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1 Introduction

Let (Fn)m≥0 be the Fibonacci sequence given by the relation Fn = Fn−1 + Fn−2 with F0 = 0,

F1 = 1 for all n ≥ 2. It has many amazing combinatorial identities (see [7]). Put α = (1+
√

5)/2

and β = (1−
√

5)/2. Then the well-known Binet formula

Fn =
αn − βn

α− β
(1)

holds for n ≥ 0.

The problem of finding the different types of numbers among the terms of a linear recur-
rence has a long history. One of the popular results by Bageaud, Mignotte and Siksek [2] is that
the integers 0, 1, 8, 144 among the Fibonacci numbers and the integers 1, 4 among the Lucas
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numbers (an associated sequence of Fibonacci) can be written in the form yt where t > 1. Szalay
and Luca [4] showed that there are only finitely many quadruples (n, a, b, p) such that
Fn = pa ± pb + 1 where p is a prime number. Marques and Togbé [5] determined the
Fibonacci numbers and the Lucas numbers of the form 2a + 3b + 5c under 1 ≤ max {a, b} ≤ c.

Bertők, Hajdu, Pink and Rábani [1] removed this condition. Namely, they gave full solutions of
the equation

Un = 2a + 3b + 5c,

where Un is the n-th Fibonacci, Lucas, Pell or Pell–Lucas number. We refer to the paper of
Shorey and Stewart [9] for pure powers in recurrence sequences and some related Diophantine
equations.

In this work, we generalize the problem of Marques and Togbé. We solve the Diophantine
equation

F s
n = 2a + 3b + 5c (2)

for s ≥ 1 integer and 1 ≤ max {a, b} ≤ c. Our result is following,

Theorem 1.1. The solution of the equation (2) is (n, s, a, b, c) = (3, 5, 2, 1, 2).

2 Auxiliary results

Before going further, we present several lemmas. The following lemma was given by Matveev [6].

Lemma 2.1. Let K be a number field of degree D over Q, γ1, γ2, . . . γt be positive real numbers
of K, and b1, b2, . . . bt be rational integers. Put

B ≥ max {|b1| , |b2| , . . . , |bt|} ,

and
Λ := γb11 · · · γbtt − 1.

Let A1, . . . , At be real numbers such that

Ai ≥ max {Dh (γi) , |log γi| , 0.16} , i = 1, . . . , t.

Then, assuming that Λ 6= 0, we have

|Λ| > exp
(
−1.4× 30t+3 × t4.5 ×D2

× (1 + logD) (1 + logB)A1 . . . At) (3)

As usual, in the above lemma, the logarithmic height of the algebraic number η is defined as

h (η) =
1

d

(
log a0 +

d∑
i=1

(
max

{∣∣η(i), 1
∣∣}))

with d being the degree of η over Q and
(
η(i)
)

1≤i≤d being the conjugates of η over Q.
Application of the Matveev theorem gives the large upper bound. In order to reduce this

bound, we use the following lemma.
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Lemma 2.2. Suppose that M is a positive integer. Let p/q be a convergent of the continued
fraction expansion of the irrational number γ such that q > 6M and ε =‖ µq ‖ −M ‖ γq ‖,
where µ is a real number and ‖ · ‖ denotes the distance from the nearest integer. If ε > 0, then
there is no solution to the inequality

0 < mγ − n+ µ < AB−m

in positive integers m and n with

log(Aq/ε)

logB
≤ m < M.

The following lemma is in the paper [3] (the case k = 2).

Lemma 2.3. For every positive integer n ≥ 2, we have

αn−2 ≤ Fn ≤ αn−1,

where α is the dominant root of the characteristic equation x2 − x− 1 = 0.

Lemma 2.4. There is no solution of the equation

2s = 2a + 3b + 5c (4)

for 1 ≤ max {a, b} ≤ c, c ≥ 6 and s being positive integers.

Proof. By (4) together with the facts that 2 <
√

5 and 3 < 50.7, we get∣∣1− 2s5−c
∣∣ < 2

(1.6)c
. (5)

We take α1 := 2, α2 := 5, b1 := s, b2 := c. For this choice D = 1, t = 2, B = s and
A1 = 0.7 > log 2, A2 = 1.61 > log 5. The Lemma 2.1 yields that

exp (C · (1 + log s)) <
∣∣1− 2s5−c

∣∣ < 2

(1.6)c
, (6)

where C := 1.4 ·305 ·24.5 ·0.7 ·1.61. Since 2s < 5c+1, we have that 0.4s < c+1. So, the inequality

s < 2.5 · 1011

is obtained. Let z := |s log 2− c log 5| . Note that (5) can be written as

|1− ez| < 3.2

(1.2)s
,

since 0.4s < c+ 1 holds. Since 1 < 2s5−c, then z > 0 holds. We obtain that

0 < |s log 2− c log 5| < |1− ez| < 3.2

(1.2)s
.
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Dividing both sides by log 5 yields that∣∣∣∣s log 2

log 5
− c
∣∣∣∣ < 2

(1.2)s
.

Let γ :=
log 2

log 5
and [a0, a1, a2, . . .] = [0, 2, 3, 9, 2, . . .] be the continued fraction of γ, and let pk/qk

be its k-th convergent. Mathematica reveals that

q23 < 2.5 · 1011 < q24.

aM := max {ai; i = 0, . . . , 24} = a23 = 42. By the properties of continued fractions, we obtain

1

(aM + 2) s
<

∣∣∣∣s log 2

log 5
− c
∣∣∣∣ < 2

(1.2)s

which yields that s ≤ 45 as aM = 42. Since 5c < 2s, then we deduce that c ≤ 19. A quick
inspection using Mathematica reveals that there is no solution of the equation (4) with
1 ≤ max {a, b} ≤ c and 6 ≤ c ≤ 19.

3 Proof of Theorem 1.1

Firstly, assume that 1 ≤ c ≤ 5. Then the solution of the equation (2) is given in Theorem 1.1.
From now on, suppose that c ≥ 6. Lemma 2.3 gives that αs(n−2) < F s

n < 3 · 5c < 51.1c. So, we
have the fact s < c. Since a, b, c ≥ 1, then n ≥ 3 holds. If n = 3, then we can rewrite formula
(2) as

2s = 2a + 3b + 5c.

which is investigated in Lemma 2.4. If n = 4 and n = 5 hold, then we arrive at a contradiction
since the left-hand side of the equation F s

n = 2a + 3b + 5c is odd, while right-hand side is even.
Therefore, we suppose that n ≥ 6.

Using formula (1), we rewrite the equation (2) as

F s
n − 5c = 2a + 3b. (7)

Since max {a, b} ≥ 1, then the right-hand side of above equation is positive. Dividing both sides
of the equation (7) by 5c, we obtain ∣∣F s

n5−c − 1
∣∣ < 2

50.3c
(8)

where we use 2 < 3 < 50.7.
In the application of theorem of Matveev, we take α1 = Fn, α2 = 5, b1 = s, b2 = c. We also

take
Λ := F s

n5−c − 1.

Since we assume n ≥ 6, then it is obvious that Λ 6= 0. We can take the degree D = 1. Then
A1 = logFn and A2 = 1.61 > log 5 follow. As s < c, then we get B = c together with t = 2.
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After applying the inequality (3) to get lower bound for the form Λ, then we have

e−C2,1(1+log c)×1.61×logFn <
2

50.3c
, (9)

where C2,1 = 1.4× 305 × 24.5. Hence, we obtain that

c

log c
< 2.5× 109 (n− 1) , (10)

where we used the fact 1 + log c < 2 log c. It is easy to prove that x

log x
< A yields x < 2A logA.

After rewriting the formula (9), we obtain

c < 7.3× 1010 (n− 1) log (n− 1) (11)

by the inequality 21.64 + log (n− 1) < 14.6× log (n− 1).

Assume that n ∈ [6, 233]. Label z := s logFn − c log 5. Hence, by the equation (8)

0 < z < ez − 1 <
2

50.3c
(12)

follows. Dividing both sides by log 5, we obtain

0 < sγ − c < 1.25× 5−0.3c

where γ :=
logFn

log 5
. Let [a0, a1, a2, . . .] be the continued fraction of γ, and let pk/qk be its k-th

convergent. We have
s < c < 9.23× 1013

by the inequality (11). A quick inspection using Mathematica reveals that q40 > M. Moreover,
aM := max {ai, i = 0, 1, . . . , 40} = 3996. From the properties of continued fractions, we get that

|sγ − c| > 1

(aM + 2) s
. (13)

Comparing the estimates (12) and (13) we get

1

3998s
< 1.25× 5−0.3c ⇒ 50.3s < 50.3c < 4997.5s,

which yields that s ≤ 23. Hence, c ≤ 1581 follows. In order to decrease the upper bound for c,
we use that ν5

(
F s
n − 2a − 3b

)
= c. Thus, Mathematica returns ν5

(
F s
n − 2a − 3b

)
= c ≤ 12 for

1 ≤ s ≤ 23, 6 ≤ n ≤ 233 and c > max {a, b} ≥ 1. Therefore, c ≤ 12 gives that n ≤ 44. Then
the solutions of the equation (2) are given Theorem 1.1.

From now on, assume that n > 233. In order to find the upper bound for c, we use the key
argument in the paper [8]. Let x :=

s

α2n
. From the above inequality (11), it follows that

x <
7.3× 1010 (n− 1) log (n− 1)

α2n
<

2

αn
,
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where it holds for n > 233. We now write

F s
n =

αns

5
s
2

(
1− (−1)n

α2n

)s

. (14)

In the paper of Luca and Oyono [8], it was proven that∣∣∣∣(1− (−1)n

α2n

)s

− 1

∣∣∣∣ < 2

αn
. (15)

Let Λ2 := 5c+ s
2α−ns − 1. From the formulas (2) and (14) together with the inequality (15), we

have

|Λ2| <
2

αn
+

(
2a + 3b

)
5

s
2

αns
. (16)

For the inequality (16) the facts that 2a + 3b < 2× 50.7c and n > 233 yield that

|Λ2| < 0.8.

The last inequality gives that 5
s
2

αns
<

2

5c
. The inequality (16) yields

|Λ2| <
2

αc
+

2

αn
=

4

αl
,

where l = min {n, c} . We use again the theorem of Matveev. We take k = 2, α1 := α,

α2 := 5, b1 := ns, b2 := c +
s

2
. As in the previous application of Matveev’s result, we can

take D := 2, A1 := 0.5, A2 := 1.61. Note that αc < 5c < αs(n−1) gives c+ s

2
< c+ s < ns. So,

we take B := ns. We thus get that

exp (−C2,2 (1 + log ns)× 0.5× 1.61) <
4

αl
,

where C2,2 = 1.4× 305 × 24.5 × 4 (1 + log 2) . This leads to

l <
C2,2 (log ns)× 1.61

logα
.

If l = n, then the last inequalities

n <
C2,2 (log ns)× 1.61

logα

<
C2,2 (log n (7.3× 1010 (n− 1) log (n− 1)))× 1.61

logα

<
C2,2 (log (7× 1010n3))× 1.61

logα

give that n < 1.92× 1012. By the inequality (11), we get

c < 7.3× 1010 (n− 1) log (n− 1) < 4× 1024.

If l = c, then we have that

c <
C2,2 (log ns)× 1.61

logα
<
C2,2 (log 6.8c)× 1.61

logα
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yields c < 6× 1011, where we used the fact

αms < 51.2cα2s < α4.8cα2s = α6.8c.

At any rate, we get
c < 4× 1024.

Next we take Γ := (
s

2
+c) log 5− ns logα. Observe that Λ2 = eΓ − 1. Since |Λ2| < 0.8, then we

have
∣∣eΓ − 1

∣∣ < 0.8, which yields that e|Γ| < 2. Hence,

|Γ| ≤ e|Γ|
∣∣eΓ − 1

∣∣ < 2 |Λ2| <
2

αc
+

2

αn
.

This leads to ∣∣∣∣ logα

log 5
−
c+ s

2

ns

∣∣∣∣ =

∣∣∣∣ logα

log 5
− 2c+ s

2ns

∣∣∣∣ <
1

ns log 5

(
2

αc
+

2

αn

)
<

1

374s

(
2

αc
+

2

αn

)
(17)

since n > 233. Assume that c ≥ 30. In this case, note that αn > 160c2 (as n < ns < 6.8c) and
αc > 160c2. Hence, we get that by the inequality (17) by the fact αns < α6.8c,∣∣∣∣ logα

log 5
− 2c+ s

2ns

∣∣∣∣ <
1

14960sc2
<

1

14960c2
(18)

<
6.82

14960 (ns)2 <
1

80 (2ns)2 .

By a criterion of Legendre, the rational number 2c+ s

2ns
converts to γ :=

logα

log 5
.

Let [a0, a1, a2, . . .] = [0, 3, 2, 1, . . .] be the continued fraction of γ, and pk/qk be its k-th
convergent. Assume that 2c+ s

2ns
=
pt
qt

for some t.We have q49 > 4×1024. Thus, t ∈ {0, 1, . . . , 49} .
Furthermore, ak ≤ 59, for k = 0, 1, . . . , 49. From the well-known properties of continued
fractions, we get that∣∣∣∣γ − 2c+ s

2ns

∣∣∣∣ =

∣∣∣∣γ − pt
qt

∣∣∣∣ > 1

(at + 2) q2
t

>
1

(at + 2) (2ns)2
>

1

4× 61× 6.82 × c2
. (19)

After combining the inequalities (18) and (19), then

1

4× 61× 6.82 × c2
<

1

14960c2s

gives s < 1. But, this is not possible.
Therefore, c is at most 29. By the inequality ns < 6.8c, we obtain that ns ≤ 197, which is

false as n > 233.

Hence, the proof theorem is completed.
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[5] Marques, D. & Togbé, A. (2013). Fibonacci and Lucas numbers of the form 23 + 3b + 5c.
Proc Japan Acad, 89, 47–50.

[6] Matveev, E. M. (2000). An explicit lower bound for a homogeneous linear form in
logarithms of algebraic numbers. II, Izv Ross Akad Nauk Ser Mat, 64 (6), 125–180.

[7] Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications, USA: Wiley.

[8] Luca, F. & Oyono, R. (2011). An exponential Diophantine equation related to powers of
two consecutive Fibonacci numbers. Proc Japan Acad., 87 (A), 45–50.

[9] Shorey, T. N. & Stewart, C. L. (1987). Pure powers in recurrence sequences and some related
Diophantine equations. J. Number Theory, 27 (3), 324–352.

109


