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Abstract: Riemann zeta function has a great importance in number theory, constituting one of 

the most studied functions. The zeta function, being a series, has a close relationship with the 

arithmetic progressions (AP). AP of higher order allows the understanding of several probabilities 

involving sequences. In this paper, we will approach Riemann zeta function with an AP of higher 

order. We will deduce a formula from the progression that will allow to express of the zeta 

function for a natural number greater than or equal to 2. In this way, we will show that the study 

of an AP of higher order can be very useful in the study of Riemann zeta function, and it may 

open other possibilities for studying the value of this function for odd numbers.  
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1 Introduction 

An arithmetic sequence is defined by [8] as being a never-ending list of real numbers. An example 

would be 1, 4, 7, 10, … Series are very important because they are used to represent a lot function 

of mathematics as sine, cosine, exponential and others. An important series to mathematics is 

defined below. 
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 𝑆(𝑛) =
1

1𝑛 +
1

2𝑛 +
1

3𝑛 +
1

4𝑛 + ⋯ = ∑
1

𝑖𝑛
∞
𝑖=1  (1) 

It was proved that this series converges if 𝑛 > 1. Due to its importance, the 𝑆(𝑛) series was 

studied for a long time by different mathematicians who tried to establish advanced knowledge 

about its properties. Euler (1707–1783) studied this series in the 18th century and it was 

subsequently named zeta function by Riemann (1826–1866). In 1859, Riemann extended the 

definition of the Euler's zeta function to complex variables [1]. In [7], the Riemann zeta function 

is defined through the following identity: 

 𝜁(𝑠) = ∑
1

𝑛𝑠
∞
𝑛=1 =

1

Γ(𝑠)
. ∫

𝑥𝑠−1

𝑒𝑥−1
𝑑𝑥

∞

0
, 𝑅(𝑠) > 1. (2) 

The Riemann zeta function has a fundamental application in mathematics, appearing in other 

areas of knowledge as in problems of regularization in physics, field theory, Stefan–Boltzmann 

law, Debye model for two dimensions and also in nuclear magnetic resonance and magnetic 

resonance by [4]. The Stefan–Boltzmann law that measures the total energy radiated by a 

blackbody is given by 

𝑢 =
48𝜋𝑘4𝑇4

𝑐3.ℎ3 . ζ(4). 

The zeta function, to be more precise ζ(5), also appears in the Bloch–Gruneissen 

approximation for resistance in a monovalent metal. Another utility of the zeta function is in the 

quantum theory of transport effects – thermal and electrical conductivity [2]. 

A proof of the following well-known formula can be found, for instance, in [6]: 

 𝜁(2𝑛) =
(−1)𝑛+1.(2𝜋)2𝑛.𝐵2𝑛

2.(2𝑛)!
 (3) 

In the above formula, the values of B2n are known as Bernoulli numbers, whose first values are 

𝐵0 = 1, 𝐵1 = −
1

2
, 𝐵2 =

1

6
, 𝐵3 = 0, 𝐵4 = −

1

30
 . It is known that for every odd n greater than 1, 𝐵𝑛 

is null. Based on the above formula, it is possible to write 𝜁(2) =
𝜋2

6
, 𝜁(4) =

𝜋4

90
, 𝜁(6) =

𝜋6

945
 and 

so on. On the other hand, the problem of expressing the value of the Riemann zeta function for 

odd integers remains open. Thus, it is not known with certainty whether the value, for example 

of 𝜁(3)would be a function of π or any other known constant, like for instance e or γ. The 

reciprocal of 𝜁(3) is the probability that three randomly chosen positive integers are prime to 

each other. 

Although the algebraic representation of 𝜁(3), 𝜁(5), 𝜁(7) etc. is unknown, it is known that 

many of these values are irrational as shown in [5], which indicates that an infinity of numbers 

of the form 𝜁(2𝑚 + 1) for m integers are irrational. In [9] it is showed that at least one of 

𝜁(5), 𝜁(7), 𝜁(9), 𝜁(11), 𝜁(13), 𝜁(15), 𝜁(17), 𝜁(19) and 𝜁(21) is irrational. The irrationality of 

𝜁(3) has been proven by Apery in 1977. 

The difference operator (∆) is the difference between any term in a sequence from the second 

and its predecessor (∆ = 𝑎𝑛+1 − 𝑎𝑛). As it puts us [3], if the difference operator is constant, then 

the sequence is an arithmetic progression (AP). Thus, based on the difference operator, it is 

possible to define the order of an AP. A sequence would be an AP of order 2 if the difference 

between the terms is an AP of non-constant terms (if they are constants, we would have an AP of 

order 1). As an example, the sequence of the squares of the natural numbers (0, 1, 4, 9, 16, 25, … ) 

is a second-order AP since (1 − 0, 4 − 1, 9 − 4, 16 − 9, 25 − 16, … )  =  (1, 3, 5, 7, 9, … ) forms 
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an AP. An example of third-order AP is the sequence 𝑆 =  (0, 6, 24, 60, 120, … ) because the 

differences operators are Δ1 (6, 18, 36, 60, … ) and Δ2 =  (12, 18, 24, … ) and the latter sequence 

forms an AP of non-constant terms. 

Thus, the objective of this work is to deepen the notion of higher order AP and to associate it 

with the Riemann zeta function. 

2 Results 

Consider the sequence 1𝑥, 2𝑥 , 3𝑥 , 4𝑥, 5𝑥 , …   Let us study its behavior for some positive integer 

values 𝑥. The justification for not working with 0 is obvious: we would have the sequence 

(1, 1, 1, 1, 1, … ) that is not interesting to us. Initially, we will study the behaviour of this 

sequence for positive integers (1, 2, 3, … ). 

 𝑥 = 1:  (1, 2, 3, 4, 5, … ). We can observe that this is an AP of ratio 𝑟 = 1 and first term 

𝑎1 = 1. It is a first-order AP. 

 𝑥 = 2: (12, 22, 32, 42, 52, … ) ≡ (1, 4, 9, 16, 25, … ). If we calculate the successive 

differences between the terms of this sequence, we will obtain a new sequence  

(4 − 1,9 − 4,16 − 9,25 − 16, … )  ≡  (3,5,7,9, … ), which is a AP of ratio 𝑟 = 2 and 

first term 𝑎1 = 3. Note that after a successive difference, we found an AP and, therefore, 

it is a second-order AP. 

 𝑥 = 3: (13, 23, 33, 43, 53, … ) ≡ (1, 8, 27, 64, 125, … ). Let us calculate the successive 

differences, obtaining (7, 19, 37, 61, … ). This sequence is not an AP. But let us again 

make the successive differences and obtain (12, 18, 24, … ). After two successive 

differences, we found an AP of ratio 𝑟 =  6 and first term 𝑎1 = 12. Therefore, it is a 

third-order AP. 

 𝑥 = 4: (14, 24, 34, 44, 54, 64 … ) ≡ (1, 16, 81, 256, 625, 1296 … ). When we calculate 

the first successive differences, we obtain the sequence (15, 65, 175, 369, 671 … ), 

which is not an AP. So let us calculate the successive differences the second time to get 

(50, 110, 194, 302 … ), which is not yet an AP. We will calculate the successive 

differences for the third time to find the sequence (60, 84, 108, 132, . . . ), and finally we 

can find an AP of ratio 𝑟 =  24 and first term 𝑎1 = 60. This AP is of fourth order. 

As can be seen, the ratio of AP associated with the series 1𝑥 , 2𝑥 , 3𝑥, 4𝑥, 5𝑥 , … is equal to the 

factorial of 𝑥 (𝑟 = 𝑥!). On the other hand, the first terms were 1, 3, 12, 60, … If we multiply each 

of these values by 2, we obtain the series (2, 6, 24, 120, … ), which are the factorials 

(2!, 3!, 4!, 5!, … ). Thus, we conclude that the term 𝑎1 =
(𝑥+1)!

2
. 

What will happen if we use some negative integer values 𝑥? First, let us see what happens 

when we replace 𝑥 = −2 and calculate the successive differences. 

𝑥 = −2:  1/1, 1/4, 1/9, 1/16, … 

Successive differences: (−3/4, −5/36, −7/144, … ) ≡ (−
3

(1.2)2
, −

5

(2.3)2
, −

7

(3.4)2
, … ). Calling up 

the successive differences by 𝑑1 = −
3

(1.2)2
, 𝑑2 = −

5

(2.3)2
, 𝑑3 = −

7

(3.4)2
 and so on, we note that: 
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𝑎1 = 1 

𝑎2 =
1

4
= 1 −

3

(1.2)2
 

𝑎3 =
1

9
=

1

4
−

5

(2.3)2
= 1 −

3

(1.2)2
−

5

(2.3)2
 

𝑎4 =
1

16
=

1

9
−

7

(3.4)2
= 1 −

3

(1.2)2
−

5

(2.3)2
−

7

(3.4)2
 

Continuing this infinitely, we can observe that the numbers 3, 5, 7, …  are the same terms of 

the AP associated to the sequence (12, 22, 32, 42, 52, . . . ) as we saw previously. We can note that 

𝜁(2) = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + ⋯  Let us define a formula for the determination of the value of the 

zeta function of 2. For this, we calculate partial sums 𝑆𝑛.  

𝑆1 = 1 = 𝑎1 = 1. 

𝑆2 = 1 +
1

4
= 𝑎1 + 𝑎2 = 1 + 1 −

3

(1.2)2
 = 2 − 1.

3

(1.2)2
 

𝑆3 = 1 +
1

4
+

1

9
= 𝑎1 + 𝑎2 + 𝑎3 = 1 + 1 −

3

(1.2)2 + 1 −
3

(1.2)2 −
5

(2.3)2 = 3 − 2.
3

(1.2)2 − 1.
5

(2.3)2 

𝑆4 = 1 +
1

4
+

1

9
+

1

16
= 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 = 1 + 1 −

3

(1.2)2 + 1 −
3

(1.2)2 −
5

(2.3)2 +1 −
3

(1.2)2 −
5

(2.3)2 −
7

(3.4)2 = 4 − 3.
3

(1.2)2 − 2.
5

(2.3)2 − 1.
7

(3.4)2 

If we do this to infinity, we have 𝑆𝑛 = 1 + 1/4 + 1/9 + 1/16 + 1/25 + ⋯ 1/𝑛2, that is, 𝑆𝑛 

will match the function 𝜁(2) for large 𝑛 enough. We can observe from the above results that the 

sum 𝑆𝑛 always starts with 𝑛 and the other terms are negative. The negative terms have as 

coefficient the decreasing numbers from −1, 𝑛 − 2, … ,1. In addition, the numerators are the 

terms of the AP (3,5,7, . . . ). Therefore, we define a general formula for 𝑆𝑛 and, consequently, for 

𝜁(2). 

 𝑆𝑛 = 𝑛 − (𝑛 − 1).
3

(1.2)2 − (𝑛 − 2).
5

(2.3)2 − (𝑛 − 3).
7

(3.4)2 − ⋯ − 1.
(2𝑛−1)

[𝑛(𝑛−1)]2 (4) 

For the AP (3,5,7, . . . ), we see that 3 is the first  term, 5 is the second term, 7 is the third term, 

etc., its general term is 𝑐𝑘 = 1 + 2𝑘. 

 𝑆𝑛 = 𝑛 − (𝑛 − 1).
𝑐1

(1.2)2
− (𝑛 − 2).

𝑐2

(2.3)2
− (𝑛 − 3).

𝑐3

(3.4)2
− ⋯ − 1.

𝑐𝑛−1

[𝑛(𝑛−1)]2
 (5) 

 𝑆𝑛 = 𝑛 − ∑
(𝑛−𝑘).𝑐𝑘

[𝑘.(𝑘+1)]2
𝑛−1
𝑘=1 = 𝑛 − ∑

(𝑛−𝑘).(1+2𝑘)

𝑘2(𝑘+1)2
𝑛−1
𝑘=1  (6) 

For 𝑆𝑛 to be numerically equal to the function 𝜁(2), it is necessary that 𝑛 is large enough, that 

is, 𝑆𝑛 approaches 𝜁(2) when 𝑛 tends to infinity. Therefore: 

 𝜁(2) = lim
𝑛→∞

𝑆𝑛 = lim
𝑛→∞

[𝑛 − ∑
(𝑛−𝑘)

𝑘2(𝑘+1)2
. (1 + 2𝑘)𝑛−1

𝑘=1 ] (7) 

Proceeding from the previous form for 𝑥 =  −3 we have: 

𝑥 = −3:  1/1, 1/8, 1/27, 1/64, … 

First successive differences: (−
7

(1.2)3 , −
19

(2.3)3 , −
37

(3.4)3 , … ). Calling the successive differences 

by  𝑑1 = −
7

(1.2)3
, 𝑑2 = −

19

(2.3)3
, 𝑑3 = −

37

(3.4)3
 and so on, we note that: 
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𝑎1 = 1 

𝑎2 =
1

8
= 1 −

7

(1.2)3
 

𝑎3 =
1

27
=

1

8
−

19

(2.3)3
= 1 −

7

(1.2)3
−

19

(2.3)3
 

𝑎4 =
1

64
=

1

27
−

37

(3.4)3
= 1 −

7

(1.2)3
−

19

(2.3)3
−

37

(3.4)3
 

When we calculate the successive differences of the sequence (13, 23, 33, 43, 53, . . . )  we 

obtain (7, 19, 37, 61, . . . ) in the first difference and this is already well evidenced that the 

numerators present in the fractions of terms 𝑎𝑛 above are just the same terms as the first 

successive difference of (13, 23, 33, 43, 53, . . . ). In addition, we obtain the AP (12, 18, 24, . . . ) 

as being associated with (13, 23, 33, 43, 53, . . . ), so that  

19 = 7 + 12 

37 = 19 + 18 = 7 + 12 + 18 

61 = 37 + 24 = 7 + 12 + 18 + 24 

This shows that the numerators of the fractions of the terms above are expressed by 𝑐𝑘 = 7 +

𝐴𝑘−1, where 𝐴𝑘−1 is the sum of the 𝑘 − 1 terms of the AP (12, 18, 24, . . . ). Given all of this, we 

conclude, using the formula of the sum of the terms of an AP, that 𝐴𝑘−1 = 3(𝑘 + 2)(𝑘 − 1) and 

𝑐𝑘 = 7 + 3(𝑘 + 2)(𝑘 − 1) = 1 + 3𝑘 + 3𝑘2 . Calculating the partial sums, we have: 

𝑆1 = 1 = 𝑎1 = 1 

𝑆2 = 1 + 
1

8
= 𝑎1 + 𝑎2 = 1 + 1 −

7

(1.2)3
 = 2 − 1.

7

(1.2)3
 

𝑆3 = 1 + 
1

8
+

1

27
= 𝑎1 + 𝑎2 + 𝑎3 = 1 + 1 −

7

(1.2)3
 +1 −

7

(1.2)3
−

19

(2.3)3
 = 3 − 2.

7

(1.2)3
− 1.

19

(2.3)3
 

𝑆4 = 1 + 
1

8
+

1

27
+

1

64
= 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4  

= 1 + 1 −
7

(1.2)3
+ 1 −

7

(1.2)3
−

19

(2.3)3
 +1 −

7

(1.2)3
−

19

(2.3)3
−

37

(3.4)3
 = 4 − 3.

7

(1.2)3
− 2.

19

(2.3)3
− 1.

37

(3.4)3
 

Using the same previous reasoning for 𝜁(2), we have: 

 𝑆𝑛 = 𝑛 − (𝑛 − 1).
7

(1.2)3 − (𝑛 − 2).
19

(2.3)3 − (𝑛 − 3).
37

(3.4)3 − ⋯ − 1.
(1−3𝑛+3𝑛2)

[𝑛(𝑛−1)]3  (8) 

 𝑆𝑛 = 𝑛 − (𝑛 − 1).
𝑐1

(1.2)3 − (𝑛 − 2).
𝑐2

(2.3)3 − (𝑛 − 3).
𝑐3

(3.4)3 − ⋯ − 1.
𝑐𝑛−1

[𝑛(𝑛−1)]3 (9) 

 𝑆𝑛 = 𝑛 − ∑
(𝑛−𝑘).𝑐𝑘

[𝑘.(𝑘+1)]3
𝑛−1
𝑘=1 = 𝑛 − ∑

(𝑛−𝑘).(1+3𝑘+3𝑘2)

𝑘3(𝑘+1)3
𝑛−1
𝑘=1 . (10) 

For 𝑆𝑛 to be numerically equal to the function 𝜁(3), it is necessary that 𝑛 is large enough, that 

is, 𝑆𝑛 approaches 𝜁(3) when 𝑛 tends to infinity. Therefore: 

 𝜁(3) = lim
𝑛→∞

𝑆𝑛 = lim
𝑛→∞

[𝑛 − ∑
(𝑛−𝑘)

𝑘3(𝑘+1)3 . (1 + 3𝑘 + 3𝑘2)𝑛−1
𝑘=1 ]. (11) 

It should be immediately noted that the exponents of the variable 𝑘 in 1 + 2𝑘 and  

1 + 3𝑘 + 3𝑘2 grow from 0 to 𝑛 − 1. It is observed that (1, 2) and (1, 3, 3) are the coefficients 

of the triangle of Pascal except for the last number (1).  

In view of this, we conclude the following theorem: 
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Theorem. If 𝑠 ∈ ℕ, with 𝑠 ≥ 2, then the value of 𝜁(𝑠) is given by the relation: 

 𝜁(𝑠) = lim
𝑛→∞

𝑆𝑛 = lim
𝑛→∞

[𝑛 − ∑ {
(𝑛−𝑘)

𝑘𝑠(𝑘+1)𝑠 . ∑ (𝑠
𝑖
). 𝑘𝑖𝑠−1

𝑖=0 }𝑛−1
𝑘=1 ]. (12) 

Proof: 

 𝜁(𝑠) = lim
𝑛→∞

[𝑛 − ∑ {
(𝑛−𝑘)

𝑘𝑠(𝑘+1)𝑠 . ∑ (𝑠
𝑖
). 𝑘𝑖𝑠−1

𝑖=0 }𝑛−1
𝑘=1 ]. (13) 

The expression below is known: 

 ∑ (𝑠
𝑖
). 𝑘𝑖𝑠−1

𝑖=0 = (𝑘 + 1)𝑠 − 𝑘𝑠. (14) 

Replacing (14) in (13), we have: 

 𝜁(𝑠) = lim
𝑛→∞

[𝑛 − ∑ {
(𝑛−𝑘)

𝑘𝑠(𝑘+1)𝑠 . ((𝑘 + 1)𝑠 − 𝑘𝑠)}𝑛−1
𝑘=1 ] (15) 

 𝜁(𝑠) = lim
𝑛→∞

[𝑛 − ∑ {(𝑛 − 𝑘). (
1

𝑘𝑠 −
1

(𝑘+1)𝑠)}𝑛−1
𝑘=1 ] (16) 

 𝜁(𝑠) = lim
𝑛→∞

[𝑛 − (𝑛. ∑
1

𝑘𝑠
𝑛−1
𝑘=1 − 𝑛. ∑

1

(𝑘+1)𝑠
𝑛−1
𝑘=1 − ∑

1

𝑘𝑠−1
𝑛−1
𝑘=1 + ∑

𝑘

(𝑘+1)𝑠
𝑛−1
𝑘=1 )] (17) 

 𝜁(𝑠) = lim
𝑛→∞

[𝑛 − (𝑛. 𝜁(𝑠) − 𝑛. (𝜁(𝑠) − 1) − 𝜁(𝑠 − 1) + 𝜁(𝑠 − 1) − 𝜁(𝑠))] (18) 

 𝜁(𝑠) = lim
𝑛→∞

[𝑛 − 𝑛. 𝜁(𝑠) + 𝑛. 𝜁(𝑠) − 𝑛 + 𝜁(𝑠)]. (19) 

Thus, we conclude that: 

 𝜁(𝑠) = lim
𝑛→∞

𝜁(𝑠) = 𝜁(𝑠). (20) 

This completes the proof.    

3 Conclusion 

Riemann’s zeta function is of fundamental importance in number theory and is still the subject 

of many studies because it still provides several unsolved problems. The problem of calculating 

the value of this function for an odd integer is still open. In this work, we show that the arithmetic 

progression of high order allows to define a formula for the effective calculation of Riemann zeta 

function for a natural number 𝑠 ≥ 2. 
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