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Abstract: We obtain explicit formulas for the number of monic irreducible polynomials with
prescribed constant term and degree ¢* over a finite field. These formulas are derived from work
done by Yucas. We show that the number of polynomials of a given constant term depends only
on whether the constant term is a residue in the underlying field. We further show that as k
becomes large, the proportion of irreducible polynomials having each constant term is asymptot-
ically equal.
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1 Introduction

The distribution of primes across equivalence classes in modular arithmetic is a well-studied
problem in number theory. According to Dirichlet’s Theorem, the proportion of primes in each
equivalence class for a given modulus is asymptotically equal. When only primes less than some
finite bound are considered, however, there are usually more primes of the form 4n + 3 than of
the form 4n + 1, a phenomenon known as Chebyshev’s bias. Rubinstein and Sarnak show in [4]
that, assuming the Generalized Riemann Hypothesis, this bias generalizes to other moduli: for a
fixed k, primes of the form kn + a are more common when a is not a quadratic residue mod &
than when it is.
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In this paper, we will show that a related bias holds for monic irreducible polynomials over
Z,, whose degree is ¢" for some odd prime ¢. In this case, the number of monic irreducible
polynomials with a given constant term « is related to whether « is a residue in the underlying
field. As the degree grows larger, however, the proportion of such polynomials ending in each
possible constant term is asymptotically equal.

Throughout this paper, p and ¢ are assumed to be odd primes, ¢ denotes the Euler phi function,
and ®,, denotes the nth cyclotomic polynomial. Much of the other notation follows Yucas in [5].

Let N(n,a,p) denote the number of monic irreducible polynomials over Z, of degree n with
constant term (—1)"a. We limit our discussion to polynomials where the degree is a power
of an odd prime. To establish a formula for N(n,a,p), Yucas considers the possible orders of
irreducible polynomials. For n € N, define a set

D, ={r:rjp" —1butrtp™ —1for1l <m < n}.

Note that D,, is the set of possible orders of polynomials of degree n over Z,. For any r € D,
we can write r = d,m, where d, = gcd (7", ’%). When n is a power of a prime, we have the
following characterization of D,,:

Lemma 1.1. Let n = ¢* for some k € N, then
D, ={r: r]qu — 1 butr J(qufl — 1}

Proof. Note that ged(p?" —1,p™ —1) = peed(@®m) _1 (see Lemma 12.6 in [1]). If ged (¢, m) = 1
and r € D,, with r|p™ — 1, then r|p — 1. Otherwise, 7|p™ — 1 for some divisor m of ¢*, i.e., r|p?
for some 0 < i < k. But p?° — 1 divides qufl —1forany0 <: <k —1. L]

Lemma 1.1 allows us to focus our attention on divisors of p¢ ' — 1 instead of looking for all
possible values of m where r[p™ — 1. Using this set D,, and the order of the element a € Z,
Yucas derives the following formula for N (n, a, p):

Theorem 1.2 ([5, Theorem 3.5]). Suppose a € Z;, has order m. Then

1
N(n,a,p) = ¢(r).
o 2
While this gives a method for computing N (n, a, p) in any case, it does not provide a clear way
to compare different cases. Our goal is to establish the distribution of constant terms for a fixed p

and ¢* for k € N. This depends on the distribution of gth powers in L,

Definition 1.3. Let a € Z;. If there is some b € Z such that b = a (mod p), then a is a
q-residue in Z,.

As we see in Theorem 1.4, the distribution of g-residues in Z,, depends on whether ¢ divides p—1,
which allows us to determine the number of g-residues in Z;, in Proposition 1.5.
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Theorem 1.4 ([3, Theorem 2.37]). If p is a prime and ged(a,p) = 1, then the congruence
2" = a (mod p) has ged(n, p— 1) solutions or no solution according as @D = 1 (mod p)

or not.

Proposition 1.5. If gcd(q,p — 1) = q, then there are p L g-residues in Zy. Otherwise, every
element of Z., is a q-residue.

Proof. Observe that ged(a,p) = 1 for every a € Z;. If ged(q,p — 1) = ¢, then g|p — 1.
By Theorem 1.4, for any a € Z, = a (mod p) has ged(g,p — 1) = ¢ solutions or no
solutions. Hence == 7 L values of a have a solution to that equation. If ged(q,p — 1) = 1, then

't =1 (mod p) because Z, has p — 1 elements. So every a € Z,, is a g-residue. O

In Section 2, we will consider the case where ged(q,p — 1) = 1. We will prove that for any
a€ Z;,
qu . qu,1
¢ (p—1)

In the case where ged(q, p — 1) = ¢, the value of N(¢*,a, p) depends on whether or not a is a

N(¢*,a,p) =

g-residue in Z;. We will address this in Sections 3 and 4. In particular, we will show that

p’ -1

N(¢*,a,p) = =1

whenever a is not a g-residue in Z;, and

p" —qp” +q—1

N(¢*,a,p) = T p—

whenever a is a g-residue in Z;,.

In Yucas’s formula, N(¢*, a, p) represents the number of irreducible monic polynomials with
a constant term of (—1)? a. In our case, we assume ¢ is an odd prime, hence N(¢*, a, p) is the
number of monic irreducible polynomials with a constant term of —a. Since a is a g-residue if
and only if —a is a g-residue, N(¢*, a, p) is the number of irreducible monic polynomials with
constant term either a or —a.

2 A formula for N(¢*, a,p) when ged(q,p — 1) = 1

Before we can compute N (¢, a, p) when ged(q,p — 1) = 1, we need to present some ancillary

results. Recall that » = d,.m, where d, = ged (7, —) and m, is the order of r in Z;,.

Lemma 2.1. Letr € D,,. Then 7“| lfand only if m, = 1.

Proof. If r divides p , then d,, = r implies m,, = 1. Conversely, m, = 1 implies » = d, and
thus r divides ppTll. O
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Theorem 2.2. Let n = ¢ for some k € N, and let Ry = {r € D,, : m, = 1}. Then

k

a — 1 o
Rlz{reN:r]p ] andr{qul—l}.
p_

—1

Proof. Let S = {r eN: 7“|p Landrtp? — 1} .Let r € Ry, then m, = 1 implies T|”;k__11
by Lemma 2.1. By the deﬁmtlon of D,,, r does not divide p”* — 1 for any 1 < m < n and hence
r{qufl —1.Sor e Sand R; C S.

Next suppose r € S. By Lemma 1.1, € D,,, and m,, = 1 by Lemma 2.1. Thus, S C R;. [

Corollary 2.2.1. Letk € N, n = ¢*, and gcd(q,p — 1) = 1. Foranyr € D,,, d, € R;.

Proof. Since r € D, with order m,, r { p" " — 1, say ¢ is a prime dividing r but not p?"~" — 1.
-1

If ¢|m,., then t|p — 1 which means t[p? ' — 1, a contradiction. So t|d,, thus d, { p?" ' — 1. By
definition of d,, d, | L hence d, € R;. O

Lemma 2.3. Fori € N, gcd(<I>q(pi),p -1)<gq
Proof. Let s = ged(®,(p'), p—1). Then, we can write p — 1 = st for some ¢ € N. It follows that
D (p") = By((st +1)") = (st + 1)@V 4 (st + 1)@ 4 (st +1)" + 1.

Expanding this expression yields ¢ ones, and since s divides the remaining terms on that side of
the equation as well as ®,(p’), s|q. O

Lemma 2.4. For k €¢ N,

k—1
P =1 q- P if ged(g,p—1) =g
ng 1 apq -1 = qkfzi_l .
p= S if ged(q,p—1) =1
k k_l 7
Proof. Observe that p?” — 1 = I 9, (pq ) Hence
=0

@1
ng (pp_l ’qu 1_1)

I
o)<}
o
o,
RS
=7
KA
Q
5
=
Do
KH
[}
=
Qs
N
~_—

i=0 =0
-1 q<pq’>] s (00 () 0 1)
Li=0
e (IO R

By Lemma 2.3, gcd <®q (qufl) D — 1> equals 1 or ¢ depending on whether ¢ divides p — 1.

Corollary 2.4.1. Fork € N, ifged(q, p—1) = 1, then ged (p
v 1,p — 1).
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Proof. The results follow from the previous two lemmas and the fact that
k—1
k i
p4—1:@—UII%(w). O
i=0

Theorem 2.5. Let k € N, ged(q,p — 1) = 1, and a € Z;, then

1

" — g
¢*(p—1)

Proof. Letn = ¢* and a have order m. By [5, Theorem 3.5], we have
1
N(¢* a,p) = 5—— > o(r).

¢“p(m)

myr=m

N(¢* a,p) =

For any r € D,, with m, = m, we can write r = m,d, with gcd(m,.,d,) = 1 by Corollary 2.4.1.
Thus, we have

N(Qk’a’ap) - Wl(m Z ¢(mr)¢(dr>

Recalling that »  ¢(d) = n, we use Corollary 2.2.1 and properties of the Euler ¢ function to get

dln
1 1
N(qk,a,p) = g Z ¢(dr) = E Z ¢(d7") - Z (b(dr)
dp| 2 dr | Bt dy| ged(B = pa* 1 1)
d,-’[qu_l—l

From Lemma 2.4 we know

qk_l - qkfl_l
i)
p—1 p—1

]_Ff—l pf*—ﬂ

thus

N(qk7a’7p) - k

¢ | p—1 p—1

I A Rl Y

a ¢*(p—1)

gt -
*Fp—-1)

3 Results when gcd(g,p — 1) = ¢ and « is not a g-residue

When ged(q, p—1) = g, Z;, contains non g-residues as well as g-residues. The value of V (¢%,a,p)
qu -1
a*(p—1)
when a is not a ¢g-residue. Theorem 3.1 is important in proving this result, since it classifies the

depends on whether or not a is a g-residue. In this section, we will prove N(¢*, a,p) =

maximum power of ¢ dividing m, when 7 is not a g-residue.
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Theorem 3.1. Let Z;, = (a) and let p — 1 = ¢'s for some integer s with gcd(q, s) = 1 and some
i € N. Let b = a" for some k € 7 with the order of b being my,. The following are equivalent.

1. bis not a g-residue.
2. q'lmy
3. qfged(k,p—1).

Proof. First, we will show (1) = (2). Assume ¢’ ¥ m,, then m;, = ¢’t for some 0 < j < 7 and
integer ¢ dividing s (since m, |p — 1) with ged(q,t) = 1. Notice

a? ' =1=0b" =a™* (mod p).

So, p — 1|myk, that is, (¢'s)|(¢’tk) where j < i, hence ¢' 7|k, say k = ¢"~Ju for some integer u.
It follows that
b _ ak _ aqi—ju _ (aqi—j—lu)q

is a g-residue.
Next, we will prove (2) = (3). Assume ¢'|my, then m; = ¢'t for some integer ¢ dividing s
with ged(q,t) = 1. It follows that

p—1 q's

and thus ¢ { ged(k,p — 1).

Finally, to show that (3) = (1), assume b is a g-residue, say b = a* = a9™ for some m € Z.
Then p — 1|(k — gm) implies (p — 1)u = k — gm for some u € Z. Note ¢'su = k — gm implies
k = q'su + gm. Since p — 1 and k are both divisible by ¢, so is ged(k,p — 1). ]

Theorem 3.2. Let k € N, ged(q,p — 1) = ¢, and let a € Z, be a non q-residue. Then,

(¢ ap) = =L
N(q",a,p) = .
¢"(p—1)

Proof. Letn = ¢* and r € D,. Let p — 1 = ¢'s for some integer s with gcd(s,q) = 1 and

i € N. Since a is not a g-residue, and since m,|p — 1, by Theorem 3.1, m, = q'v for some integer

k .

v such that v|s and with ged(v,¢) = 1. We can also write p;_—11 = ¢’t for some integer ¢ with

ged(q,t) = 1 and j € N. We claim that ged(v,t) = 1. By Corollary 2.4.1, if ged(p, g — 1) = ¢,

then q is the only prime divisor of

p? —1 o
ged p_l,p—l :gcd(qjt,qzs).

Since m,. divides p — 1, then ¢ must also be the only prime divisor of gcd(¢’t, ¢'v). We note that
since ged(v, q) = ged(t,q) = 1, and that ¢ must be the only divisor of ged(¢’t, ¢'v), then we
must have ged(v, t) = 1.
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FE k
We claim that r = ¢'*/vu for some u that divides ¢. Recall r = m,.d, where d,, = ged (T, p;__11> ,

and we have assumed m, = ¢'v. Since m, has ¢’ as a factor, then d, must have ¢’ as a factor as
well. The reasoning for this is if d, = ¢‘u with ged(q, u) = 1 and £ < j, then

a" . . )
d, = ged (r, pp : > = ged(m,d,, ¢’t) = ged((q'v)(¢"u), ¢’t) = ¢"u

This implies that v must divide ¢. Observe that ;7 > ¢ + 1 and ¢ + ¢ > ¢ + 1 (because
i # 0), hence ged((¢'v)(q'u), ¢’t) should be divisible by ¢“*!, contradicting our assumption
that d, = ¢‘u. Thus, ¢’|d,, and we can write d, = ¢’u for some integer u which divides ¢ and
where ged(q,t) = 1. It follows that 7 = m,d, = (¢'v)(¢’u) = ¢"™/vu where u|t. Note that
Corollary 2.4.1 implies that ged(s, t) = 1. Thus, ged(u, v) = 1 since u|t and v|s.
Now we can prove the theorem. By [5, Theorem 3.5], we have
Nt ap) = oo 3 60

¢cp(m) &

myr=m

The previous paragraph allows us to write

k _ 1 ’i+j,Uu
N ap) = Gaam 2 T

T‘EDn
ult

We can rewrite the ¢(r) from this expression as ¢(¢"*)¢(v)¢(u) since
ged(v, ) = ged(u, q) = ged(v,u) = ged(v, t) = ged(q, t) = 1.

Now such an 7 from D,, cannot divide p™ — 1 for any m < ¢*, but Lemma 1.1 implies we need
only check for divisors that come from qu*1 — 1. In this case, the fact that ¢+ divides r and

1= (p; —_11> (p—1) = (¢Ft)(q's) = ¢"st

prevents 7 from dividing pqlZ — 1 when ¢ < k. Hence we can say

1 o
N(¢",a,p) = = > d(¢")o(v)d(u).
) = el
Using properties of the Euler ¢ function, we get

a0
N a8) = ot 2 )

i+ itj—1
q q
¢ (¢" — ¢ 1) ; (w)
qlJrjil(q - 1) ¢(u)
¢*q g —1) 4o
¢t
T
@ _1q
_ i’ ]
qc(p—1)



4 Results when gcd(q, p — 1) = g and a is a ¢-residue

In Section 3, we were able to directly compute N (p*,a, p) when ged(q,p — 1) = ¢ and a is not
a g-residue. In order to compute N (¢*,a,p) when ged(q,p — 1) = ¢ and a is a g-residue, we
will first compute N (¢*, 1, p). We will then prove that N (¢*, a,p) = N(¢*, 1, p) whenever a is a
g-residue.

Theorem 4.1. Let k € N and ged(q,p — 1) = q, then

P =gt g1
¢*(p—1)

Proof. Letn = ¢* and let r € D,, with m,. = 1. By [5, Theorem 3.5], we have

N(¢" 1,p) =

N(¢*1,p) = #(1) > o(r).

my=1

By Theorem 2.2 and properties of the Euler ¢ function, we get

1 1
b= U= rlged(2st prt 1)
r’(qu_l—l

From Lemma 2.4 we know

qk_l B qkfl_l
(£t )0t
p—1 p—1

thus

1 [p? =1 p -1
N(¢"1,p) = = [ —q

" | p—1 p—1
:qu_l_q<qu—l_1)
¢*(p—1)
P " +g—1 -
B Fp—1) '
7~ (p

Theorem 4.2. Let k € N, k > 2, gcd(q,p — 1) = q, and a be a q-residue. Then

N(¢*,1,p) = N(¢*,a,p).

Proof. Letp — 1 = ¢’s, where ged(s,q) = 1 and j € N. Since p — 1|qu_1 — 1, this implies that
p?" is a multiple of ¢’s. Furthermore, we can write p?° ' — 1 = ¢*~'st where ged(s,t) = 1,
k—1

ged(t,q) = 1,and i — 1 > j. By Corollary 2.4.1, the only prime divisor of gcd (’%,p — 1)
is ¢, so ged(s,t) =1landi—1 > j.
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Now consider qu — 1. We have qufl -1 qu — 1, hence we can write qu — 1 = ¢'stu where
ged(u, ) = ged(s, tu) = 1. Note by Lemma 2.4, since ¢ ![p?" ' — 1, we have ¢/|p?" — 1.
Let n = ¢" and r € D, be a g-residue. Recall m,|p — 1, that is, m,|¢’s. We also have

k
q _
r = m,d, where d, = ged <r, pp_11

implies ¢’ does not divide m, (i.e., m,. can have any power of ¢ except the maximum ¢’).

) = ged(r, ¢ 7tu). By Theorem 3.1, 7 being a g-residue
k
First, let us evaluate N(¢*, 1, p). If m, = 1, then r\’% by Lemma 2.1 and r { p =1
because r € D,,. In other words, r|¢"7tu and r { ¢'~'st. We claim that there exists u’ # 1
such that u'|r and «/|u. If not, then ged(u, r) = 1 implies r|q* 7 st. But then r|¢*~'st, which is a
contradiction. Thus, r = ¢‘t'u/ for some ¢ € {0,...,i — j}, t'|t, u'|u, ' # 1. Now we have

N 1p) = —— 5 )
¢k (1)

my=1

1

= 2. #d)e)ew)
£€{0,...,i—j}

|t |u,u’ #1

B ¢ It(u—1)
¢
_tu—1)
=g

Now suppose m, # 1, say m, = ¢’s’ for some b € {0,...,5 — 1} and s'|s. Note that
b < j — 1 implies ¢’ { m, and so ¢* 1 7. We claim that there exists u/|u, v’ # 1, such that «’|r.
If not, ged(u, ) = 1 and r|p? — 1 implies r|¢'st. But ¢* { r, so r|¢'~'st, contradicting r € D,,.
Thus, r = ¢'s't'v’ for some ¢ € {0,...,i — 1}, s'|s, ¢'|t, u'|u, v’ # 1. There are two cases to
consider: m, = s’ and m, = ¢’s’ forsome b € {0,...,j — 1}.

Case 1: (m, = s') Inthis case ¢ € {0,...,7 — j}. It follows that

N ap) = —— 3 6(r)

ngb(S,) reDy,
o o
= qk¢(sl) EE{O’Z.i_j} Qb(q )¢(3 )¢<t )gzﬁ(u )
t’|t,u’|u:u’7£1
B ¢ It(u—1)
= T
t(u—1)
=~

= N(¢",1,p).

Case 2: (m, = ¢"s’) We claim { = i — j + b for some b € {1,...,7 — 1}. If £ < i — j, then

k ..
d, = ged (r, p;j) = ged(¢'s't'u’, ¢ tu) = ¢'t'u/ implies b = 0, a contradiction. Hence,

¢ >i— jand we can write / =i — j + bforsome b € {1,...,j — 1}. It follows that
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r€Dn
1 .
=——— > dd (et e(u)
qub(qbs ) ttu | u,u #1
1 o Lo
= T @ =T 2 @ d e

t |t |u,u’ #1
<qi—j+b _ qi—j+b—1)t(u _ 1)
q*(q® — ¢*1)
t(u—1)
it
= N(¢"*,1,p). O

It is worthwhile to note that Theorem 2.5, Theorem 4.1, and Theorem 4.2 each produce a
formula for N(q*,a,p) that depends only on whether or not a is a g-residue. In particular,
N(q¢*, a,p) takes only one or two distinct values for a given ¢* and p. The following relationship
is particularly interesting:

Corollary 4.2.1. Let ged(q,p — 1) = qand k € N. If a is a non q-residue and b a q-residue in
L, then

N(¢*,a,p) — N(¢*,b,p) = N(¢**, a,p).

While this corollary shows that the difference between N (¢*, a,p) and N(q*, b, p) increases
as k increases, we will show that the ratio % approaches one. If ged(p — 1, q) = 1, then by
Theorem 2.5 the constant terms of all monic irreducible polynomials are uniformly distributed.
Thus, the ratio % equals one for any a, b € Z;,.

Notice that by Theorem 3.2 the number of irreducible monic polynomials with constant term

a, where a is not a g-residue and ged(p — 1, q) = g, is given by
Pl -1
¢*(p—1)

and when b is a ¢-residue, the number is

P =g g1
¢*(p—1)

Hence the ratio X
N(¢*,a,p)  p” -1 ¢*(p—1)

N(g*b,p)  ¢*p—1) p’* —qp”1+q -1
approaches one as k approaches infinity.
This shows us that the proportions of constant terms of monic irreducible polynomials are
asymptotically equal, as their limits show a uniform distribution among the constant terms.
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