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Abstract: In this paper, we introduce the generalized bicomplex k-Fibonacci numbers. We also
give the generating function and Binet’s formula for these numbers. In addition, we obtain
some identities such as Honsberger, d’Ocagne’s, Catalan’s, and Cassini’s identities involving the
generalized bicomplex k-Fibonacci numbers.
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1 Introduction

Bicomplex numbers were first introduced by Corrado Segre [13] in 1892. Bicomplex numbers,
just like quaternions, are a generalization of complex numbers by four real numbers. However,
there are two differences between quaternions and bicomplex numbers: First one; quaternions
form a division algebra, but bicomplex numbers do not form a division algebra. Secondly; quater-
nions are non-commutative, whereas bicomplex numbers are commutative.

A bicomplex number z is of the form

T = o+ 210 + T2f + x31) = (To + 210) + (T2 + x30)],
where z(, 1, T2 and x3 are real numbers, ¢ and j are imaginary units which satisfy the equalities
?=—1,j" = —1,ij = ji. (D

The set of bicomplex numbers is denoted by C,. For more details, one can see, for example [9].
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In 2015, Karakus and Aksoyak [8] defined a generalized bicomplex number p as follows:

P =po+ p1t + paj + psij = (po + pri) + (p2 + psi)7,

where pg, p1, p2 and p3 are real numbers, 7 and j are imaginary units which satisfy the equalities

Z.Q = —Oé,j2 = _ﬁ7 (lj)2 = aﬁaij :jZ7

where « and (3 are real numbers.

The set of generalized bicomplex numbers is denoted by C,3.

Let p = po + p12 + p2j + p3ij and ¢ = qo + 17 + q27 + g3t be two generalized bicomplex
numbers. Then the addition of two generalized bicomplex numbers is defined as

p+a=Po+q)+ P +a)it P2+ a)i+ (ps+a)ij.
The multiplication of a generalized bicomplex number by a real scalar \ is defined as
AD = Apo + Ap1t + Apaj + Apsij.
The multiplication of two generalized bicomplex numbers is defined as

p X q = (pogo — ap1qr — Bp2ge + afpsqs) + (Poq1 + P1go — Bp2qs — Bpsqe)i
+ (Pog2 + P2go — ap1qs — apsq1)j + (Pogs + P3qo + P12 + P2q1)ig.

Moreover, three different conjugations for generalized bicomplex numbers are given by

Pl = (po — p1i) + (p2 — p3i)j,
pli = (po + p17) — (P2 + p3i)J,
pls = (pg — p1i) — (pa — p3i)j.

Accordingly, we can write (cf. [8])

pxph = (po” + api® — Bp2” — aBps®) + 2(pop2 + apips)j,
pxp = (po> — api® + Bps” — aBps®) + 2(popr + Bpaps)i,
pxp' = (po® + api® + Bpa® + aBps®) + 2(pops — p1p2)iy.

The sequence of Fibonacci numbers, denoted by {F,}5°,, is defined by the recurrence
relation

Fn:anl—i_anQ; n =2

with initial conditions Fy = 0 and F; = 1.

Fibonacci numbers have been widely used in science, engineering, art and architecture. In
literature, Fibonacci numbers have been studied and also generalized by many authors in many
ways. One of the generalization of these numbers is £-Fibonacci numbers introduced by Falcon
and Plaza [6]. Additionally, in [7], the authors studied k-Fibonacci numbers.
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For any positive real number k, the sequence of k-Fibonacci numbers, denoted by { Fj,, }5°,
is defined by the recurrence relation

Fon=Fkypn1+ Fyno, n=>2

with initial conditions Fj o = 0 and Fj; = 1.
For k = 1, we obtain the classical Fibonacci numbers.
The n-th term of the sequence { F} ,, }°° , is given by

o — Bn

Fpp=—"—7, 2

=0 @)
k+Vk?+4 k—Vk?+4
where o = % b= % are roots of the equation 2 —kt—1=0.
Moreover, the generating function for the sequence { Fj ,, }2° , is given by
t

)= ————.

There are several studies on k-Fibonacci numbers in literature. For example, Bolat and
Kose [4] investigated some properties of k-Fibonacci numbers. In addition, Catarino [5] gave
some identities involving k-Fibonacci numbers. Moreover, Ramirez [12] defined and studied
k-Fibonacci and k-Lucas quaternions. Thereafter, Polatli et al. [11] defined split k-Fibonacci
and k-Lucas quaternions. Furthermore, Bilgici et al. [3] introduced k-Fibonacci and k-Lucas
generalized quaternions. Additionally, Aydin [2] defined k-Fibonacci dual quaternions.

In [10], Nurkan and Guven introduced the bicomplex Fibonacci and Lucas numbers,
respectively, as follows:

BFn :Fn+Fn+1i+Fn+2j+Fn+3ija
BLn - Ln + Ln—o—li + Ln+2j + Ln+3ij7

where F), is the n-th Fibonacci number, L,, is the n-th Lucas number, 7 and j are imaginary units
which satisfy the Eq. (1).

They gave the Binet’s formulas for bicomplex Fibonacci and Lucas numbers, respectively, as
aa" — Bp"

a—pF
BL, =aa" + Bp",

BF, =

where @ = 1 +ia + jo? +ijo?, f = 1 +iB + jB% +ij3°, o and 3 are roots of the equation
2 —t—1=0.

They also obtained some properties of these numbers in the same paper. Moreover, Aydin [1]
introduced the bicomplex Pell and Pell-Lucas numbers.

The main objective of this paper is to introduce the generalized bicomplex k-Fibonacci
numbers. For this purpose, we first define the generalized bicomplex k-Fibonacci numbers.
We then give the generating function and Binet’s formula for these numbers. We also obtain
Honsberger identity, d’Ocagne’s identity, Cassini’s identity and Catalan’s identity involving the
generalized bicomplex k-Fibonacci numbers.
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2 The generalized bicomplex £-Fibonacci numbers

The n-th generalized bicomplex k-Fibonacci number is defined for n > 0 by
GBFypn = Fp 4+ 1Fp g1 + 7 Fing2 + 15 Fgnys, 3)

where [}, is the n-th k-Fibonacci number, and ¢, j are imaginary units which satisfy the
equalities

= —a,j* = —0,(ij)* = aB,ij = ji, “4)

where « and 3 are real numbers.
Let GBFj, be the generalized bicomplex k-Fibonacci number. Then GBFj, can be
expressed as

GBFyn = (Frp +iFpni1) + 7 (Fenge + 1Finy3). 5

After some necessary calculations, one can obtain the following recurrence relation:

GBka = /{ZGBka_l + GBFk’n_Q, n Z 2 (6)
with initial conditions
GBFy =i+ jk+ij(k* + 1), (7)
GBFp1 =1+ ik + j(K* + 1) +4j(k° + 2k). 8)
Let
GBFypn = Fyp +1Fipi1 + JFhnso + 05 Finys
and

GBFym = Fym + 1Fg i1 + §Femy2 + 15 Fkmes
be two generalized bicomplex k-Fibonacci numbers. Then the addition and subtraction of two
generalized bicomplex k-Fibonacci numbers are defined by
GBFy,, £ GBFy,, = (Fin £ Fem) + i(Frn1 £ Froms1) + J(Feni2 &£ Frmta)
+ i (Fn+s £ Flomea)- ©)
The multiplication of a generalized bicomplex k-Fibonacci number by a real scalar X is defined

by
AGBF, = ANFypn + APy g1 + jAFg g2 + 15 A g (10)

The multiplication of two generalized bicomplex k-Fibonacci numbers is defined by
GBFy, x GBFjm
= (FinFem — 0Fpni1Femsr — BFrpr2Femy2 + @BFpnisFrmts)
+ i(FenFomr + Fens1Fiom — BFint2Femys — BEin+3Fimt2)
+ J(FenFrmr2 — @Fgni1 Fiomes + FonoFrm — 0FpnisFim1)
+ 1§ (FenFrmts + Fron1Fems2 + FentoFrmit + Fint3Fim)
= GBFym x GBFy . (11D
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Any generalized bicomplex k-Fibonacci number GBF},,, has three different conjugations

which are
GBFk,nTl - (Fk,n - Z.Fk,n—‘rl) + j(Fk,n+2 - iFk,n-‘,—B)a (12)
GBFk,nTj = (Fk,n + iFk,n+1) - j(Fk,n+2 + iFk,n+3)> (13)
GBFn' = (Frp — iFeni1) — §(Frnio — iFxnss). (14)

Accordingly, we can give the followings:

GBF},,,xGBF,,"" = (Fi.,*> + aFyni1’ — BFrnis® — aBFyni3”)
+ 2j(FenFrnt2 + 0Fpni1 Finss),
GBFy,,xGBFy "1 = (Fy..? — aFyni1® + BFinte’ — aBFynts’)
+ 20(FynFrnt1 + BFkn+2Frnts),
GBFywxGBF, ' = (Fin% + aFpni1® + BFunio® + aBFinys?) + 2ik(—1)",

where k(—1)"" = F . Fy s — Fions1 Fionto (see [7]).

Theorem 2.1. Let GBF},,, and GBF},,, be two generalized bicomplex k-Fibonacci numbers.
Then we have the followings:

GBFy, + GBF;,,)"+ = 2(Fp + 1 Finia), (15)

GBFy.,, + GBF,)'7 = 2(Fpp + iFrns1), (16)

GBFyp+ GBE "% = 2(Fp + 15 Frnys), (17)

(GBFy,, + GBFy.,n)'" = GBF, )i + GBF,,,1, (18)

(GBF},,, + GBFy,,)'" = GBF;.,,'i + GBF 17, (19)

(GBF,,, + GBFy,,)"% = GBF,," + GBF, ", (20)

(GBF,,GBFy,)'" = GBF,,,""GBF}, ./, (21)

(GBFy,nGBFy.n)'" = GBF,,,"GBF, 1, (22)

(GBF ,GBFy )" = GBF,,,""GBF} ... (23)

Proof. The theorem can be proved easily using the Eqgs. (9)—(14). ]

We now give some properties related to the generalized bicomplex k-Fibonacci numbers in
the following theorem.

Theorem 2.2. Let G BFj, ,, be the n-th generalized bicomplex k-Fibonacci number. Then we have
the following:

GBF/?,n + GBF;inH = 2GBF;on+1 — Front1 — 0Fg 003 — BEronys + aBFy onq7
+ 2(—BiFk2n+6 — 0 Fyonts + 1 Fronta), (24)

GBF;inH - GBF,?,n_l = k(2GBFk,2n - Fk,2n - 04Fk,2n+2 - 5Fk,2n+4 + aﬁFk,2n+6>
+ 2k(—PiFyon+s — JFionta + 1 Fk2n13), (25)
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GBFyn, —1GBF 1+ JGBFg 2 — 1JGBFg s
= Fin + aFy o — BFkpia — 0BFynye + 25 (Frnt2 + 0Fpnia),
GBFy, —1GBFy 1 — JGBFy nyo — 1JGBF 543

= Fpn + aFy o+ BFynia — aBFy g6 + 281 F) g5 + 200 Fy s — 205 F 3.

Proof. (24): Using the Egs. (3) and (4), we get
GBFI?,n + GBFka—H = (Fan + Fi?,n+1) - Q(Flg,nﬂ + FkQ,n+2)

- B(Flin+2 + Fk2,n+3) + aﬁ(FkQ,m:a + Fl?,n+4)

+ 2i(FonFrpt1 + Fen1Fente — BFrpt2Frnts
— BFin+3Fkn+a)

+ 2§ (FrnFrmt2 + Fent1Frnts — 0Fpni1 Frnts
- OéFk,n+2Fk,n+4)

+ 20 (Frn Fronts + Frpt1Frnta + Fone1 Frnge
+ Fnt2Fhnts).

Since F,, + F{ 11 = Front1 and Fy, Fymo1 + Frn1 From = Fimyn (see [6]), we get

GBF;in + GBF;inH = 2GBFy o011 — Front1 — aFyonts — BFronts + aBFy ony7

+ 2(=PiFrant6 — 0J Fyonys + 15 Fponta).
(25): Using the Egs. (3) and (4), we get
GBFI?JH—I - GBFI?,n—l = (Flcz,n—&—l - Fl?,n—l) - O*/(Fk?,n—i—Q - FkQ,n)

- B(Fl?,n+3 - FkQ,n+1) + O‘B(Fl?,n+4 - Fl?,n+2)
+ 20(Fn1 Frnr2 — Fron—1Fkn — BFkn+3Fknta

+ BFn+1Fknt2)

+ 2§ (Fnt1Frnts — Fron—1Fint1 — 0F g nioFinta
+ aFg n Frni2)

+ 205 (Frnt1 Frnsa — Fen-1Finse + Fent2Frnts
— FenFrni1)-

(26)

(27)

Using the relations £, | — F?,, | = kFj o (see [6]) and Fy., Fymn — Frn—2Frm—2 = kFmin—2

(see [4]), the desired result can be obtained.

Using the Egs. (3) and (4), the identities (26) and (27) can be proved in a similar manner.

]

The generating function for the generalized bicomplex k-Fibonacci numbers is given in the

following theorem.

Theorem 2.3. The generating function for the generalized bicomplex k-Fibonacci numbers is

given by
i+ jk+ij(k* + 1)+ (147 +ijk)t
1—kt —¢t2 '

Gi(t) =
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Proof. Let Gi(t) be the generating function for the generalized bicomplex k-Fibonacci numbers.
Then we write

Gi(t) = GBFynt" = GBFyo+ GBFgt + -+ + GBFut" + -+ . (28)

n=0

Multiplying the Eq. (28) with kt and ¢2, respectively, we get
ktGy(t) = kGBFy ot + kGBF 1t* + - -+ + kGBFy  1t" + - -
and
t2G1(t) = GBEuot* + GBF 1t + -+ + GBF),, o™ + -+
Then we have
(1 — kt —t*)Gi(t) = GBFyo + (GBFy., — kGBFy )t

+ > (GBFy, — kGBFy 1 — GBFy )"

n=2

= GBFy o+ (GBFy1 — kGBF)t.
By the Egs. (7) and (8), we get
(1 —kt —t*)Gi(t) =i+ jk +ij(k* + 1) + (1 + j + ijk)t
which is the desired result. [

The following theorem gives the Binet’s formula for the generalized bicomplex k-Fibonacci
numbers.

Theorem 2.4. The n-th term of the generalized bicomplex k-Fibonacci number is given by

GBFy, — %

where o = 1+i0[+j0(2+ij(143, o = k“‘#\/mandﬁ* :1+Zﬁ+jﬁ2+2]63, 6 — k—\/2k2+4.

Proof. Using the Egs. (2) and (3), we get

GBFyn = Frp +1Fpnp1 + JFepio + 15 Fings

a — @n ,Oén+1 _ An+l .an—i—Q _ Ant2 . ,Oén+3 _ An+3
p +1 g + 8 + 1) b
a—p a—p a—p3 a—p
_ a1l +ida+ja? +ija’) = (1 +if + jB% +ij %)
— o )
If we take o = 1 + ia + jo? +ija® and B* = 1 + i3 + jB° + ij3%, we obtain the desired
result. O
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The Honsberger identity involving the generalized bicomplex k-Fibonacci numbers is given
in the following theorem.

Theorem 2.5. Let m and n be two positive integers. Then we have

GBF;nGBF.,, + GBF 1 1GBFy

= 2GBFk,m+n+1 - Fk,m+n+1 - aFk,ernJrB - BFk,ernJrE) + aﬁFk,ernJr?

— 2B1Fkmint6 — 20 Frmints + 205 Frmynya-

Proof. Using the Egs. (3) and (4), we get

GBF, ;W GBF,, + GBFj, 1, 1GBEF, 511

= FrmFrin + Feme1 Frnsr — 0 Feme1 Frnr + FrmtoFens2)
— B(Femi2Frnt2 + FrmisFrns) + aB(FemisFrnts + FrmiaFrnia)
+ [ FromErnt1 + Fomt1Fente + Fome1Fion + Froms2Frntt
— B(Frmi2Fen+s + FeomtsFinta + FromisErnte + FrmtaFints)]
+ I FemFrnt2 + Fomi1Frnts + Femi2Fen + FrmtsFrnt
— (Fms1 Frnts + FomsoFrenta + FomesFrnt1 + FrmiaFrnt2)]
+ 0 [ FemFrnts + Foms1Fonta + Fromi1 Frnve + Fomt2Fints
+ Fimi2Frn+1 + FomsFente + FomtsFin + FromyaFrns].

Since Fi, p Fim—1 + Frns1Fem = Frngem (se€ [6]), we get
GBF}C’mGBkal + GBFk7m+1GBFk’n+1

= Fk,m+n+1 - aFk,m+n+3 - ﬁFk,m—s—n—l-S + aﬁFk,m—l—n—i-?
+ Qi(Fk,m+n+2 - BFk,m+n+6> + 2j(Fk,m+n+3 - O4Fk,m+n+5) + 4iij,m+n+4
= QGBFk,m—i—n—‘rl - Fk,m+n+1 - aFk,m+n+3 - BFk,m—&—n—‘rB + aﬁFk,m-l—n—i-?

— 2BiFy mint6 — 207 Fmints + 20 Fimynta).- O

The following theorem gives the d’Ocagne’s identity involving the generalized bicomplex
k-Fibonacci numbers.

Theorem 2.6. Let m and n be two positive integers. Then we have

GBFk7mGBFk,n+1 - GBFkJrL-I-lGBFk,n

= (_1)n[GBFk,m—n + (a - B + O‘ﬁ>Fk,m—n] + (_1)n+1[i(Fk,m—n—l + ﬁka,m—n)
- j((]- + Q)Fk,m—n—2 + Oka,m—n—i—Q) + Z.](kQ + 1)Fk,m—n—1]-
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Proof. Using the Egs. (3) and (4), we get

GBFGBF) 41 — GBEy 1 GBE,

= (FemPrnir — Femi1Fin) — @(Femi1 Frnyz — FrmyaFint1)

— B(Femi2Frnts — FomisFrni2) + aB(FrmisFrnta — FemiaFrnts)
+ i[(FemFrmse = Feme1Frnse1) + (Femt1 Frner — Frme2Fin)

— B(Frmi2Finta — FrmisFrnes) — B(Fem3Frnis — FrmyaFrni2)]
+ J(FemFrn+s — Fems1Fent2) + (Fromt2Front1 — Frm+3Fin)

— a(Frmi1Frnsa — FomeoFinys) — a(FomisFrnre — FiomiaFrni)]
+ 35 [(Freym Frnra — Frmi1Frnes) + (Femi1 Fents — Fem2Frnt2)

+ (Frmr2Fems2 = FremasFrnt1) + (FemisFrntt — FemtaFrn))-

Since FiFrnt1 — Fems1Fen = (—1)" Fim—n (see [7]), we get

GBFy,GBFy 1 — GBFy, 1 1GBFy

= (—1)"[Frm-n+ Ftm—n — BFkm—n + aBFkm_n]
+ (=1)"i[~Frm—rn-1+ Frmnt1 + B(Frm—n-1 — Frm-nt1)]
+ (=1)"j[Frm—n-2 + Fem-ni2 + &(Frm-n-2 + Frm-—ni2)]
+ (=1)"j[—Fem-n—3 + Frm-n-1 — Fem—n+1 + Frm—n+3]
= (=1)"|[GBFym—n + (o = B+ aB) Fim—n]
+ (=) i( Frnn1 + Bk Femn) — 5 (1 + Q) Frmn—2 + 0Fkmni2)
+ij(K* + 1) Frm—n—1]. O

The following theorem gives the Catalan’s identity involving the generalized bicomplex

k-Fibonacci numbers.

Theorem 2.7. Let n and r be two positive integers. Then we have GBF}, 1, 1GBF} piri1 —
GBE,..,= (-1)""1+a—F—af+i(1—B)k+j(1+a)(k*+2) +ij(k* + 2k))].
Proof. Using the Egs. (3) and (4), we get

GBFynyr1GBEFy pyry1 — GBF,?MT

= (Femsr1Fonprir — Fi i) = (Frnsr Frnirr2 = Fipon)
— B(Frmsri1 Feniris — F,inHH) + aB(Frptrr2Frontria — F/?,n+r+3)
+ i[(Frptr—1Fonsr+2 — Frnpr Frpngrs1)
- 6<Fk,n+r+1Fk,n+r+4 - Fk,n+r+2Fk,n+T—i—3)]
+ J[(Frmtr—1Frnsr+s — Fronsr Fontrt2) — (Flntr Fontrt2 — sz,n+r+1)
+ a(Fk,n+r+le,n+r+3 - Flg,n+r+2) - a<Fk,n+rFk,n+r+4 - Fk,n+r+1Fk,n+T+3)]

+ Zj [Fk,n+r—1Fk,n+r+4 - Fk,n—l—rFk,n—f—r-l—S]-
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USiIlg the relations Fk,ka,n—i-l - Fk,m+1Fk,n = <_1)anz,m—n (SCC [7])’ Fk,n+7‘—1Fk,n+r+l -
FZ .., = (=1)"*" (see [6]) and also Fj _, = (—1)"*'Fy,, (see [4]), the desired result can be
obtained. [l

Setting r = 0 in Theorem 2.7, we obtain the Cassini’s identity involving the generalized
bicomplex k-Fibonacci numbers which is given in the following corollary.

Corollary 2.8. Let n be positive integer. Then we have

GBka_lGBFk,n—l—l - GBFI?,n

= (-)"[I+a—-B—af+i(l =Bk + (1 +a)(k* +2) +ij(k* + 2k)].

3 Conclusion

In this study, the generalized bicomplex k-Fibonacci numbers were introduced. Some properties
of these numbers, including generating function and Binet’s formula, were given. Furthermore,
some well-known identities, including Honsberger, d’Ocagne’s, Catalan’s, Cassini’s identities,
involving these numbers were obtained.

It must be noted that for k = 1, « = 1 and § = 1, the generalized bicomplex k-Fibonacci
number becomes the bicomplex Fibonacci number [10]. Moreover, for k = 2, « = 1 and § = 1,
the generalized bicomplex k-Fibonacci number becomes the bicomplex Pell number [1].
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