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1 Introduction

Let (Fn)mZO be the Fibonacci sequence given by the relation F,, = F,,_1 + F,,_o with Fy = 0,
Fy = 1foralln > 2. It has many amazing combinatorial identities (see [7]). Put o« = (1++/5)/2
and 3 = (1 — v/5)/2. Then the well-known Binet formula

B a” — ﬁn

=" (1)

holds for n > 0.

The problem of finding the different types of numbers among the terms of a linear recur-
rence has a long history. One of the popular results by Bageaud, Mignotte and Siksek [2] is that
the integers 0, 1, 8, 144 among the Fibonacci numbers and the integers 1, 4 among the Lucas
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numbers (an associated sequence of Fibonacci) can be written in the form y* where ¢ > 1. Szalay
and Luca [4] showed that there are only finitely many quadruples (n,a,b,p) such that
F, = p® £ p®* + 1 where p is a prime number. Marques and Togbé [5] determined the
Fibonacci numbers and the Lucas numbers of the form 2¢ + 3° 4+ 5¢ under 1 < max {a,b} < c.
Bertdk, Hajdu, Pink and Rébani [1] removed this condition. Namely, they gave full solutions of
the equation

U, =2+ 3" +5°
where U, is the n-th Fibonacci, Lucas, Pell or Pell-Lucas number. We refer to the paper of
Shorey and Stewart [9] for pure powers in recurrence sequences and some related Diophantine
equations.

In this work, we generalize the problem of Marques and Togbé. We solve the Diophantine

equation

F$=2" 430+ 5¢ 2)
for s > 1integer and 1 < max {a, b} < c. Our result is following,

Theorem 1.1. The solution of the equation (2) is (n, s, a,b,c) = (3,5,2,1,2).

2 Auxiliary results

Before going further, we present several lemmas. The following lemma was given by Matveev [6].

Lemma 2.1. Let K be a number field of degree D over Q, 71,72, - . . Y be positive real numbers
of K, and by, by, ... by be rational integers. Put

B > max {|b],|bo|,...,|b:]},
and
A::%’l---vft—l.
Let Aq, ..., A; be real numbers such that

A; > max {Dh (vi), |logvi],0.16}, i=1,...,t.
Then, assuming that A # 0, we have

Al > exp(—1.4x 30" x t*° x D*
X (1+logD)(1+1logB)A;... A) 3)

As usual, in the above lemma, the logarithmic height of the algebraic number 7 is defined as

h(n) = é (logao + Z (max{‘n(i), 1|})>

with d being the degree of  over Q and (n'*) being the conjugates of 7 over Q.

1<i<d
Application of the Matveev theorem gives the large upper bound. In order to reduce this

bound, we use the following lemma.

103



Lemma 2.2. Suppose that M is a positive integer. Let p/q be a convergent of the continued

fraction expansion of the irrational number ~y such that ¢ > 6M and € =|| uq || =M || vq

’

where p is a real number and || - || denotes the distance from the nearest integer. If € > 0, then
there is no solution to the inequality

O<my—n+pu<AB™

in positive integers m and n with

log(A
log(Aa/e) _
log B
The following lemma is in the paper [3] (the case k& = 2).
Lemma 2.3. For every positive integer n > 2, we have

an—Q S Fn S a/n—l

where « is the dominant root of the characteristic equation v* —x — 1 = 0.
Lemma 2.4. There is no solution of the equation

2° =20+ 3" +5° 4)
for 1 <max{a,b} <e¢, ¢> 6and s being positive integers.

Proof. By (4) together with the facts that 2 < /5 and 3 < 5°7, we get

SE—cC 2
|1—2% L<G%F. o)

We take oy := 2, ay := 5, by := s, by := c. For this choice D = 1, t = 2, B = s and
A; =0.7>log2, Ay, = 1.61 > log 5. The Lemma 2.1 yields that

2
exp (C - (1+1logs)) < |1 —2°57¢ <:(TZSE’ (6)

where C' := 1.4-30°-2%°.0.7-1.61. Since 2° < 57!, we have that 0.4s < c+1. So, the inequality
s < 2.5-101

is obtained. Let z := |slog2 — clog 5| . Note that (5) can be written as

since 0.4s < ¢+ 1 holds. Since 1 < 2%57¢, then z > 0 holds. We obtain that

3.2
0 <|slog2—clogh| < |l —¢€*| < a2
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Dividing both sides by log 5 yields that

log 2 - 2
s —c| < —.
log 5 (1.2)°
Let vy := % and [ag, a1, as,...] =1[0,2,3,9,2,...] be the continued fraction of -y, and let py. /s

be its k-th convergent. Mathematica reveals that

a3 < 2.5 - 1011 < Q24.

ay = max {a;i =0,...,24} = ass = 42. By the properties of continued fractions, we obtain
1 - log 2 - 2
5 —c| < 3
(ap +2)s log 5 (1.2)°

which yields that s < 45 as a); = 42. Since 5° < 2%, then we deduce that ¢ < 19. A quick
inspection using Mathematica reveals that there is no solution of the equation (4) with
1 <max{a,b} <cand6 < ¢ < 19. O

3 Proof of Theorem 1.1

Firstly, assume that 1 < ¢ < 5. Then the solution of the equation (2) is given in Theorem 1.1.
From now on, suppose that ¢ > 6. Lemma 2.3 gives that o*("~2 < F* < 3.5¢ < 5'1¢, So, we
have the fact s < c. Since a,b,c > 1, then n > 3 holds. If n = 3, then we can rewrite formula
(2) as
2° = 2%+ 3" 4 5.
which is investigated in Lemma 2.4. If n = 4 and n = 5 hold, then we arrive at a contradiction
since the left-hand side of the equation F;} = 2% 4 3% 4 5¢ is odd, while right-hand side is even.
Therefore, we suppose that n > 6.
Using formula (1), we rewrite the equation (2) as

Fs —5°=2%43P, (7)

Since max {a, b} > 1, then the right-hand side of above equation is positive. Dividing both sides
of the equation (7) by 5¢, we obtain

2
Fi5t = 1] < oo (8)

where we use 2 < 3 < 5%7,

In the application of theorem of Matveev, we take oy = F},, as = 5, by = s, by = c. We also
take
AN:=F5"°—1.

Since we assume n > 6, then it is obvious that A # (. We can take the degree D = 1. Then
A; =log F,, and A; = 1.61 > log 5 follow. As s < ¢, then we get B = c together with ¢ = 2.
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After applying the inequality (3) to get lower bound for the form A, then we have

2
6702,1(1+10gc)><1.61><10an < 50.367 (9)
where Cy; = 1.4 x 30° x 2%°. Hence, we obtain that
225 %10°(n—1), (10)

logc
where we used the fact 1 + log ¢ < 2log c. It is easy to prove that % < Avyields x < 2Alog A.
After rewriting the formula (9), we obtain
c<73x10" (n—1)log(n—1) (11)

by the inequality 21.64 + log (n — 1) < 14.6 x log (n — 1).

Assume that n € [6,233]. Label z := slog F,, — clog 5. Hence, by the equation (8)

2

follows. Dividing both sides by log 5, we obtain

0<sy—c<1.25x503%

log F},

log b
convergent. We have

where v =

. Let [ag, ai, as, .. .| be the continued fraction of v, and let p; /g, be its k-th

s <e<923x10"

by the inequality (11). A quick inspection using Mathematica reveals that g5 > M. Moreover,

ay =max{a;, i =0,1,...,40} = 3996. From the properties of continued fractions, we get that
37— e > — (13)

sy —c| > —m—.

7 (ar +2)s

Comparing the estimates (12) and (13) we get

1

2998 < 1.25 x 5703¢ = 5035  503¢ - 4997 55,
S

which yields that s < 23. Hence, ¢ < 1581 follows. In order to decrease the upper bound for c,
we use that v5 (F — 2% — 3°) = c. Thus, Mathematica returns v (F; — 2% — 3°) = ¢ < 12 for
1 <s<23, 6<n<233andc > max{a,b} > 1. Therefore, ¢ < 12 gives that n < 44. Then
the solutions of the equation (2) are given Theorem 1.1.

From now on, assume that n > 233. In order to find the upper bound for ¢, we use the key
argument in the paper [8]. Let z := %. From the above inequality (11), it follows that

7.3 x 101 (n — 1)1 -1 2
_T8X10" (0= log(n=1) _ 2
« «

T
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where it holds for n > 233. We now write

. as (_1)” s
= =3 (1 T ) . (14)
In the paper of Luca and Oyono [8], it was proven that
_1 n S 2
‘(l—( 2)> -1 < —. (15)
o n an

Let Ay := 5°t2a~"° — 1. From the formulas (2) and (14) together with the inequality (15), we

have s
2 (2°+3)5:2

|As| < — + — (16)
Q Q@
For the inequality (16) the facts that 2¢ + 3° < 2 x 5%7¢ and n > 233 yield that
|Ag| < 0.8.
The last inequality gives that % < é The inequality (16) yields
2 2 4
Ao < — + — = —,
Q@ « o}
where [ = min{n,c}. We use again the theorem of Matveev. We take k = 2, a; = «,
s = Db, by :=ns, by ;= c+ 5 As in the previous application of Matveev’s result, we can

take D := 2, A; := 0.5, Ay := 1.61. Note that o < 5¢ < as(n=1) gives c+ g < c+ s < ns.So,
we take B := ns. We thus get that

4
exp (—Cq2 (1 +logns) x 0.5 x 1.61) < o

where Cy o = 1.4 X 30° x 2%5 x 4 (1 + log 2) . This leads to

02’2 (10g TLS) x 1.61

[ <
log

If | = n, then the last inequalities

Cs (logns) x 1.61
log v
Cao (logn (7.3 x 10" (n — 1) log (n — 1))) x 1.61
log
Caz (log (7 x 101%03)) x 1.61
log

give that n < 1.92 x 10'2. By the inequality (11), we get
c<73x10"°(n—1)log(n—1) <4 x 10*.

If [ = ¢, then we have that

_ Cs5 (logns) x 1.61 _ Cs2 (log 6.8¢) x 1.61
log a log a
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yields ¢ < 6 x 10!, where we used the fact

ams < 51,20a23 < CYZJL.SSCOKQS — aG.SC.

At any rate, we get
c < 4x10%.

Next we take I' := (; +c)log 5 — nslog a. Observe that Ay = e — 1. Since |A,| < 0.8, then we
have ‘er — 1! < 0.8, which yields that el < 2. Hence,

2 2
7| < el e — 1| < 2] < = + —.
at o
This leads to
loga_c+§ _|{loga  2c+s 1 2 N 2
log 5 ns | |logh 2ns nslogh \a¢ a”

< ! 2 + 2 (17)
374s \ a¢ am
since n > 233. Assume that ¢ > 30. In this case, note that o > 160c? (as n < ns < 6.8¢) and
a® > 160c2. Hence, we get that by the inequality (17) by the fact o™ < %8¢,

loga  2c+s 1 1
1o§5 T 149605 ~ 14960¢2 (18)
6.82 1
7 < 2°
14960 (ns) 80 (2ns)

By a criterion of Legendre, the rational number 2;;3 converts to v := f)i (;

Let [ag,a1,as,...] = [0,3,2,1,...] be the continued fraction of v, and py/qx be its k-th
convergent. Assume that % — Pt for some ¢. We have quo > 4x10%*. Thus, t € {0,1,...,49}.
Furthermore, a;, < 59, for k :qt(), 1,...,49. From the well-known properties of continued
fractions, we get that

2c+ s Dt 1 1 1
‘7_ ons | ‘7_ a ~ (ar +2) ¢} ” (a; +2) (2ns)? T IXOIX 6 x 2 (19)

After combining the inequalities (18) and (19), then

1 1
<
4 %61 x6.8xc2  14960c2s

gives s < 1. But, this is not possible.

Therefore, c 1s at most 29. By the inequality ns < 6.8c, we obtain that ns < 197, which is
false as n > 233.
Hence, the proof theorem is completed.
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