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Abstract: Recently Wani, Artaf, A, Badshah, V., Rathore, G. P. & Catarino introduced
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properties for negative indices.
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1 Introduction

Let us consider the following definitions introduced recently in the work [2]. We can find
several properties resulting from Generalized Fibonacci sequences and the A-Pell sequence.
On the other hand, from certain properties of matrices that generate the elements of the
generalized Fibonacci sequences and the k-Pell sequence we can find other more immediate and
new forms of the corresponding theorems that we find in the work [2]. Other interesting
properties about the Fibonacci matrix sequences can be found at works [1, 3].

Definition 1. For k € IR", the generalized Fibonacci sequence (Ry,) is defined by

R =2R,, +kR, nzL,R, ,=2,R, =1

n-1°

110

k,n+1



Definition 2. For k € IR", the k-Pell sequence (Px,) is defined by
P, =2F,+kP , ,nz1,P,=0,P, =1
Next, let us look at two mathematical definitions recently introduced in [2] related to the matrix

sequence.

Definition 3. For k € IR", the generalized Fibonacci matrix sequence (S.») is defined by

— -2 9 9 .
k,n k,n-1 k,n-2 k,0 2 3 k.1 ] 2‘

Definition 4. For k € IR, the k-Pell matrix sequence (Vn) is defined by

V 2V +kV >2.V, Lo V 2k
= ,n = . = . = .
k.n kon—1 k.n-2 k0 0 1 k.1 1 0

Before discussing other ways of demonstrating the results addressed in the work [2], we will
consider the following matrix
v 2 k
A 1 O :

In addition, we can also verify the behavior of the following powers:

oo 4+k k-2)_ B, k-B,
kol 2 k- P, k-B,)

8+4k k-(4+k)\ (B, k-B,
4+k k-2 ) \P, k-P,)
. K +12k+16 k-(8+4k)\ (Bs kB,

8+4k  k-(4+k) ) \B. k-By)

s 6k>+32k+32 k-(k*+12k+16)) (B k-P
Sl +12k+16 k-(8+4k) Py k-P,)

o [k +24k> +80k+64 k-(6k*+32k+32)) (£, k-Fg
o 6k> +32k +32 k-(k*+12k+16) ) \Bs k-Py)

v k> +24k* +80k +64 k-(6k>+32k+32)) (Bys k-B;,
ol 6k +32k +32 k-(k*+12k+16) ) \ B, k-Pyg)’

etc. In this way, we will state the following theorem.

. . 2 k ' Pk n+l k ) Pk n
Theorem 1. For any integer n>1, we obtain V, " = = .
, 1 0 Pk,n k ’ Pk,nfl

Proof. The result holds for n =1. By mathematical induction, we assume that
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V no_ 2 k ”_ Pk,n+1 k'Pk,n
Sl o) R, kP )
Next, consider the following matrix power:

» 2 k n+l
V=1

_ 2 k ! 2 k _ B{,n+1 k.Bc,n 2 k
1 o)1 o) | B, kB, )1 0O
2Pk,n+l + k .Pk,n k P J

kn+l

Pk,n +k.Pk,n—l k.Pk,n

— Bc,n+2 k .Br,n+1
Bc,n+l k ’ Pk,n

from the Definition 2.

Next, let us consider the following matrix

1 2k
So=ly

In addition, we will take the following matrix products indicated in the expression

g oo [l 22 KY
TR 2 3 o)
Easily, we can see that

2+2k k-1\ (R, k-R,
StoVia =ViaSio = 1 k2) \R, kR,
k,1 k,0

Moreover, we can observe that:

s 2[4k kQr20)_(Rs BB
cn 2+2k k-1 R, k-R,

o o _[2K 12648 k-(4+5K))_(Rey kR

UL awsk ke@e20) (R KR, )

oy o _[OK+28k+16 k2K +12k+8))_(Ris kR,
k0 "k, 2k2+12k+8 k(4+5k) Rk,4 k'Rk,3 ’

2k> +30k% +64k +32  k-(9k* +28k+16)| (Ris k-Rs

9k> +28k+16 k-(2k* +12k +8) R k-R,)
S,V 6= 13k° +88k” +144k +64  k-(2k> +30k” + 64k +32) _[Res kR
Sh 2k +30k” + 64k +32 k-(9k* + 28k +16)

etc. From these examples, we consider the following theorem.

Sk,O Vk,ls :[
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. : 1 2k\(2 k\' (R... kR,
Theorem 2. For any integer n>1, we obtain S, V, |" = 5 a1 ol T R’ iR .
_ k,n ’ k,n—1

Proof. Similar to the previous theorem, the result holds for »=1 and by mathematical

. L , 0 (1 2k)(2 kY(2 kY (R, kR, 2 k
induction, it is enough to verify S, ¥V, " = =l - ’

n 2 3)Q1 0)(1 0 R, kR, )1 O
_(Rk,mz k'Rk,ml

R k-R,,

k,n+1

j for any integer n >1. [

In addition, we can also verify the behavior of the following determinants indicated by

Pkn+1 kPkn Rkn+1 k'Rkn
det(V,,")=det| © | and det(S, -V, ") =det| R
’ Pk,n k ’ Pk,n—l ’ ’ Rk,n k ’ Rk,nfl

Corollary 1. For any integer n >1, we obtain:

(i) detl,” dt(Pk’nH k'Pk’“J 1"k
1 e =de =(- ;
o Pk,n k.Pk,n—l

.. . Rk,n+1 k'Rk,n n g n+l
(i)  det(S,,V,,")=det R, kR, =@+4)(-D"E".

Proof. We note that detV, , =—k=(-1k, detV,’>=k>, detV,’=—k>, detV, *=k*. By

2 n
mathematical induction, let us write detV, :det(1 0] =(=1)"k". Then, we immediately

find that detV, "' dt2 " dt2 kndtz k (-D)"k" - (=Dk = (=1)"" k!
m a (] =dc =dc (] =(— B =(— .
kol 1 0 1 0 1 0

Similarly, let us admit that det(S,, Vk’l”)=(3+4k)(—1)”k””. Thus, we can see that
det(S, - (V,)"") = det(S, , (V)" )- det(F;,) = B+ 4K)(-1Y K (k) = B+4b) (-1 k"2, O

Let us consider the following matrices, from the work indicated in [2]. For any integer n>1,
V _ Bc,n+l k ’ Bf,n S _ Rk,n+1 k ’ Rk,n
b Bf,n k .Pk,n—l ’ b Rk,n k.Rk,n—l .
On the other hand, we can consider the process of extension to the field of negative integers,
corresponding to the indices, when we define two new matrices.

Definition 5. For k € IR", the k-Pell matrix for negative indices is indicated by
P k-P
Vk,” — k,—n+1 k,—n
, Pk,—n k ’ Pk,—n—l
and the generalized Fibonacci matrix for negative indices is indicated by
R k-R
Sk B — k,—n+1 k,—n ,
’ Rk,fn k ’ Rk,fn—l

for every integer n>1.
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2 Other demonstrations for the commutative properties

In this section, we will discuss other simpler and more immediate ways to demonstrate the
matrix properties of the matrices previously defined.

Theorem 3. For m,n >1 the following results hold:

D Vemin =Vl =VeVs

,m 2

(11) Sk,mSk,n = Sk,nS )

k,m
(111) I/k,m ’ Sk,n = Sk,n ’ I/vk,m :

Proof. For the first item, we see that the following commutative properties occur
R_.. kP, (2 KT (2 kY2 kY (2 kY
I/kmm: ’ ’ :I/kl = = =
’ B KkE. : 10 1 0)\1 O 1 0
. £ this th let 1 that S. S Ry i k'Rkn Ry i k'ka
t , = ’ ’ ’ ’ =
item of this theorem, let us also see that S, S, =| . kR, )\ R kR,

1 26\2 kY(1 262 kY (1 2k)(2 kY'(1 2k\2 kY (Rpu kR, \Ran KR,
I L IR e e S ) g

=S8, mSin and we record the commutative property of S, V,, =V, S, . To conclude, let us

, 2 kY'(1 2k\(2 kY (1 2kN\(2 kY'(2 kY
easily see that Vk’muS‘k,n=1 ol 12 51 ol =l St ol Lt o =Sin Vim- U

Theorem 4. For m,n >1 the following results holds:

2 kY
{0 =V nem- The second

k,m

(1) Vk,n + 2ka,n—l = Sk,n )

(11) 2’Vvk,n-*—l _3I/k,n = Sk,n ’
(iii) Sk,n+12 = Sk,lz Vians
(iv) Sk,2n+1 = I/k,nSk,nJrl 5

(IV) Sk,2n = I/k,nSk,n *

Lo(2 kY 2 kYT (2 kY L
Proof. We can get V,  +2kV, . =V, "+2k-V, " = 1 0 2k {10 <I+2ka’1 )

. L (1O 0 1 1 0) (0 2k
On the other hand, we can determine that /+2kV, " = +2kl1 2 |= + =
’ 0 1 - =] 012 4
k
0

2 kY (2 kY
1 (1+2k7,,")= o) So=
V.

2 n . . 2 k n+l 2 k n
Sio Lol S, ., - For the second item, we consider that 2V, -3V, =2 -3

1 2k
(2 _3} =S8, , - Finally, we determine equality ¥ +2kV, :(

bl

1 0

114



2 kY (2 k 2 kY'((4 2k) (3 O 2 K\'(1 2k
= 2 -3.1|= - = :SkOVkln:Skn'
1 0 1 0 1 0 2 0 0 3 1 0 2 -3 o ’
Finally, we can determine directly from the definition that: S, > = (S ket " Skonal ) =
(1 2k\(2 kYT 262 KT (1 2k)(2 K)(2 KY'(1 2k)(2 K\(2 kY _
l2 =3)lt o) \2 3/l1 o) 2 =3l1 o)t1 o)\l2 =3/l1 o)l1 o)
2 kY 2 kY 2 kY 2 kY (2 kY )
:(Sk,OVk,l)l 0 (Sk,OVk,l)l 0 :Sk,l 1 0 Sk,l 1 0 :Sk,l 1 0 :Sk,l Vk,2n'

Similarly, we see that S, ,,,, =S, Vk,lan =S80 Vk,lznd,l =S Vil V" Vi =V (Sk,o Vk,ln+l)
=V, 4S; 1 - In addition, we can see that S, ,, =S, V., = (S, Vi) Vi =Vin(Si) - O

We observe that the authors indicated in the work [2] establish the following theorem.

Theorem 5. For any integer n >1, we obtain

S — (Rk,nﬂ k ’ Rk,n
b Rk,n k ’ Rk,n—l

] = Sk,oVk,n .
Proof. Just use Theorem 2. L]
We shall now see another demonstration for the following theorem discussed in [1].

Theorem 6. For any integers m,n 2 1, weobtain S, =S, V, . =V..S ..

, 1 2k\(2 kY™ 2 kY (2 kY Lo
Proof. Let us consider that S, = 5 4l o =80 L oll1 o =SV Vel =S Vi

In addition, we can write immediately thatS, .., =S, V., = (S oVi)WVim =SiaVim-
Moreover, we see that S, .., =S, Vi im = SeoVeaVim = SV Win =Vin SioVem) = VinSim
since, we know the commutativity of the matrix product S, [V, , =V, S, . O]

3 Matrix sequence properties for negative indices
Now, we will develop the study of certain properties determined by the following inverse k-Pell

2 -n
matrix indicated by (1 Oj . We can immediately determine some particular cases

o 1 ,{_zj
yoa_| K |k k)| _(Ba kB
ol Pk 2 k'Pk,3 ’




determined directly from the recurrence relation indicated by F,

-5 _

2 4+k 2 k(4+kj

_F Kk’ _ F K _ F k'])k,—3
4k 42+ | |4tk 4Q2+K) B, k-B_)
k3 k3 k3 - k4
4+k 4Q2+k) 4+k k(_4(2+k)j
i i K k* (P, kB
42+k) kK +12k+16 42+k) k*+12k +16 P, k-B_)
K K s =
42+K) KB +12k+16 A+ [ +12k+16
3 K K 3 B, kB
K +12k+16  203K* +16k+16) | | i2 +12k+16 203K +16k+16) )| \Los k' B)
ks ks k5 k k6
k* +12k+16 2(3k* +16k +16)
kS kS
203k* +16k+16)  k* +24k* +80k +64
k° k°
k> +12k+16 203k* +16k +16)
e F i
203k* +16k+16) [ k° +24k> +80k + 64
K g K
Pk,—s k'Pk,—ej
Bc,% k'fl)c,—7 ’

etc. We have observed that the elements of the type B, _,, for a positive integer n>0 can be

= 2Pk,n + kPk,n—l .

n+l

From these preliminary examples, we will state the following theorem.

Theorem 7. For any integer n > 1, we obtain

V — B{,—n+l k ' B{,—n — Pk,—(}'l—l) k ' B{,—n
“r \B., kB_, B kB )

,—n n

() = ﬁ ﬁ] =(n.)"

Proof. The authors of the work [2] consider the following matrix

P k-P
an — k,n+l k,n '
’ Pk,n k .Pk,nfl

By Definition 5, we consider the £-Pell matrix for negative indices

P k-PB__,
Vk—n _| Tk k, .
’ Ef k- Pk,—(n+1)

,—n
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On the other hand, the authors of the work [1] use the following Binet formula P, = a _Z ,
, a0
where they use the properties of the characteristic equation defined by x* —2x—k =0, with the

roots indicated by a=1++1+k and b=1-+/1+k . From this, we can easily verify that

(_1)n+1
Pk,fn = k”

P, , . Now, let us make the corresponding substitutions in the matrix

V — Pk,—rH—l k ’ Pk,—n — E{,—(}’l—l) k ’ Pk,—n
a B«,— k- Bc Ec,— k- Pk,—(rH—I)

n ,—n—1 n

1\ 1yt 1\ 1\
N P N e P

k,n

_ kl,kl k,n—1 kn n _ kn k
(_1)n+l (_1)n+2 (_l)n (_l)n
TB{JL k kn+1 B{,/Hl _7 Bc,n kn k,n+l
1w i
I L e I i L
1 1 k’l _Pk,n B{,nH
_FBf,n F k,n+l
Pk n+l k ’ ljk n . .
On the other hand, we know that detV, " =det| " [=(=1)"k". In this way, we will
, 1)1{ n k ’ Pk n-1
Y (kP . —k-P ke —p Y (2 kY
Write I/k—n :—( 1) ( 1) kil e = 1 k-l fen :(I/kn)il :(V;{ln) 1 = . D
’ (_1)” k” _B{,n B{,nJrl det V/;n _k ’ B{,n B{,I’l+l ’ ’ 1 0
Corollary 2. For any integers m,n>1,wehave V, .=V, V, =V V.
Proof. From the previous theorem, we can write
o ={7) = 2 K" (2 KY"(2 k)
o VR 1 0) 0 (o) (1o
-1 -1
(") i) =Vl
In an analogous way, we have determined that the result hold V, ... =V, V, , for any
integers m,n>1. [

In the following theorem, we indicate the Binet’s formula discussed at work [2].

1-2b 2a-1
Theorem 8. For any integer n>1, R, z( 5 ja" +( a 5 jb", where a,b are the roots of
a— a—

the characteristic equation x* —2x—k =0.

Proof. It can be consulted at work [2]. ]

In the following theorem, we will reduce the Binet formula corresponding to the terms of
negative indices and not discussed in [2].
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Theorem 9. For any integer n>1, R, = (_kln) Kl_z:jb” +(2a _blja”}
' a-— a-—

Proof. Easily, we can see that R, _, =(1_2b a’+ 2a-1 bn:(l_Zb (lj N 2a— lj 1 But
’ a=b a-b a-b )\a a-b )\ b

from Theorem 8, we know that a-b=—k ... 1 = —% and % = —% . In this way, we will make the
a

following substitutions R, _, —(ﬂj(ljn (261 1)(1Jn:(1—21)}(_9)"_{261—1)(_2)":
a a—-b )\ b a—>b k a—b k
1 Hl—zb](_b)nJr 2a 1 } (- 1) { 1 2bjbn+(2a—1]an] 0
kK" |\ a-b a-b a—b

Let us consider the following equation R, , =2F_,., —3F_, . This relation can be determined

from Theorem 4 or from work [2]. We will reduce the corresponding identity to the terms of
negative indices and not discussed in [2].

Theorem 10. For any integer n >1, we obtain that R, _, = 21)1{;n+1 -3P, i

D" D"
—n+l _3B€,—Vl = 23{,—(n—1) _3B€,—Vl = ( kn -1 B{,}'I—l _3 kn B{,}'I

1\ _ 1\ n-1 _ gn-1 1\ n_pn
(-1 Pk,n=2( nll a _b +3( 1,,) a _b
k a—>b k a-b

-1 n—1 n n n n n—1 n—1 n n
2k( 1) -5 ) D" (@bt )| (=D [ 2ka" - 2kb" 430" = 30" |
a—b k" a—-b k" a—-b

_ (-1 {2/«#1 2kb"1+3a"—3b"}_(—1)"{(2ka"1+3a")—3b"—2kb"1}

Proof. We can observe that 25,

_ (—1)"1D SED D),

—1 k,, k n kn71 k,n—1 kn

a—-b k" a—>b
(=D 2(—ab)a" " +3a" —3b" —2(—ab)b""' _(=D"|3a"-2ba" -3b" +2ab"
k" a—>b k" a—>b
= (_kln) {(261 _b3) b" + (G =2b) } On the other hand, we can directly verify that
a— a—

2a-3=2(2-b)-3=4-2b—-3=1-2b and 3—-2b=3-2(2—-a)=—-1+2a =2a—1. Finally,
'[@a=3),, (-2) ,|_ V' [a-28),, (a-1) ,

k" a-b a-b k" a-b a-b

=R, ]

57’[ *

we deduce 2P, —-3F,_, =

Before demonstrating the following theorem, let us see the following particular examples that
determine elements of the generalized sequence with negative index.
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el 23
; 2 kY1 2k k R, kR,
(Vkl) Spo = = = ’ >
, : 1 0 2 -3 3 k(2k+6j R, , kR, ,
k k?
3 k(2k+6j
) _ k k2 _ Rk—l kRk 2
(Vk,l) Sk,O_ = 5
2k +6 Tk +12 R, , kR, ,
PER S
2k + 6 (_ 7k+12j
e k? k> (R, KR,
Vi) S = ) = :
Tk+12 2(k* +10k +12) R,y kR,_,
ek i
CTk+12 L 2(k* +10k +12)
_4 _ K’ k* _ Rk,—S kRk,—4
(Vk,l) Sk,O_ = >
2(k* +10k +12) 11k% + 52k + 48 Ry s kR, s
i - i
2(k* +10k +12) o 11k + 52k +48
] k* k? R, , kR, _
(V )SS _ _ k,—4 k,-5
SO 1k + 52k + 48 k(z(k3+21k2+64k+48)j R, s kR, g
i k?

etc. From these particular examples, we see the following theorem that allows determining the
generating matrices for the family of matrices (Sk»)ncv, which we have preliminarily defined

by
S — (Rk,nﬂ k ’ &,—n j — Rk,{n—l) k ’ Rk,fn
ko &,fn k ’ Rk,fn—l Ri(,—n k ’ &(,{nﬂ)

Theorem 11. For any integer n >1, we obtain thatS, _, =V, )"S, =8V, ).

Rtf,—n+1 k '&,—n j:[Rk,(nl) k '&;n j

Proof. From the previous theorem we will consider S, _, :[

Rk;n k 'Rk,—n—l &;n k '&wm)
_ 2Pk,—(n—2) _3Bc,—(n—l) k- (2Bf,—n+1 - 3Bf,—n) s F;f,f(nfz) k])k,—fwl _3 Bf,—(n—l) ka,—n
ZBf,—rH—l - 3B€,—Vl k : (2Bc,—n - 3f)k,—(n+l)) Bc,—n+l ka,—n Pk,—n k})k,—(nﬂ) .

Bc,fn k- Bc,f(m) 1 0

By BB By kB oy vl (20K R .
Vk’(nl)z(P k- | p k-P, :(Vk,l ) = 1 0 . In this way, we

k,—(n-1) B{,—(}’l—l+l) k,—(n-1) N
Rk,—(n—l) k'Rk,—n _
Rk,—n k'Rk,—(n+1)

By k-F _, 4 (2 k)T
On the other hand, we know that V,  =| " ’ =(Vk’1”) = and

will make the corresponding substitutions to determine that S, _, = [
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2 k" (2 kYT (2 kY'( (2 k ,
=2 -3 = 2 —-3/|. We can determine that
1 0 1 0 1 0 1 0

2k 4 2k 3 0 1 2k . .
2 -31 = - = . Thus, we still determine that
1 0 2 0 0 3 2 -3

R, .., kR, 2 kY'(1 2k .
Sion = e - = =) "S,0=S,,V,,)". In addition, we
’ Rk,fn k- Rk;(nJrl) 1 0 2 3 ' | ' '

canseethat V, 'S, , =S, V., and V, 'S, ;' =S, , V., . [

Theorem 12. For any integer n >1, we obtain that(Sk,n )71 =S80 8 S0
Proof. From Theorem 11, we know that S, _, =(¥,)"S,, .. (V)" =8,,"'S,_,. On the other

hand, since S, , =S, , ¥, " it follows that (S,,) " =¥,,"S,," =(S10 'S )Se0 =810 S, S O

Corallary 3. For any integers m,n >1, we obtain that:

M (Sa) " =(8e) =800 ")

() (Sen) =S (V)™
Proof. Initially, we will consider that (S, )" =S,,"'S,_,S;o - In the next step, we will see the
behavior of the matrix (S, , )’2 =80 S S0 S0 S S0 =80 ) "Si0Sk0 Sk Vi) " Si0Seo
=So Vo) 1S,y ) " 1=,y Seg V) " V)" =S,y (7)™, since V'S, 7 =8, W,
Now, let us see what (Sk’n )73 =S80 SiSi0 S0 S uSi0 Sk 'S, S - Repeating the
previous argument, we will see that (Sk,n )73 =S, V)" S V)" S V)" =807
Similarly, we can also determine that (Sk’n )4 = k,o"l(Vk,l)"” Sk,o"l(Vk,l)"” Sk,o"l(Vk,l)"” Sk,o"l(Vk,l)"”
=S, (V,))™"". By mathematical induction on m, let us admit that (Sk’n )7m = (Sk’n’1 )m
=S, "(V,,) ™ and, for the next step, we determine that (Sk,n )7(%1) = (S i )m+l
=(80,7) (S ) =800 " T " (S0 SSeo ) =810 " Fe) " S0 'S, LSeo”
=S80 ") " S1o Vi) " SioSio = Sio ") S V) =S )

= Sk’of(erl)(Vk’l)*((murl)n) ) Finally, ifwetake m=n .. (Sk,n )*” _ Sk,oin (Vk,1)7n2 . D

Corallary 4. For any integers m,n >1, we obtain that:
D S im0 =Sk Sk =S S
(1) Sk,—(n+1)2 = Sk,—lek,—Zn 5
(iii) Sk,—nz = Sk,Osz,—Zn .
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Proof. Recalling the following commutativity of the matrix product Vk’flSk’O = Sk,OVk,fl, we
can verify S, oS0 = SioSio Vi)™ =8 o V) " S0 Vi) " =8 uStim = StomShon -
For the second item, we know that S, _, =V, )" S, , =S, ,(V,,)™". Thus, we can see directly
that S, 0® =i S = V) VS0V 08,0 = W) ") S0 (V) " Vi) ' Si
= V) (V) " S () " Si ) =Se S ()™ =S, W, Finally, we can easily see that
Se =8 S =SV "S o V)" =8,0" V)" =8,4°V Ly, from the Theorem 7. [

4 Concluding remarks and future research

For our future research, we will consider the introduction of quaternions and octonions
representations for the matrices discussed in the previous sections. For example, we can define
the following and new matrix

QPk,n+1 k'QPk,n
QPk,n k : QPk,n_l ’

where we considered QF, , =F,, +3{,n,j+1>,{,n,2}+1>,m,3/€, the canonical basis {l,;, }',fc} .

QVk,n :(

From this, we take the following matrix decomposition indicated by
QV _ Qljk,nJrl k 'Q])k,n

b Qf)k,n k ' Q})k,n—l

ljk,nJrl + ljk,n_l:—i— Pk,n—l .} + ljk,n—2]_(. k ’ (Pk,n + ljlf,nflg_i_ 131{’”72 ; + Pk,n73 ];)

})k,n + })k,n—lf-i_ })k,n—Z}' + })k,n—SI; k ' (})k,n—l + P/c,n—2;+ B{,n—S .; + f)k,n—47c)
_ })k,n-#l k .})k,n j ( Pk,n k.})k,n—l jT [Bc,n—l k.Bc,n—Zj”. (})k,n—Z k.})k,n—Sj”
= + 1+ Jt k
IDk,n k ’ Pk,nfl Pk,nfl k ’ ljk,n—Z ljk,n—2 k ’ ljk,n—3 Pk,n73 k ’ Pk,n—4

2 kY (2 kY7o (2 kY7L (2 kY-
= + i+ Jj+ k

1 0 1 0 1 0 1 O

since we have

Or, we can still consider

or 2k"1+2 k71?+2 k72<+2 kYo
= i
O 1 0 1 o) 771 o

From the previous results, we can now determine that

2 kY- (2 kY- (2 kY-
I+ i+ j+ k
1 0 1 0 1 0

1 2 2 k+4
1 0 0 1 T T 2 2
_ w1 5 i+ k k k k
0 1 - = 2 k+4 k+4 4(k+2)
k _k_z e JE PE



P+ Pyi+ P j+P ok  k(P,+P i+P ,j+P k)

Poo+ P i+ Py j+P ik k(P +P i+ P j+P k)
Thus, we can determine the following formula
ov, = OP. ... k-OF, _ (2 kjn OF., k-OF,
“ \OR, kOPR,,) \1 0)\0OR, k-OF

or

QV _ Pk,n+1 k'Pk,n QF;cl k'QF;c,o
b Pk,n k'Pk,n—l QPk,o k'QPk,—l ,

for every integer n > 0 . Here, we identify the same generating matrix
2 kY
)
Similarly, we will develop the study of the matrix determined by the Fibonacci generalized
matrix sequence, from representations of quaternions described by

QRk,n+1 k- QRk,n
QRk,n k ’ QRk,n—l ’

where OR,, =R, , +Rk’n_1;+ R,{,n_l}'+Rk’n_1/ac are the generalized Fibonacci quaternion of n-th

QSk,n :(

order. Finally, from Theorem 11, we can write that
QRk,n+l k ’ QRk,n
QRk,n k 'QRk,n—l
for every integer n > 0. In the following steps, we will try to determine the behavior of the
matrices OV, _, and OS, _, .

os; ., :[ = V;c,ln [Sk,o +Sk,—1;+ Sk,—2} +S; 3 I;] )
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