆𝑘
𝑜 =∑𝜌𝑗

𝑜 =∑𝑖(𝑃2𝑗−1) =

{
 

 
𝑘2 + 𝑘

3
      𝑖𝑓 𝑘 ≡ 𝜇(𝑚𝑜𝑑 3), 𝜇 = 0  𝑜𝑟 2 

𝑘2 + 𝑘 + 1

3
,                    𝑖𝑓 𝑘 ≡ 1(𝑚𝑜𝑑 3)

.

𝑘

𝑗=1

𝑘

𝑗=1
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Proof. Suppose that  𝑆𝑘
𝑜 = ∑ 𝜌𝑗

𝑜𝑘
𝑗=1  is a series of odd repetition sequence in the sequence of paths 

of odd orders. We consider the following cases: 

Case 1. If we consider that 𝑘 ≡ 0(𝑚𝑜𝑑 3), then by Theorem 2.2 we have 
2𝑘

3
 consecutive natural 

numbers in the odd repetition sequence and 
𝑘

3
 consecutive odd numbers that repeat in the said 

sequence. It implies that 𝑆𝑘
𝑜 = ∑ 𝜌𝑗

𝑜 = ∑ 𝑖(𝑃2𝑗−1) = ∑ 𝑗
2𝑘/3
𝑗=1 + ∑ (2𝑗 − 1

𝑘/3
𝑗=1 ).𝑘

𝑗=1
𝑘
𝑗=1  Simplifying 

the equation, we obtain 𝑆𝑘
𝑜 = ∑ 𝜌𝑗

𝑜 = ∑ 𝑖(𝑃2𝑗−1) =
𝑘2+𝑘

3
.     𝑘

𝑗=1
𝑘
𝑗=1  

Case 2. Next, if we consider 𝑘 ≡ 1(𝑚𝑜𝑑 3), then this implies that we have 
2𝑘+1

3
 consecutive 

natural numbers in the odd repetition sequence and 
𝑘−1

3
 consecutive odd numbers that repeat in 

the said sequence, by Theorem 2.2. Thus, it follows that 𝑆𝑘
𝑜 = ∑ 𝜌𝑗

𝑜 = ∑ 𝑖(𝑃2𝑗−1) =
𝑘
𝑗=1

𝑘
𝑗=1

∑ 𝑗
(2𝑘+1)/3
𝑗=1 + ∑ (2𝑗 − 1)

(𝑘−1)/3
𝑗=1 . Hence, simplifying the equation, we end up with 𝑆𝑘

𝑜 =

∑ 𝜌𝑗
𝑜 = ∑ 𝑖(𝑃2𝑗−1) =

3𝑘2+𝑘+1

3
.     𝑘

𝑗=1
𝑘
𝑗=1  

Case 3. Lastly, we consider that 𝑘 ≡ 2(𝑚𝑜𝑑 3). Then, by Theorem 2.2 this implies that there are 
2𝑘−1

3
 consecutive natural numbers in the odd repetition sequence and 

𝑘 + 1

3
 consecutive odd 

numbers that repeat in the said sequence. Hence, the series follows that 𝑆𝑘
𝑜 = ∑ 𝜌𝑗

𝑜 =𝑘
𝑗=1

∑ 𝑖(𝑃2𝑗−1) = ∑ 𝑗
2𝑘/3
𝑗=1 + ∑ (2𝑗 − 1

𝑘/3
𝑗=1 ).𝑘

𝑗=1  So, by simplifying the equation, we have 𝑆𝑘
𝑜 =

∑ 𝜌𝑗
𝑜 = ∑ 𝑖(𝑃2𝑗−1) =

3𝑘2+𝑘+1

3
.  𝑘

𝑗=1
𝑘
𝑗=1  

If we combine these three cases, then this completes the proof.   
 

The following result is immediate consequence of Theorem 2.5. This theorem determines the 

independent domination number of graph 𝑇𝑚 in relation to series of odd repetition independent 

domination number of the sequence of paths. 
 

Theorem 2.6. Let 𝑇𝑚 be a triangular grid graph. If 𝑚 ≡ 1(𝑚𝑜𝑑 2), then 

𝑖(𝑇𝑚) =

{
 

 
𝑘2 + 𝑘

3
      𝑖𝑓 𝑘 ≡ 𝜇(𝑚𝑜𝑑 3), 𝜇 = 0  𝑜𝑟 2.

𝑘2 + 𝑘 + 1

3
,                    𝑖𝑓 𝑘 ≡ 1(𝑚𝑜𝑑 3)

 

where 𝑚 = 2𝑘 − 1. 

Proof. Suppose that 𝑚 ≡ 1(𝑚𝑜𝑑 2). Then, 𝑚 = 2𝑘 − 1 implies that there are 𝑘 =
𝑚+1

2
 

sequences of slanting paths of order 𝑛 ≡ 1(𝑚𝑜𝑑 2) and there are 
𝑚−1

2
 sequence of slanting paths 

of order 𝑛 ≡ 0(𝑚𝑜𝑑 2). By Theorem 2.1, the total independent domination number of slanting 

paths of odd order is given by ∑ 𝑖(𝑃2𝑗−1).  
𝑘
𝑗=1 And since for all 𝑢 ∈ 𝐼 in slanting paths of odd 

order, we have ⋃𝑢∈𝐼𝑁[𝑢] = 𝑉(𝑇𝑚), then it is concluded that 𝑖(𝑇𝑚) = ∑ 𝑖(𝑃2𝑗−1)
𝑘
𝑗=1  where 𝑚 =

2𝑘 − 1. Thus, by Theorem 2.5 the proof is complete.   
 

The next result of odd repetition sequence of independent domination number of {𝑃𝑛} is related 

to the famous Fibonacci sequence {𝐹𝑛}. 
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Theorem 2.7. If 𝑛 ≡ 1(𝑚𝑜𝑑 2) and 𝑖(𝑃𝑛) = 𝐹𝑗 ≡ 0(𝑚𝑜𝑑 2) for some 𝑗 ∈ ℕ, then 𝑛 ≡

2(𝑚𝑜𝑑 3). 

Proof. Suppose that 𝑛 ≡ 1(𝑚𝑜𝑑 2) and 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≡ 0(𝑚𝑜𝑑 2) for some 𝑗 ∈ ℕ. Then, we 

consider the following cases: 

Case 1. If 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) = 𝐹3 = 2, then clearly by Remark 2.1, 𝑛 = 5 ≡ 2(𝑚𝑜𝑑 3). 

Case 2. If we consider that 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≥ 8, then there is a unique configuration that there 

exists an odd number of independent dominating vertices, say 𝑢 ∈ 𝐼, 𝑑𝑒𝑔(𝑢) = 2 and any  

𝑥𝑦 ∈ 𝑉 (𝑃𝑛)\𝐼 such that 𝑁(𝑥)⋂𝑁(𝑦) = {𝑢} and ⋂𝑎𝑙𝑙 𝑗𝑁(𝑢𝑗) = 𝜙. And there exist two unique 

vertices in path, that is, 𝑤 ∈ 𝐼 \{𝑢𝑗}, 𝑑𝑒𝑔(𝑤) = 1 and 𝑧 ∈ 𝑉 (𝑃𝑛)\𝐼 such that 𝑁(𝑤) = {𝑧} and 

𝑁(𝑧) = {𝑤, 𝑥}. Thus, it follows that there are 𝑛 − 2 vertices in 𝑃𝑛 such that 𝑛 − 2 ≡ 0(𝑚𝑜𝑑 3). 

Clearly, this implies that 𝑛 ≡ 2(𝑚𝑜𝑑 3). 

Combining cases (1) and (2), this completes the proof.   
 

The following results are immediate consequences of Theorem 2.7. 
 

Corollary 2.4. If 𝑛 ≡ 1(𝑚𝑜𝑑 2) and 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≡ 0(𝑚𝑜𝑑 2), then 𝑛 = 3𝐹𝑗 − 1 for some 

𝑗 ∈ ℕ. 
 

Corollary 2.5. If 𝑛 ≡ 1(𝑚𝑜𝑑 2) and 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≡ 0(𝑚𝑜𝑑 2), then 𝜌3𝐹𝑗/2

𝑜 = 𝑖(𝑃𝑛) for 

some 𝑗 ∈ ℕ. 
 

Theorem 2.8. If 𝑛 ≡ 1(𝑚𝑜𝑑 2) and 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≡ 1(𝑚𝑜𝑑 2) for some 𝑗 ∈ ℕ, then 

𝑛 ≡ 0(𝑚𝑜𝑑 3) or 𝑛 ≡ 1(𝑚𝑜𝑑 3). 

Proof. If we suppose that 𝑛 ≡ 1(𝑚𝑜𝑑 2) and 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≡ 1(𝑚𝑜𝑑 2) for some 𝑗 ∈ ℕ, then 

we consider the following cases: 

Case 1. If 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) = 𝐹2 ≡ 1, then by Remark 2.1, we obtained 𝑛 = 3 ≡ 0(𝑚𝑜𝑑 3) or 

𝑛 = 1 ≡ 1(𝑚𝑜𝑑 3). 

Case 2. Suppose that 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≥ 3. Then, there exists an even number of independent 

dominating vertices, say 𝑢 ∈ 𝐼, 𝑑𝑒𝑔(𝑢)  =  2 and ⋂𝑎𝑙𝑙 𝑗𝑁(𝑢𝑗) = 𝜙 and there exists a unique 

independent dominating vertex 𝑤 ∈ 𝐼\{𝑢𝑗}, 𝑑𝑒𝑔(𝑤)  =  1 and non-dominating vertex 

𝑥 ∈ 𝑉 (𝑃𝑛)\𝐼, such that 𝑥 ∈ 𝑁(𝑤)⋂𝑁(𝑢). Hence, it follows that 𝑛 ≡ 1(𝑚𝑜𝑑 3). Further, there 

exists also a particular configuration that if for all 𝑣 ∈ 𝐼, 𝑑𝑒𝑔(𝑣)  =  2 and ⋂𝑎𝑙𝑙 𝑗𝑁(𝑣𝑗) = 𝜙, then 

it is clear that 𝑛 ≡ 0(𝑚𝑜𝑑 3).  

Therefore, if we combine the two cases, then this completes the proof.   
 

The next Corollaries are quick consequences of Theorem 2.8. 
 

Corollary 2.6. If 𝑛 ≡ 1(𝑚𝑜𝑑 2)and 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≡ 1(𝑚𝑜𝑑 2) , then 𝑛 = 3𝐹𝑗 − 2 𝑜𝑟𝑛 =

3𝐹𝑗  for some 𝑗 ∈ ℕ. 

 

Corollary 2.7. If 𝑛 ≡ 1(𝑚𝑜𝑑 2) and 𝜌𝑘
𝑜 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≡ 1(𝑚𝑜𝑑 2), then 𝜌(3𝐹𝑗−1)/2

𝑜 = 𝑖(𝑃𝑛) or 

𝜌(3𝐹𝑗+1)/2
𝑜 = 𝑖(𝑃𝑛) for some 𝑗 ∈ ℕ. 
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Again by Remark 2.1, the following theorem is constructed. This theorem generates the even 

repetition sequence of independent domination number in the sequence of paths with even orders. 
 

Theorem 2.9. Let {𝑃𝑛} be a sequence path. If 𝑛 =  2𝑘, 𝑘 ∈ ℕ, then an even repetition sequence 

is obtained, that is 

{𝜌𝑘
𝑒 =  𝑖(𝑃𝑛)}. 

Proof. If we suppose that 𝑛 ≡ 0(𝑚𝑜𝑑 2), then we consider the following cases: 

Case 1. Let 𝑛 ≡ 2(𝑚𝑜𝑑 3). If 𝑛 =  2, then it is easy to check that 𝜌1
𝑒 = 𝑖(𝑃2)  =  1. If 𝑛 >  2, 

then there is an arrangement of independent dominating set that there exists 𝑢 ∈ 𝐼, 𝑑𝑒𝑔(𝑢)  =  1 

such that 𝑢𝑣 ∈  𝐸(𝑃𝑛) where 𝑣 ∈ 𝑉 (𝑃𝑛)\𝐼 and there exists also another even domination 

number 𝑥, that is, 𝜌𝑘
𝑒 =  𝑖(𝑃𝑛) = 𝑥 + 1 such that for all 𝑤𝑗 ∈  𝐼\{𝑢}, ⋂ 𝑗=1

𝑟
𝑁(𝑤𝑗) = { }, where 

𝑟 =  
𝑛+ 1

3
  by Remark 2.1. Thus, we obtained an odd sequence, that is, {1, 3, 5, … }. 

Case 2. Let 𝑛 ≡ 1(𝑚𝑜𝑑 3). If 𝑛 = 4, then it is clear that 𝜌2
𝑒 = 𝑖(𝑃4)  =  2. Now, if 𝑛 > 4, then 

it implies that there exists 𝑢, 𝑣 ∈ 𝐼, deg(𝑢) = 1, deg(𝑣) = 2 such that 𝑁(𝑢)⋂𝑁(𝑣) = {𝑤}, where 

𝑤 ∈ 𝑉(𝑃𝑛)\𝐼. And by Remark 2.1, there exists another even independent domination number, 

say 𝑦, that is 𝜌𝑘
𝑒 =  𝑖(𝑃𝑛) = 𝑦 + 2 such that for all 𝑤 ∈ 𝐼\{𝑢, 𝑣}, ⋂𝑗=1

𝑠 𝑁(𝑤𝑗) = ∅, where 𝑟 =
𝑛−4

3
.  

Thus, this implies that we obtained an even sequence, that is, {2, 4, 6, … }. 

Case 3. Let 𝑛 ≡ 0(𝑚𝑜𝑑 3). Since 𝑛 is even, let 𝑛 = 2𝑎 for all positive integer 𝑎. Also, since 𝑛 is 

divisible by 3, then it can be written as 2𝑎 ≡ 0(𝑚𝑜𝑑 3), which implies that 2𝑎 = 3𝑏 for some 

positive integer 𝑏. It means that for all 𝑢 ∈ 𝐼,⋂𝑗=1
𝑡 𝑁(𝑢𝑗) = ∅ where 𝑡 =

𝑛

3
 by Remark 2.1.  

Obviously, we have 𝑏 = 2 (
𝑎

3
) and it follows that we have an even integer sequence of 

independent domination number, that is , {2, 4, 6, …}. 

Thus, combining all cases, it implies that the independent domination number of the sequence of 

paths with even order is an even repetition sequence, that is, 

{𝜌𝑘
𝑒} = {1, 2, 2, 3, 4, 4, 5, 6, 6, … }. 

This completes the proof.   
 

The following theorem is a quick consequence of Remark 2.1 and Theorem 2.9. This theorem 

will determine the element of even repetition sequence at any subscript  𝑘 ∈ ℕ. 
 

Theorem 2.10. Let {𝜌𝑘
𝑒} be an even repetition sequence where 𝑘 ∈ ℕ and {𝑃𝑛} be a sequence 

path where 𝑛 =  2𝑘. Then, 

𝜌𝑘
𝑒 = 𝑖(𝑃𝑛) =

{
 
 

 
 
2𝑘

3
           𝑖𝑓 𝑘 ≡ 0(𝑚𝑜𝑑3)

2𝑘 + 1

3
     𝑖𝑓 𝑘 ≡ 1(𝑚𝑜𝑑3)

2𝑘 + 2

3
     𝑖𝑓 𝑘 ≡ 2(𝑚𝑜𝑑3)

 

Proof. Suppose that 𝑛 =  2𝑘. We consider the following cases: 
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Case 1. Let 𝑘 ≡ 0(𝑚𝑜𝑑 3). Clearly, it follows that 𝑘 =  3𝑥, for some 𝑥 ∈ ℕ. It implies that there 

are 𝑥 =
𝑘

3
 even independent domination numbers that repeat in the even repetition sequence by 

Remark 2.1 and Theorem 2.9. So, we obtained 𝜌𝑘
𝑒 = 𝑖(𝑃𝑛) = 𝑘 − 𝑥 = 𝑘 −

𝑘

3
=

2𝑘

3
.  

Case 2. Let 𝑘 ≡ 1(𝑚𝑜𝑑 3). Then, 𝑘 =  3𝑦 + 1, for some 𝑦 ∈ ℕ. And by Remark 2.1 and 

Theorem 2.9, it follows that there are 𝑥 =
𝑘−1

3
 even independent domination numbers that repeat 

in the sequence. So, it implies that we have 𝜌𝑘
𝑒 = 𝑖(𝑃𝑛) = 𝑘 − 𝑦 = 𝑘 −

𝑘−1

3
=

2𝑘+1

3
.  

Case 3. Let 𝑘 ≡ 2(𝑚𝑜𝑑 3). Then, 𝑘 = 3𝑧 + 2, for some 𝑧 ∈ ℕ. By Remark 2.1 and Theorem 2.9, 

this implies that there are 𝑧 =
𝑘−2

3
 even independent domination numbers that repeat in the 

sequence. It follows directly that 𝜌𝑘
𝑒 = 𝑖(𝑃𝑛) = 𝑘 − 𝑧 = 𝑘 −

𝑘−2

3
=

2𝑘+2

3
.  

Hence, if we combine all three cases, then this completes the proof.   
 

The next Corollaries are direct consequences of Theorem 2.10. 
 

Corollary 2.8. For any ℎ ∈ ℕ, 𝜌3ℎ
𝑒 + 𝜌3ℎ+3

𝑒 = 𝜌3ℎ+1
𝑒 + 𝜌3ℎ+2

𝑒 . 
 

The following Corollaries 2.9 and 2.10 will determine the parity of the element of even repetition 

sequence at any subscript 𝑘. 
 

Corollary 2.9. Let 𝑛 = 2𝑘. If 𝑘 ≡ 1(𝑚𝑜𝑑 3), then 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) ≡ 1(𝑚𝑜𝑑 2). 

 

Corollary 2.10. Let 𝑛 = 2𝑘. If 𝑘 ≡ 0(𝑚𝑜𝑑 3) or 𝑘 ≡ 2(𝑚𝑜𝑑 3), then 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) ≡ 0(𝑚𝑜𝑑 2). 

 

By the corollaries above, namely Corollary 2.9 and Corollary 2.10, and Theorem 2.10, we obtain 

the following results that determines the order of paths in the sequence given a particular element 

of the even repetition sequence. 
 

Theorem 2.11. Let 𝑛 = 2𝑘. If 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) ≡ 1(𝑚𝑜𝑑 2), then 𝑛 = 3𝜌𝑘

𝑒 − 1. 

Proof. Supposing 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛), where 𝑛 = 2𝑘 − 1. If we consider that 𝜌𝑘

𝑒 ≡ 1(𝑚𝑜𝑑 2), then it 

follows from Corollary 2.9 that 𝑘 ≡ 1(𝑚𝑜𝑑 3) and by Theorem 2.10, it simply implies that 

𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) =

2𝑘+1

3
. And it follows that 𝑘 =

3𝜌𝑘
𝑒−1

2
. Thus, we obtained 𝑛 = 3𝜌𝑘

𝑒 − 1. This 

completes the proof.   
 

Theorem 2.12. Let 𝑛 = 2𝑘. If 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) ≡ 0(𝑚𝑜𝑑 2), then 𝑛 = 3𝜌𝑘

𝑒  or 𝑛 = 3𝜌𝑘
𝑒 − 2. 

Proof. We suppose that 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛), where 𝑛 = 2𝑘. And if we consider that 𝜌𝑘

𝑒 ≡ 0(𝑚𝑜𝑑 2), then 

by Corollary 2.10, it implies that 𝑘 ≡ 𝜇(𝑚𝑜𝑑 3), where 𝜇 = 1, 2 and by Theorem 2.10 we 

obtained 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) =

2𝑘

3
 or 𝜌𝑘

𝑒 ≡ 𝑖(𝑃𝑛) =
2𝑘+1

3
. Hence, it follows that 𝑘 =

3𝜌𝑘
𝑒

2
 or 𝑘 =

3𝜌𝑘
𝑒−2

2
. 

Obviously, we end up with 𝑛 = 3𝜌𝑘
𝑒 or 𝑛 = 3𝜌𝑘

𝑒 − 2. This completes the proof.   

 

The following theorem is an immediate consequence of Theorem 2.10. The theorem gives the 

explicit formula for the partial sum of even repetition sequence of independent domination of the 

sequence of paths with even orders. 
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Theorem 2.13. Let 𝑆𝑘
𝑒 = ∑ 𝜌𝑗

𝑒𝑘
𝑗=1  be a partial sum of odd repetition sequences where 𝑘 ∈ ℕ and 

{𝑃𝑛} be a sequence path where 𝑛 = 2𝑘. Then,  

𝑆𝑘
𝑒 =∑𝜌𝑗

𝑒 =∑𝑖(𝑃2𝑗) =

{
 

 
𝑘2 + 2𝑘

3
      𝑖𝑓 𝑘 ≡ 𝜃(𝑚𝑜𝑑 3),   𝜃 = 0  𝑜𝑟 1.

𝑘2 + 2𝑘 + 1

3
,                    𝑖𝑓 𝑘 ≡ 2(𝑚𝑜𝑑 3)

𝑘

𝑗=1

𝑘

𝑗=1

 

Proof. Let 𝑆𝑘
𝑒 = ∑ 𝜌𝑗

𝑒𝑘
𝑗=1  be a series of even repetition sequence in the sequence of paths of even 

orders. Then, we consider the following cases: 

Case 1. If we consider that 𝑘 ≡ 0(𝑚𝑜𝑑 3), then by Theorem 2.10 we have 
2𝑘

3
 consecutive natural 

numbers in the even repetition sequence and 
𝑘

3
 consecutive even numbers that repeat in the said 

sequence. This implies that 𝑆𝑘
𝑒 = ∑ 𝜌𝑗

𝑒 = ∑ 𝑖(𝑃2𝑗−1) = ∑ 𝑗
2𝑘/3
𝑗=1 + ∑ (2𝑗

𝑘/3
𝑗=1 ).𝑘

𝑗=1
𝑘
𝑗=1  Hence, 

simplifying the right-hand side of the equation, clearly we have  

𝑆𝑘
𝑜 =∑𝜌𝑗

𝑜 =∑𝑖(𝑃2𝑗−1) =
𝑘2 + 2𝑘

3
.     

𝑘

𝑗=1

𝑘

𝑗=1

 

Case 2. Next, we suppose that 𝑘 ≡ 1(𝑚𝑜𝑑 3). Then, it follows that we have 
2𝑘+1

3
 consecutive 

natural numbers in the even repetition sequence and 
𝑘−1

3
 consecutive even numbers that repeat in 

the said sequence by Theorem 2.10. This implies that we have the following equation  

𝑆𝑘
𝑒 = ∑ 𝜌𝑗

𝑒 = ∑ 𝑖(𝑃2𝑗) = ∑ 𝑗
(2𝑘+1)/3
𝑗=1 + ∑ (2𝑗)

(𝑘−1)/3
𝑗=1 .𝑘

𝑗=1
𝑘
𝑗=1 Therefore, simplifying the equation, 

we end up with 𝑆𝑘
𝑒 = ∑ 𝜌𝑗

𝑒 = ∑ 𝑖(𝑃2𝑗) =
3𝑘2+2𝑘

3
.     𝑘

𝑗=1
𝑘
𝑗=1  

Case 3. Lastly, we suppose that 𝑘 ≡ 2(𝑚𝑜𝑑 3). Then, by Theorem 2.10 this implies that there 

are 
2𝑘+1

3
 consecutive natural numbers in the even repetition sequence and 

𝑘−2

3
 consecutive  

even numbers that repeats in the said sequence. Hence, from the series follows that  

𝑆𝑘
𝑒 = ∑ 𝜌𝑗

𝑒 = ∑ 𝑖(𝑃2𝑗) = ∑ 𝑗
(2𝑘+2)/3
𝑗=1 + ∑ (2𝑗

(𝑘−2)/3
𝑗=1 ).𝑘

𝑗=1
𝑘
𝑗=1  Clearly, by simplifying the equation, 

we have 𝑆𝑘
𝑒 = ∑ 𝜌𝑗

𝑒 = ∑ 𝑖(𝑃2𝑗) =
3𝑘2+2𝑘+1

3
.  𝑘

𝑗=1
𝑘
𝑗=1  

Therefore, if we combine all three cases, then this completes the proof.   
 

The next theorem is an immediate consequence of Theorem 2.13. This theorem determines the 

independent domination number of graph 𝑇𝑚 in relation to series of even repetition independent 

domination numbers of the sequence of paths. 
 

Theorem 2.14. Let 𝑇𝑚 be a triangular grid graph. If 𝑚 ≡ 0(𝑚𝑜𝑑 2), then 

𝑖(𝑇𝑚) =

{
 

 
𝑘2 + 2𝑘

3
,      𝑖𝑓 𝑘 ≡ 𝜃(𝑚𝑜𝑑 3), 𝜃 = 0 𝑜𝑟 1.

𝑘2 + 2𝑘 + 1

3
,                    𝑖𝑓 𝑘 ≡ 2(𝑚𝑜𝑑 3)

 

where 𝑚 = 2𝑘. 
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Proof. If we consider that 𝑚 ≡ 0(𝑚𝑜𝑑 2), then we have 𝑚 = 2𝑘, which implies that there are 

𝑘 =
𝑚

2
 sequence of slanting paths of order 𝑛 ≡ 0(𝑚𝑜𝑑 2) and 𝑛 ≡ 1(𝑚𝑜𝑑 2). By Theorem 2.9, 

the total independent domination number of slanting paths of odd order is given by ∑ 𝑖(𝑃2𝑗).
𝑘
𝑗=1  

Since for all 𝑣 ∈ 𝐼 in slanting paths of odd order, ⋃𝑣∈𝐼𝑁[𝑣] = 𝑉(𝑇𝑚), then it follows that 

 𝑖(𝑇𝑚) = ∑ 𝑖(𝑃2𝑗)
𝑘
𝑗=1 , where 𝑚 = 2𝑘. Thus, by Theorem 2.13 the proof is complete.  

 

The following results of even repetition sequence of independent domination number of the 

sequence of paths with even orders are relate to the intriguing Fibonacci sequence {𝐹𝑛}. 
 

Theorem 2.15. If 𝑛 ≡ 0(𝑚𝑜𝑑 2) and 𝜌𝑘
𝑒 = 𝑖(𝑃𝑛) = 𝐹𝑗 ≡ 0(𝑚𝑜𝑑 2) for some 𝑗 ∈ ℕ, then  

𝑛 ≡ 1(𝑚𝑜𝑑 3) or 𝑛 ≡ 0(𝑚𝑜𝑑 3). 

Proof. Let 𝑛 ≡ 0(𝑚𝑜𝑑 2) and 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≡ 0(𝑚𝑜𝑑 2) for some 𝑗 ∈ ℕ. Then, consider the 

following two cases: 

Case 1. If 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) = 𝐹3 = 2, then, clearly by Remark 2.1, 𝑛 = 4 ≡ 1(𝑚𝑜𝑑 3) or 

 𝑛 = 6 ≡ 0(𝑚𝑜𝑑 3). 

Case 2. Suppose that 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≥8. Then, there is a particular configuration that 

there exists a dominating vertex, say 𝑢 ∈ 𝐼, deg(𝑢) =  1 such that 𝑁(𝑢)⋂𝑁(𝑣) = {𝑥}, where  

𝑣 ∈ 𝐼\{𝑢} and 𝑥 ∈ 𝑉(𝑃𝑛)\𝐼 and ⋂𝑎𝑙𝑙 𝑗𝑁(𝑢𝑗) = 𝜙. And there exists another odd independent 

domination number such that for all 𝑣𝑗 ∈ 𝐼\{𝑢}, deg(𝑣𝑗) = 2 and ⋂𝑁(𝑣𝑗) = { }. Hence, it 

implies that 𝑛 ≡ 1(𝑚𝑜𝑑 3). Further, there is another arrangement that for all 𝑢𝑗 ∈ 𝐼, 

deg(𝑢𝑗) = 2 and ⋂𝑁(𝑢𝑗) is empty. Hence, it clearly follows that 𝑛 ≡ 1(𝑚𝑜𝑑 3). 

Thus, combining the two cases, then this completes the proof.   
 

The next corollaries are immediate consequences of Theorem 2.15. 
 

Corollary 2.11. If 𝑛 ≡ 0(𝑚𝑜𝑑 2) and 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≡ 0(𝑚𝑜𝑑 2), then 𝑛 = 3𝐹𝑗 − 2 or 

𝑛 = 3𝐹𝑗  for some 𝑗 ∈ ℕ. 

 

Corollary 2.12. If 𝑛 ≡ 0(𝑚𝑜𝑑 2) and 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≡ 0(𝑚𝑜𝑑 2), then 𝜌(3𝐹𝑗−2)/2

𝑜 = 𝑖(𝑃𝑛) or 

𝜌3𝐹𝑗/2
𝑜 = 𝑖(𝑃𝑛) for some 𝑗 ∈ ℕ. 

 

Theorem 2.16. If 𝑛 ≡ 0(𝑚𝑜𝑑 2) and 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≡ 1(𝑚𝑜𝑑 2) for some 𝑗 ∈ ℕ, then  

𝑛 ≡ 2(𝑚𝑜𝑑 3). 

Proof. Supposing that 𝑛 ≡ 0(𝑚𝑜𝑑 2) and 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≡ 1(𝑚𝑜𝑑 2) for some 𝑗 ∈ ℕ. Then, 

consider the following two cases: 

Case 1. If we consider that 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) = 𝐹1 = 𝐹2 ≡ 1, then by Remark 2.1, it simply means  that 

𝑛 = 2 ≡ 2(𝑚𝑜𝑑 3). 

Case 2. Now, if we suppose that 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≥ 3, then there is a unique configuration that 

there exists a vertex 𝑢 ∈ 𝐼 and deg(𝑢) = 2 such that 𝑁(𝑥) = {𝑥} where 𝑥 ∈ 𝑉(𝑃𝑛)\𝐼. Also, there 

exists another odd number of dominating vertices 𝑣𝑗 ∈ 𝐼\{𝑢} and deg(𝑣𝑗) = 2 such that 

⋂𝑎𝑙𝑙 𝑗𝑁(𝑣𝑗) = 𝜙 and ⋃𝑎𝑙𝑙 𝑗𝑁(𝑣𝑗) = (𝑉(𝑃𝑛)\𝐼)⋃{𝑥}. Hence, it implies that 𝑛 ≡ 2(𝑚𝑜𝑑3). 

Thus, combining cases (1) and (2), this completes the proof.   
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The following corollaries are consequences of Theorem 2.16. 
 

Corollary 2.13. If 𝑛 ≡ 0(𝑚𝑜𝑑 2) and 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≡ 1(𝑚𝑜𝑑 2), then 𝑛 = 3𝐹𝑗 − 1  for some 

𝑗 ∈ ℕ. 
 

Corollary 2.14. If 𝑛 ≡ 0(𝑚𝑜𝑑 2) and 𝜌𝑘
𝑒 ≡ 𝑖(𝑃𝑛) = 𝐹𝑗 ≡ 1(𝑚𝑜𝑑 2), then 𝜌(3𝐹𝑗−1)/2

𝑒 = 𝑖(𝑃𝑛)  

for some 𝑗 ∈ ℕ. 
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