Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 25, 2019, No. 4, 102–109 DOI: 10.7546/nntdm.2019.25.4.102-109

s-th power of Fibonacci number of the form

 $2^a + 3^b + 5^c$

Nurettin Irmak¹ and Bo He^2

¹ Mathematics Department, Art and Science Faculty Niğde Ömer Halisdemir University 51240, Niğde, Turkey e-mails: irmaknurettin@gmail.com, nirmak@ohu.edu.tr

> ² Institute of Mathematics, Aba Teachers University Wenchuan, Sichuan, 623000 P. R. China e-mail: bhe@live.cn

Received: 25 February 2019	Revised: 6 August 2019	Accepted: 10 October 2019
-----------------------------------	------------------------	---------------------------

Abstract: In this paper, we solve the Diophantine equation $F_n^s = 2^a + 3^b + 5^c$, where a, b, c and s are positive integers with $1 \le \max{a, b} \le c$.

Keywords: Fibonacci numbers, Linear forms in logarithms, Reduction method, *s*-th power. **2010 Mathematics Subject Classification:** 11B39, 11J86.

1 Introduction

Let $(F_n)_{m\geq 0}$ be the Fibonacci sequence given by the relation $F_n = F_{n-1} + F_{n-2}$ with $F_0 = 0$, $F_1 = 1$ for all $n \geq 2$. It has many amazing combinatorial identities (see [7]). Put $\alpha = (1 + \sqrt{5})/2$ and $\beta = (1 - \sqrt{5})/2$. Then the well-known Binet formula

$$F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta} \tag{1}$$

holds for $n \ge 0$.

The problem of finding the different types of numbers among the terms of a linear recurrence has a long history. One of the popular results by Bageaud, Mignotte and Siksek [2] is that the integers 0, 1, 8, 144 among the Fibonacci numbers and the integers 1, 4 among the Lucas

numbers (an associated sequence of Fibonacci) can be written in the form y^t where t > 1. Szalay and Luca [4] showed that there are only finitely many quadruples (n, a, b, p) such that $F_n = p^a \pm p^b + 1$ where p is a prime number. Marques and Togbé [5] determined the Fibonacci numbers and the Lucas numbers of the form $2^a + 3^b + 5^c$ under $1 \le \max\{a, b\} \le c$. Bertők, Hajdu, Pink and Rábani [1] removed this condition. Namely, they gave full solutions of the equation

$$U_n = 2^a + 3^b + 5^c$$

where U_n is the *n*-th Fibonacci, Lucas, Pell or Pell–Lucas number. We refer to the paper of Shorey and Stewart [9] for pure powers in recurrence sequences and some related Diophantine equations.

In this work, we generalize the problem of Marques and Togbé. We solve the Diophantine equation

$$F_n^s = 2^a + 3^b + 5^c \tag{2}$$

for $s \ge 1$ integer and $1 \le \max{a, b} \le c$. Our result is following,

Theorem 1.1. *The solution of the equation* (2) *is* (n, s, a, b, c) = (3, 5, 2, 1, 2).

2 Auxiliary results

Before going further, we present several lemmas. The following lemma was given by Matveev [6].

Lemma 2.1. Let \mathbb{K} be a number field of degree D over \mathbb{Q} , $\gamma_1, \gamma_2, \ldots, \gamma_t$ be positive real numbers of \mathbb{K} , and b_1, b_2, \ldots, b_t be rational integers. Put

$$B \ge \max\{|b_1|, |b_2|, \dots, |b_t|\},\$$

and

$$\Lambda := \gamma_1^{b_1} \cdots \gamma_t^{b_t} - 1.$$

Let A_1, \ldots, A_t be real numbers such that

$$A_i \ge \max \{ Dh(\gamma_i), |\log \gamma_i|, 0.16 \}, \quad i = 1, ..., t.$$

Then, assuming that $\Lambda \neq 0$, we have

$$|\Lambda| > \exp\left(-1.4 \times 30^{t+3} \times t^{4.5} \times D^2 \times (1 + \log D) (1 + \log B) A_1 \dots A_t\right)$$
(3)

As usual, in the above lemma, the logarithmic height of the algebraic number η is defined as

$$h(\eta) = \frac{1}{d} \left(\log a_0 + \sum_{i=1}^d \left(\max \left\{ \left| \eta^{(i)}, 1 \right| \right\} \right) \right)$$

with d being the degree of η over \mathbb{Q} and $(\eta^{(i)})_{1 \le i \le d}$ being the conjugates of η over \mathbb{Q} .

Application of the Matveev theorem gives the large upper bound. In order to reduce this bound, we use the following lemma.

Lemma 2.2. Suppose that M is a positive integer. Let p/q be a convergent of the continued fraction expansion of the irrational number γ such that q > 6M and $\epsilon = \parallel \mu q \parallel -M \parallel \gamma q \parallel$, where μ is a real number and $\parallel \cdot \parallel$ denotes the distance from the nearest integer. If $\epsilon > 0$, then there is no solution to the inequality

$$0 < m\gamma - n + \mu < AB^{-m}$$

in positive integers m and n with

$$\frac{\log(Aq/\epsilon)}{\log B} \le m < M.$$

The following lemma is in the paper [3] (the case k = 2).

Lemma 2.3. For every positive integer $n \ge 2$, we have

$$\alpha^{n-2} \le F_n \le \alpha^{n-1}$$

where α is the dominant root of the characteristic equation $x^2 - x - 1 = 0$.

Lemma 2.4. There is no solution of the equation

$$2^s = 2^a + 3^b + 5^c \tag{4}$$

for $1 \le \max{a, b} \le c$, $c \ge 6$ and s being positive integers.

Proof. By (4) together with the facts that $2 < \sqrt{5}$ and $3 < 5^{0.7}$, we get

$$\left|1 - 2^{s} 5^{-c}\right| < \frac{2}{(1.6)^{c}}.$$
(5)

We take $\alpha_1 := 2$, $\alpha_2 := 5$, $b_1 := s$, $b_2 := c$. For this choice D = 1, t = 2, B = s and $A_1 = 0.7 > \log 2$, $A_2 = 1.61 > \log 5$. The Lemma 2.1 yields that

$$\exp\left(C \cdot (1 + \log s)\right) < \left|1 - 2^s 5^{-c}\right| < \frac{2}{(1.6)^c},\tag{6}$$

where $C := 1.4 \cdot 30^5 \cdot 2^{4.5} \cdot 0.7 \cdot 1.61$. Since $2^s < 5^{c+1}$, we have that 0.4s < c+1. So, the inequality

$$s < 2.5 \cdot 10^{11}$$

is obtained. Let $z := |s \log 2 - c \log 5|$. Note that (5) can be written as

$$|1 - e^z| < \frac{3.2}{(1.2)^s},$$

since 0.4s < c + 1 holds. Since $1 < 2^{s}5^{-c}$, then z > 0 holds. We obtain that

$$0 < |s \log 2 - c \log 5| < |1 - e^z| < \frac{3.2}{(1.2)^s}.$$

Dividing both sides by $\log 5$ yields that

$$\left|s\frac{\log 2}{\log 5} - c\right| < \frac{2}{\left(1.2\right)^s}.$$

Let $\gamma := \frac{\log 2}{\log 5}$ and $[a_0, a_1, a_2, \ldots] = [0, 2, 3, 9, 2, \ldots]$ be the continued fraction of γ , and let p_k/q_k be its k-th convergent. *Mathematica* reveals that

$$q_{23} < 2.5 \cdot 10^{11} < q_{24}$$

 $a_M := \max \{a_i; i = 0, \dots, 24\} = a_{23} = 42$. By the properties of continued fractions, we obtain

$$\frac{1}{(a_M+2)s} < \left|s\frac{\log 2}{\log 5} - c\right| < \frac{2}{(1.2)^s}$$

which yields that $s \le 45$ as $a_M = 42$. Since $5^c < 2^s$, then we deduce that $c \le 19$. A quick inspection using *Mathematica* reveals that there is no solution of the equation (4) with $1 \le \max\{a, b\} \le c$ and $6 \le c \le 19$.

3 Proof of Theorem 1.1

Firstly, assume that $1 \le c \le 5$. Then the solution of the equation (2) is given in Theorem 1.1. From now on, suppose that $c \ge 6$. Lemma 2.3 gives that $\alpha^{s(n-2)} < F_n^s < 3 \cdot 5^c < 5^{1.1c}$. So, we have the fact s < c. Since $a, b, c \ge 1$, then $n \ge 3$ holds. If n = 3, then we can rewrite formula (2) as

$$2^s = 2^a + 3^b + 5^c$$

which is investigated in Lemma 2.4. If n = 4 and n = 5 hold, then we arrive at a contradiction since the left-hand side of the equation $F_n^s = 2^a + 3^b + 5^c$ is odd, while right-hand side is even. Therefore, we suppose that $n \ge 6$.

Using formula (1), we rewrite the equation (2) as

$$F_n^s - 5^c = 2^a + 3^b. (7)$$

Since $\max{a, b} \ge 1$, then the right-hand side of above equation is positive. Dividing both sides of the equation (7) by 5^c , we obtain

$$\left|F_{n}^{s}5^{-c}-1\right| < \frac{2}{5^{0.3c}}\tag{8}$$

where we use $2 < 3 < 5^{0.7}$.

In the application of theorem of Matveev, we take $\alpha_1 = F_n$, $\alpha_2 = 5$, $b_1 = s$, $b_2 = c$. We also take

$$\Lambda := F_n^s 5^{-c} - 1.$$

Since we assume $n \ge 6$, then it is obvious that $\Lambda \ne 0$. We can take the degree D = 1. Then $A_1 = \log F_n$ and $A_2 = 1.61 > \log 5$ follow. As s < c, then we get B = c together with t = 2.

After applying the inequality (3) to get lower bound for the form Λ , then we have

$$e^{-C_{2,1}(1+\log c) \times 1.61 \times \log F_n} < \frac{2}{5^{0.3c}},$$
(9)

where $C_{2,1} = 1.4 \times 30^5 \times 2^{4.5}$. Hence, we obtain that

$$\frac{c}{\log c} < 2.5 \times 10^9 \left(n-1\right),$$
 (10)

where we used the fact $1 + \log c < 2 \log c$. It is easy to prove that $\frac{x}{\log x} < A$ yields $x < 2A \log A$. After rewriting the formula (9), we obtain

$$c < 7.3 \times 10^{10} \left(n - 1 \right) \log \left(n - 1 \right) \tag{11}$$

by the inequality $21.64 + \log(n-1) < 14.6 \times \log(n-1)$.

Assume that $n \in [6, 233]$. Label $z := s \log F_n - c \log 5$. Hence, by the equation (8)

$$0 < z < e^z - 1 < \frac{2}{5^{0.3c}} \tag{12}$$

follows. Dividing both sides by $\log 5$, we obtain

$$0 < s\gamma - c < 1.25 \times 5^{-0.3c}$$

where $\gamma := \frac{\log F_n}{\log 5}$. Let $[a_0, a_1, a_2, \ldots]$ be the continued fraction of γ , and let p_k/q_k be its k-th convergent. We have

$$s < c < 9.23 \times 10^{13}$$

by the inequality (11). A quick inspection using *Mathematica* reveals that $q_{40} > M$. Moreover, $a_M := \max \{a_i, i = 0, 1, \dots, 40\} = 3996$. From the properties of continued fractions, we get that

$$|s\gamma - c| > \frac{1}{(a_M + 2)s}.$$
 (13)

Comparing the estimates (12) and (13) we get

$$\frac{1}{3998s} < 1.25 \times 5^{-0.3c} \Rightarrow 5^{0.3s} < 5^{0.3c} < 4997.5s,$$

which yields that $s \le 23$. Hence, $c \le 1581$ follows. In order to decrease the upper bound for c, we use that $\nu_5 \left(F_n^s - 2^a - 3^b\right) = c$. Thus, *Mathematica* returns $\nu_5 \left(F_n^s - 2^a - 3^b\right) = c \le 12$ for $1 \le s \le 23$, $6 \le n \le 233$ and $c > \max\{a, b\} \ge 1$. Therefore, $c \le 12$ gives that $n \le 44$. Then the solutions of the equation (2) are given Theorem 1.1.

From now on, assume that n > 233. In order to find the upper bound for c, we use the key argument in the paper [8]. Let $x := \frac{s}{\alpha^{2n}}$. From the above inequality (11), it follows that

$$x < \frac{7.3 \times 10^{10} \left(n - 1 \right) \log \left(n - 1 \right)}{\alpha^{2n}} < \frac{2}{\alpha^n},$$

where it holds for n > 233. We now write

$$F_n^s = \frac{\alpha^{ns}}{5^{\frac{s}{2}}} \left(1 - \frac{(-1)^n}{\alpha^{2n}} \right)^s.$$
 (14)

In the paper of Luca and Oyono [8], it was proven that

$$\left| \left(1 - \frac{(-1)^n}{\alpha^{2n}} \right)^s - 1 \right| < \frac{2}{\alpha^n}.$$
(15)

Let $\Lambda_2 := 5^{c+\frac{s}{2}}\alpha^{-ns} - 1$. From the formulas (2) and (14) together with the inequality (15), we have

$$|\Lambda_2| < \frac{2}{\alpha^n} + \frac{(2^a + 3^b) 5^{\frac{3}{2}}}{\alpha^{ns}}.$$
(16)

For the inequality (16) the facts that $2^a + 3^b < 2 \times 5^{0.7c}$ and n > 233 yield that

 $|\Lambda_2| < 0.8.$

The last inequality gives that $\frac{5^{\frac{s}{2}}}{\alpha^{ns}} < \frac{2}{5^c}$. The inequality (16) yields

$$|\Lambda_2| < \frac{2}{\alpha^c} + \frac{2}{\alpha^n} = \frac{4}{\alpha^l},$$

where $l = \min\{n, c\}$. We use again the theorem of Matveev. We take k = 2, $\alpha_1 := \alpha$, $\alpha_2 := 5$, $b_1 := ns$, $b_2 := c + \frac{s}{2}$. As in the previous application of Matveev's result, we can take D := 2, $A_1 := 0.5$, $A_2 := 1.61$. Note that $\alpha^c < 5^c < \alpha^{s(n-1)}$ gives $c + \frac{s}{2} < c + s < ns$. So, we take B := ns. We thus get that

$$\exp\left(-C_{2,2}\left(1 + \log ns\right) \times 0.5 \times 1.61\right) < \frac{4}{\alpha^{l}},$$

where $C_{2,2} = 1.4 \times 30^5 \times 2^{4.5} \times 4 \, (1 + \log 2)$. This leads to

$$l < \frac{C_{2,2} \left(\log ns\right) \times 1.61}{\log \alpha}$$

If l = n, then the last inequalities

$$n < \frac{C_{2,2}(\log ns) \times 1.61}{\log \alpha} \\ < \frac{C_{2,2}(\log n (7.3 \times 10^{10} (n-1) \log (n-1))) \times 1.61}{\log \alpha} \\ < \frac{C_{2,2}(\log (7 \times 10^{10} n^3)) \times 1.61}{\log \alpha}$$

give that $n < 1.92 \times 10^{12}$. By the inequality (11), we get

$$c < 7.3 \times 10^{10} (n-1) \log (n-1) < 4 \times 10^{24}.$$

If l = c, then we have that

$$c < \frac{C_{2,2} (\log ns) \times 1.61}{\log \alpha} < \frac{C_{2,2} (\log 6.8c) \times 1.61}{\log \alpha}$$

yields $c < 6 \times 10^{11},$ where we used the fact

$$\alpha^{ms} < 5^{1.2c} \alpha^{2s} < \alpha^{4.8c} \alpha^{2s} = \alpha^{6.8c}.$$

At any rate, we get

$$c < 4 \times 10^{24}.$$

Next we take $\Gamma := (\frac{s}{2} + c) \log 5 - ns \log \alpha$. Observe that $\Lambda_2 = e^{\Gamma} - 1$. Since $|\Lambda_2| < 0.8$, then we have $|e^{\Gamma} - 1| < 0.8$, which yields that $e^{|\Gamma|} < 2$. Hence,

$$|\Gamma| \le e^{|\Gamma|} \left| e^{\Gamma} - 1 \right| < 2 \left| \Lambda_2 \right| < \frac{2}{\alpha^c} + \frac{2}{\alpha^n}$$

This leads to

$$\left|\frac{\log \alpha}{\log 5} - \frac{c + \frac{s}{2}}{ns}\right| = \left|\frac{\log \alpha}{\log 5} - \frac{2c + s}{2ns}\right| < \frac{1}{ns \log 5} \left(\frac{2}{\alpha^c} + \frac{2}{\alpha^n}\right) < \frac{1}{374s} \left(\frac{2}{\alpha^c} + \frac{2}{\alpha^n}\right)$$
(17)

since n > 233. Assume that $c \ge 30$. In this case, note that $\alpha^n > 160c^2$ (as n < ns < 6.8c) and $\alpha^c > 160c^2$. Hence, we get that by the inequality (17) by the fact $\alpha^{ns} < \alpha^{6.8c}$,

$$\left| \frac{\log \alpha}{\log 5} - \frac{2c+s}{2ns} \right| < \frac{1}{14960sc^2} < \frac{1}{14960c^2} < \frac{6.8^2}{14960(ns)^2} < \frac{1}{80(2ns)^2}.$$
(18)

By a criterion of Legendre, the rational number $\frac{2c+s}{2ns}$ converts to $\gamma := \frac{\log \alpha}{\log 5}$.

Let $[a_0, a_1, a_2, \ldots] = [0, 3, 2, 1, \ldots]$ be the continued fraction of γ , and p_k/q_k be its k-th convergent. Assume that $\frac{2c+s}{2ns} = \frac{p_t}{q_t}$ for some t. We have $q_{49} > 4 \times 10^{24}$. Thus, $t \in \{0, 1, \ldots, 49\}$. Furthermore, $a_k \leq 59$, for $k = 0, 1, \ldots, 49$. From the well-known properties of continued fractions, we get that

$$\left|\gamma - \frac{2c+s}{2ns}\right| = \left|\gamma - \frac{p_t}{q_t}\right| > \frac{1}{(a_t+2)q_t^2} > \frac{1}{(a_t+2)(2ns)^2} > \frac{1}{4\times61\times6.8^2\times c^2}.$$
 (19)

After combining the inequalities (18) and (19), then

$$\frac{1}{4 \times 61 \times 6.8^2 \times c^2} < \frac{1}{14960c^2s}$$

gives s < 1. But, this is not possible.

Therefore, c is at most 29. By the inequality ns < 6.8c, we obtain that $ns \le 197$, which is false as n > 233.

Hence, the proof theorem is completed.

Acknowledgements

The authors are grateful to the reviewers for their helpful and valuable comments and remarks.

References

- [1] Bertók, C., Hajdu, L., Pink, I. & Rábai, Z. (2017). Linear combinations of prime powers in binary recurrence sequences. *Int. J. Number Theory*, 13 (2), 261–271.
- [2] Bugeaud, Y., Mignotte, M., & Siksek, S. (2006). Classical and modular approaches to exponential Diophantine equation. I. Fibonacci and Lucas perfect powers. *Ann of Math*, 163, 969–1018.
- [3] Bravo, J. J., & Luca, F. (2012). Powers of two in generalized Fibonacci sequence. *Rev Colombiana Math*, 46, 67–79.
- [4] Luca, F. & Szalay, L. (2007). Fibonacci numbers of the form $p^a \pm p^b + 1$. The Fibonacci Quarterly, 45, 98–103.
- [5] Marques, D. & Togbé, A. (2013). Fibonacci and Lucas numbers of the form $2^3 + 3^b + 5^c$. *Proc Japan Acad*, 89, 47–50.
- [6] Matveev, E. M. (2000). An explicit lower bound for a homogeneous linear form in logarithms of algebraic numbers. II, *Izv Ross Akad Nauk Ser Mat*, 64 (6), 125–180.
- [7] Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications, USA: Wiley.
- [8] Luca, F. & Oyono, R. (2011). An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers. *Proc Japan Acad.*, 87 (A), 45–50.
- [9] Shorey, T. N. & Stewart, C. L. (1987). Pure powers in recurrence sequences and some related Diophantine equations. *J. Number Theory*, 27 (3), 324–352.