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Abstract: In this paper, we solve the equations

Lk = Fn + Fm + Fr,

Fk = Fn + Fm + Fr,

Lk = Ln + Lm + Lr,

Fk = Ln + Lm + Lr

for 0 < r ≤ m ≤ n and a natural number k. It is shown that only the equation Fk = Ln+Lm+Lr

has a finite number of solutions. The others have infinitely many solutions.
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1 Introduction

The Fibonacci sequence (Fn) is defined as F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.

The Lucas sequence (Ln), which is similar to the Fibonacci sequence, is defined by the same
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recursive pattern with initial conditions L0 = 2, L1 = 1. Fn and Ln are called the n-th Fibonacci
number and the n-th Lucas number, respectively. These two sequences are the most important
among the second order linear recursive sequences and have been investigated by the researchers.
Firstly, square terms and later perfect powers in the Fibonacci and Lucas sequences have attracted
the attention of the researchers. The problem of finding all perfect powers in these sequences had
remained an open problem for many years. It was solved in 2006 by Bugeaud, Mignotte and
Siksek in [1]. It is shown that the perfect powers in the Fibonacci and Lucas sequences are
F0 = 0, F1 = F2 = 1, F6 = 8 = 23, F12 = 144 = 122, and L1 = 1, L3 = 4 = 22, respectively.
In [4], the authors showed that the equation Lr = LmLn is impossible for m > 1 and n > 1. In
[3], Farrokhi proved that if m > 2 and n > 2, then there is no Fibonacci number Fn such that
Fr = FmFn. Similar equations were tackled by Carlitz in [2]. It is natural to ask when the sum of
three Fibonacci numbers is a Lucas number or a Fibonacci number? And when the sum of three
Lucas numbers is a Fibonacci number or a Lucas number?

In this paper, we tackle these problems and we solve the equations

Lk = Fn + Fm + Fr (1)

Fk = Fn + Fm + Fr, (2)

Fk = Ln + Lm + Lr, (3)

Lk = Ln + Lm + Lr, (4)

and find all solutions n,m, r and k in positive integers. It is seen that only the equation (3) has a
finite number of solutions. The others have infinitely many solutions.

There are many amazing identities between Fibonacci and Lucas numbers. One of them,
which will be used later, is

Fn+1 + Fn−1 = Ln. (5)

It is well known that
αn−2 ≤ Fn ≤ αn−1 (6)

and
αn−1 ≤ Ln ≤ 2αn, (7)

where α = (1 +
√
5)/2 is the Golden section.

2 Auxiliary results

The following lemma can be concluded from Lemma 7 and Corollary 8 of [6]. This lemma gives
more precise upper and lower bounds for the Fibonacci and Lucas numbers.

Lemma 2.1. For all integers n ≥ 8, the two inequalities

αn−0.01 < Ln < αn+0.01
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and
αn−1.68 < Fn < αn−1.67

hold.

We can write the next lemma from Theorem 8.1 and Corollary 8.1 given in [5].

Lemma 2.2. Let n ≥ 1 be an integer. Then

Fn =
αn

√
5
+ en

with |en| < 1/2.

The solutions of the equation Fn +Fm = Fr for 1 < m < n can be found in [2]. For the sake
of completeness, we solve this equation for 1 ≤ m ≤ n.

Lemma 2.3. Let 1 ≤ m ≤ n. Then all solutions of the equation Fn + Fm = Fr are the elements
of the set

(n,m, r) ∈ {(n, n− 1, n+ 1), (1, 1, 3), (2, 2, 3), (3, 1, 4)} .

Proof. Let 1 ≤ m ≤ n. If n ≤ 3, one can easily see that (n,m, r) = (1, 1, 3), (2, 1, 3),

(2, 2, 3), (3, 1, 4) and (3, 2, 4). Assume that n ≥ 4. From (6), we get

αr−1 ≥ Fr = Fm + Fn > Fn ≥ αn−2,

which implies that n− 1 < r. Also, since

αr−2 ≤ Fr = Fm + Fn ≤ αm−1 + αn−1 ≤ 2αn−1 < α2αn−1 = αn+1,

it follows that r < n + 3. Consequently, n − 1 < r < n + 3. Now, we separate three cases into
the proof:

Case 1. If r = n, then we get Fm = 0, which contradicts the fact that m ≥ 1.

Case 2. If r = n+2, then we get Fn+1 = Fm. Since n+1 ≥ 5, this is possible only for n+1 = m,

which contradicts the fact that m ≤ n.

Case 3. If r = n+ 1, then we get Fn+1 = Fr = Fm + Fn and thus Fm = Fn−1. Since n− 1 ≥ 3,

it follows that m = n − 1. Hence, (n,m, r) = (n, n − 1, n + 1) is a solution of the equation
Fn + Fm = Fr. This completes the proof.

The proofs of the following results can be done similarly.

Lemma 2.4. Let 1 ≤ m ≤ n. Then the equation Fn+Fm = Lr has only the solutions (n,m, r) =
(n, n− 2, n− 1), (3, 2, 2), (3, 3, 3), and (4, 1, 3).

Lemma 2.5. Let 1 ≤ m ≤ n. Then the equation Ln+Lm = Fr has only the solutions (n,m, r) =
(1, 1, 3), (3, 1, 5), (4, 1, 6), (6, 2, 8), and (3, 3, 6).

Lemma 2.6. Let 1 ≤ m ≤ n. Then the equation Ln+Lm = Lr has only the solution (n,m, r) =

(n, n− 1, n+ 1).
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3 Main theorem

From now on, it will be assumed that k, r,m, n are natural numbers and 1 ≤ r ≤ m ≤ n.

Theorem 3.1. All solutions of the Diophantine equation Lk = Fn + Fm + Fr are given by

(n,m, r, k) ∈ {(n, n, n− 3, n), (n, n− 1, n− 1, n), (n, n− 3, n− 4, n− 1)}

or

(n,m, r, k) ∈ { (1, 1, 1, 2) , (2, 2, 1, 2) , (2, 2, 2, 2) , (3, 1, 1, 3) , (3, 2, 1, 3) , (4, 4, 2, 4) , (5, 1, 1, 4) ,
(5, 2, 2, 4) , (5, 5, 1, 5) , (6, 3, 1, 5)}.

Proof. Assume that the equation (1) holds for 8 ≤ r ≤ m ≤ n. This implies that k ≤ 8. Then,
since Lk = Fn + Fm + Fr ≤ 3Fn, from Lemma 2.1, we can write

αk−0.01 < Lk ≤ 3Fn ≤ 3αn−1.67 < αn−1.67+2.29.

The last inequality implies that k − n < 0.63. Also, since Fn ≤ Lk, it follows from Lemma 2.1
that αn−1.68 < αk+0.01, which implies that −1.69 < k − n.

Consequently, we have −1.69 < k − n < 0.63. This shows that k − n = −1 or k − n = 0.

On the other hand, using Lemma 2.2, we can write

αk + βk =
αn

√
5
+
αm

√
5
+
αr

√
5
+ en + em + er

and so ∣∣∣∣αk − αn

√
5

∣∣∣∣ =

∣∣∣∣αm

√
5
+
αr

√
5
− βk + en + em + er

∣∣∣∣
≤ 1√

5
(αm + αr) + |β|k + |en|+ |em|+ |er|

≤ 1√
5
(αm + αr) + 1.572.

Dividing the last inequality by αk, we get∣∣∣∣1− αn−k

√
5

∣∣∣∣ ≤ 1√
5

(
1

αk−m
+

1

αk−r

)
+

1.572

αk
≤

(
2√
5
+ 1.572

)
1

αk−m
<

2.4665

αk−m
.

If k − n = 0 or k − n = −1, the above inequality gives us that k −m < 3.12 or k −m < 4.552.

That is, k −m ≤ 4. Also, since Fm ≤ Lk, it follows that αm−1.68 < αk+0.01, which implies that
−1.69 < k −m. Consequently, we have −1 ≤ k −m ≤ 4. Therefore, k −m = −1, 0, 1, 2, 3,
or 4.

Now, we separate the proof into two cases: k − n = 0 and k − n = −1.

Case 1. Let k = n. In this case, it is impossible that k−m = −1 since n ≥ m. If k−m = 0, then
the equation (1) implies that Ln = Fn + Fn + Fr. Using (5), one can see easily that Fn−3 = Fr,
which yields that r = n− 3 since n− 3 ≥ 5. That is, (n,m, r, k) = (n, n, n− 3, n) is a solution
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of (1). If k −m = 1, then we have Ln = Fn + Fn−1 + Fr, which implies that r = n − 1 since
n − 3 ≥ 5. Thus (n,m, r, k) = (n, n − 1, n − 1, n) is a solution of (1). If k −m = 2, then we
get Fn−1 + Fn−3 = Fr from the equation (1). This is impossible by Lemma 2.3. Similarly, if
k −m = 3, then we obtain Fn = Fr, which implies that n = r since n ≥ 8. This contradicts the
fact that r ≤ m. If k −m = 4, then one can conclude from (1) that Fn−1 + 2Fn−3 = Fr. This
shows that Fn−1 + 2Fn−3 ≤ Fn and thus Fn−3 ≤ Fn−4, which is impossible since n ≥ 8.

Case 2. Let k − n = −1. It can be seen that the cases k −m = −1, 0, and 1 are impossible. If
k−m = 2, then we obtain Fn−4 = Fr and so r = n−4. Thus, (n,m, r, k) = (n, n−3, n−4, n−1)
is a solution of (1). If k −m = 3, then we obtain Fn−3 = Fr, and so r = n− 3. This contradicts
the fact that r ≤ m. Similarly, if k−m = 4, then we get 2Fn−4 = Fr. This implies that n−4 ≤ r,

which contradicts the fact that r ≤ m.

Now assume that 0 < r ≤ m ≤ n ≤ 8. Then since Lk = Fn + Fm + Fr ≤ 3F8 = 63, it
follows that k ≤ 8. With the help of the Mathematica program, for k ≤ 8, we obtain only the
solutions

(n,m, r, k) ∈ { (1, 1, 1, 2) , (2, 1, 1, 2) , (2, 2, 1, 2) , (2, 2, 2, 2) , (3, 1, 1, 3) , (3, 2, 1, 3) , (3, 2, 2, 3) ,
(4, 3, 3, 4) , (4, 4, 1, 4) , (4, 4, 2, 4) , (5, 1, 1, 4) , (5, 2, 1, 4) , (5, 2, 2, 4) , (5, 4, 4, 5) ,

(5, 5, 1, 5) , (5, 5, 2, 5) , (6, 3, 1, 5) , (6, 3, 2, 5) , (6, 5, 5, 6) , (6, 6, 3, 6) , (7, 4, 3, 6) ,

(7, 6, 6, 7) , (7, 7, 4, 7) , (8, 5, 4, 7) , (8, 7, 7, 8) , (8, 8, 5, 8)}

in the range 0 < r ≤ m ≤ n ≤ 8. Comparing all the solutions found in the above, we get the
result.

We can give the following results without proof, since their proofs are similar to these of
Theorem 3.1 and Lemma 2.3.

Theorem 3.2. The Diophantine equation Fk = Ln + Lm + Lr has only the solutions

(n,m, r, k) ∈ { (1, 1, 1, 4) , (2, 1, 1, 5) , (3, 2, 1, 6) , (4, 2, 2, 7) , (4, 4, 4, 8) , (5, 1, 1, 7) ,
(5, 4, 2, 8) , (7, 3, 1, 9) , (8, 3, 3, 10) , (8, 4, 1, 10) , (10, 6, 2, 12)}.

Theorem 3.3. All solutions of the Diophantine equation Fk = Fn + Fm + Fr are given by

(n,m, r, k) ∈ {(n, n− 2, n− 3, n+ 1), (n, n, n− 1, n+ 2)}

or

(n,m, r, k) ∈ {(1, 1, 1, 4) , (4, 1, 1, 5) , (4, 2, 2, 5) , (5, 3, 1, 6) , (2, 1, 1, 4) , (2, 2, 2, 4) , (3, 3, 1, 5)}.

Theorem 3.4. The Diophantine equation Lk = Ln+Lm+Lr has only the solutions (n,m, r, k) =
(n, n− 2, n− 3, n+ 1), (n, n, n− 1, n+ 2), and (n,m, r, k) = (1, 1, 1, 2).
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