Distribution of constant terms of irreducible polynomials in $\mathbb{Z}_p[x]$

Sarah C. Cobb1, Michelle L. Knox2, Marcos Lopez3, Terry McDonald4 and Patrick Mitchell5

Department of Mathematics, Midwestern State University
3410 Taft Blvd, Wichita Falls, TX 76308 USA

e-mails: 1sarah.cobb@msutexas.edu, 2michelle.knox@msutexas.edu, 3marcos.lopez@msutexas.edu, 4terry.mcdonald@msutexas.edu, 5patrick.mitchell@msutexas.edu

Received: 29 May 2019
Accepted: 12 September 2019

Abstract: We obtain explicit formulas for the number of monic irreducible polynomials with prescribed constant term and degree q^k over a finite field. These formulas are derived from work done by Yucas. We show that the number of polynomials of a given constant term depends only on whether the constant term is a residue in the underlying field. We further show that as k becomes large, the proportion of irreducible polynomials having each constant term is asymptotically equal.

Keywords: Irreducible polynomials, Finite fields.
2010 Mathematics Subject Classification: 11T06, 12E05.

1 Introduction

The distribution of primes across equivalence classes in modular arithmetic is a well-studied problem in number theory. According to Dirichlet’s Theorem, the proportion of primes in each equivalence class for a given modulus is asymptotically equal. When only primes less than some finite bound are considered, however, there are usually more primes of the form $4n + 3$ than of the form $4n + 1$, a phenomenon known as Chebyshev’s bias. Rubinstein and Sarnak show in [4] that, assuming the Generalized Riemann Hypothesis, this bias generalizes to other moduli: for a fixed k, primes of the form $kn + a$ are more common when a is not a quadratic residue mod k than when it is.
In this paper, we will show that a related bias holds for monic irreducible polynomials over \(\mathbb{Z}_p \) whose degree is \(q^k \) for some odd prime \(q \). In this case, the number of monic irreducible polynomials with a given constant term \(a \) is related to whether \(a \) is a residue in the underlying field. As the degree grows larger, however, the proportion of such polynomials ending in each possible constant term is asymptotically equal.

Throughout this paper, \(p \) and \(q \) are assumed to be odd primes, \(\phi \) denotes the Euler phi function, and \(\Phi_n \) denotes the \(n \)th cyclotomic polynomial. Much of the other notation follows Yucas in [5].

Let \(N(n, a, p) \) denote the number of monic irreducible polynomials over \(\mathbb{Z}_p \) of degree \(n \) with constant term \((-1)^na\). We limit our discussion to polynomials where the degree is a power of an odd prime. To establish a formula for \(N(n, a, p) \), Yucas considers the possible orders of irreducible polynomials. For \(n \in \mathbb{N} \), define a set

\[
D_n = \{ r : r | p^n - 1 \text{ but } r \nmid p^m - 1 \text{ for } 1 \leq m < n \}.
\]

Note that \(D_n \) is the set of possible orders of polynomials of degree \(n \) over \(\mathbb{Z}_p^* \). For any \(r \in D_n \), we can write \(r = d_r m_r \) where \(d_r = \gcd\left(r, \frac{p^n - 1}{p - 1} \right) \). When \(n \) is a power of a prime, we have the following characterization of \(D_n \):

Lemma 1.1. Let \(n = q^k \) for some \(k \in \mathbb{N} \), then

\[
D_n = \{ r : r | p^{q^k} - 1 \text{ but } r \nmid p^{q^i - 1} - 1 \}.
\]

Proof. Note that \(\gcd(p^{q^i} - 1, p^m - 1) = p^{\gcd(q^k, m)} - 1 \) (see Lemma 12.6 in [1]). If \(\gcd(q^k, m) = 1 \) and \(r \in D_n \) with \(r | p^m - 1 \), then \(r | p - 1 \). Otherwise, \(r | p^m - 1 \) for some \(m \) of \(q^k \), i.e., \(r | p^{q^i} \) for some \(0 \leq i < k \). But \(p^{q^i} - 1 \) divides \(p^{q^i - 1} - 1 \) for any \(0 \leq i \leq k - 1 \).

Lemma 1.1 allows us to focus our attention on divisors of \(p^{q^i - 1} - 1 \) instead of looking for all possible values of \(m \) where \(r | p^m - 1 \). Using this set \(D_n \) and the order of the element \(a \in \mathbb{Z}_p^* \), Yucas derives the following formula for \(N(n, a, p) \):

Theorem 1.2 ([5, Theorem 3.5]). Suppose \(a \in \mathbb{Z}_p^* \) has order \(m \). Then

\[
N(n, a, p) = \frac{1}{n\phi(m)} \sum_{r \in D_n} \phi(r).
\]

While this gives a method for computing \(N(n, a, p) \) in any case, it does not provide a clear way to compare different cases. Our goal is to establish the distribution of constant terms for a fixed \(p \) and \(q^k \) for \(k \in \mathbb{N} \). This depends on the distribution of \(q \)th powers in \(\mathbb{Z}_p^* \).

Definition 1.3. Let \(a \in \mathbb{Z}_p^* \). If there is some \(b \in \mathbb{Z}_p^* \) such that \(b^q \equiv a \pmod{p} \), then \(a \) is a \(q \)-residue in \(\mathbb{Z}_p^* \).

As we see in Theorem 1.4, the distribution of \(q \)-residues in \(\mathbb{Z}_p^* \) depends on whether \(q \) divides \(p - 1 \), which allows us to determine the number of \(q \)-residues in \(\mathbb{Z}_p^* \) in Proposition 1.5.
Theorem 1.4 ([3, Theorem 2.37]). If \(p \) is a prime and \(\gcd(a, p) = 1 \), then the congruence \(x^n \equiv a \pmod{p} \) has \(\gcd(n, p-1) \) solutions or no solution according as \(a^{\frac{p-1}{\gcd(n, p-1)}} \equiv 1 \pmod{p} \) or not.

Proposition 1.5. If \(\gcd(q, p - 1) = q \), then there are \(\frac{p-1}{q} \) \(q \)-residues in \(\mathbb{Z}_p^* \). Otherwise, every element of \(\mathbb{Z}_p^* \) is a \(q \)-residue.

Proof. Observe that \(\gcd(a, p) = 1 \) for every \(a \in \mathbb{Z}_p^* \). If \(\gcd(q, p - 1) = q \), then \(q \mid p - 1 \). By Theorem 1.4, for any \(a \in \mathbb{Z}_p^* \), \(x^q \equiv a \pmod{p} \) has \(\gcd(q, p - 1) = q \) solutions or no solutions. Hence \(\frac{p-1}{q} \) values of \(a \) have a solution to that equation. If \(\gcd(q, p - 1) = 1 \), then \(a^{\frac{p-1}{q}} \equiv 1 \pmod{p} \) because \(\mathbb{Z}_p^* \) has \(p - 1 \) elements. So every \(a \in \mathbb{Z}_p^* \) is a \(q \)-residue. \(\square \)

In Section 2, we will consider the case where \(\gcd(q, p - 1) = 1 \). We will prove that for any \(a \in \mathbb{Z}_p^* \),

\[
N(q^k, a, p) = \frac{q^{pk} - q^{pk-1}}{q^k(p-1)}.
\]

In the case where \(\gcd(q, p - 1) = q \), the value of \(N(q^k, a, p) \) depends on whether or not \(a \) is a \(q \)-residue in \(\mathbb{Z}_p^* \). We will address this in Sections 3 and 4. In particular, we will show that

\[
N(q^k, a, p) = \frac{q^{pk} - 1}{q^k(p-1)}
\]

whenever \(a \) is not a \(q \)-residue in \(\mathbb{Z}_p^* \) and

\[
N(q^k, a, p) = \frac{q^{pk} - qp^{pk-1} + q - 1}{q^k(p-1)}
\]

whenever \(a \) is a \(q \)-residue in \(\mathbb{Z}_p^* \).

In Yucas’s formula, \(N(q^k, a, p) \) represents the number of irreducible monic polynomials with a constant term of \((−1)^k a\). In our case, we assume \(q \) is an odd prime, hence \(N(q^k, a, p) \) is the number of monic irreducible polynomials with a constant term of \(−a \). Since \(a \) is a \(q \)-residue if and only if \(−a \) is a \(q \)-residue, \(N(q^k, a, p) \) is the number of irreducible monic polynomials with constant term either \(a \) or \(−a \).

2 A formula for \(N(q^k, a, p) \) when \(\gcd(q, p - 1) = 1 \)

Before we can compute \(N(q^k, a, p) \) when \(\gcd(q, p - 1) = 1 \), we need to present some ancillary results. Recall that \(r = d_r m_r \) where \(d_r = \gcd\left(r, \frac{p^{n-1}}{p-1}\right) \) and \(m_r \) is the order of \(r \) in \(\mathbb{Z}_p^* \).

Lemma 2.1. Let \(r \in D_n \). Then \(r \mid \frac{p^{n-1}}{p-1} \) if and only if \(m_r = 1 \).

Proof. If \(r \) divides \(\frac{p^{n-1}}{p-1} \), then \(d_r = r \) implies \(m_r = 1 \). Conversely, \(m_r = 1 \) implies \(r = d_r \) and thus \(r \) divides \(\frac{p^{n-1}}{p-1} \). \(\square \)
Theorem 2.2. Let \(n = q^k \) for some \(k \in \mathbb{N} \), and let \(R_1 = \{ r \in D_n : m_r = 1 \} \). Then

\[
R_1 = \left\{ r \in \mathbb{N} : r \mid \frac{p^{q^k} - 1}{p - 1} \text{ and } r \nmid p^{q^k - 1} - 1 \right\}.
\]

Proof. Let \(S = \left\{ r \in \mathbb{N} : r \mid \frac{p^{q^k} - 1}{p - 1} \text{ and } r \nmid p^{q^k - 1} - 1 \right\} \). Let \(r \in R_1 \), then \(m_r = 1 \) implies \(r \mid \frac{p^{q^k} - 1}{p - 1} \) by Lemma 2.1. By the definition of \(D_n \), \(r \) does not divide \(p^m - 1 \) for any \(1 \leq m < n \) and hence \(r \nmid p^{q^k - 1} - 1 \). So \(r \in S \) and \(R_1 \subseteq S \).

Next suppose \(r \in S \). By Lemma 1.1, \(r \in D_n \), and \(m_r = 1 \) by Lemma 2.1. Thus, \(S \subseteq R_1 \). □

Corollary 2.2.1. Let \(k \in \mathbb{N} \), \(n = q^k \), and \(\gcd(q, p - 1) = 1 \). For any \(r \in D_n \), \(d_r \in R_1 \).

Proof. Since \(r \in D_n \) with order \(m_r \), \(r \nmid p^{q^k - 1} - 1 \), say \(t \) is a prime dividing \(r \) but not \(p^{q^k - 1} - 1 \). If \(t \mid m_r \), then \(t \mid p - 1 \) which means \(t \mid p^t - 1 \), a contradiction. So \(t \mid d_r \), thus \(d_r \nmid p^{q^k - 1} - 1 \). By definition of \(d_r \), \(d_r \nmid \frac{p^{q^k - 1}}{p - 1} \), hence \(d_r \in R_1 \). □

Lemma 2.3. For \(i \in \mathbb{N} \), \(\gcd(\Phi_q(p^i), p - 1) \leq q \).

Proof. Let \(s = \gcd(\Phi_q(p^i), p - 1) \). Then, we can write \(p - 1 = st \) for some \(t \in \mathbb{N} \). It follows that

\[
\Phi_q(p^i) = \Phi_q((st + 1)^i) = (st + 1)^{(q-1)} + (st + 1)^{(q-2)} + \ldots + (st + 1)^1 + 1.
\]

Expanding this expression yields \(q \) ones, and since \(s \) divides the remaining terms on that side of the equation as well as \(\Phi_q(p^i) \), \(s \mid q \). □

Lemma 2.4. For \(k \in \mathbb{N} \),

\[
\gcd\left(\frac{p^{q^k} - 1}{p - 1}, p^{q^k - 1} - 1 \right) = \begin{cases}
q \cdot \frac{p^{q^k - 1} - 1}{p - 1} & \text{if } \gcd(q, p - 1) = q \\
\frac{p^{q^k - 1} - 1}{p - 1} & \text{if } \gcd(q, p - 1) = 1.
\end{cases}
\]

Proof. Observe that \(p^{q^k} - 1 = (p - 1) \prod_{i=0}^{k-1} \Phi_q(p^i) \). Hence

\[
\gcd\left(\frac{p^{q^k} - 1}{p - 1}, p^{q^k - 1} - 1 \right) = \gcd\left(\prod_{i=0}^{k-1} \Phi_q(p^i), (p - 1) \prod_{i=0}^{k-2} \Phi_q(p^i) \right)
\]

\[
= \left[\prod_{i=0}^{k-2} \Phi_q(p^i) \right] \gcd\left(\Phi_q(p^{q^k - 1}), p - 1 \right)
\]

\[
= \left[\frac{p^{q^k - 1} - 1}{p - 1} \right] \gcd\left(\Phi_q(p^{q^k - 1}), p - 1 \right). \quad \Box
\]

By Lemma 2.3, \(\gcd\left(\Phi_q(p^{q^k - 1}), p - 1 \right) \) equals 1 or \(q \) depending on whether \(q \) divides \(p - 1 \).

Corollary 2.4.1. For \(k \in \mathbb{N} \), if \(\gcd(q, p - 1) = 1 \), then \(\gcd\left(\frac{p^{q^k} - 1}{p - 1}, p - 1 \right) = 1 \). If \(\gcd(q, p - 1) = q \), then \(q \) is the only prime divisor of \(\gcd\left(\frac{p^{q^k} - 1}{p - 1}, p - 1 \right) \).
Proof. The results follow from the previous two lemmas and the fact that
\[p^{q^k} - 1 = (p-1) \prod_{i=0}^{k-1} \Phi_q(p^{q^i}). \]

Theorem 2.5. Let \(k \in \mathbb{N} \), \(\gcd(q, p-1) = 1 \), and \(a \in \mathbb{Z}_p^* \), then
\[N(q^k, a, p) = \frac{p^{q^k} - qp^{q^k-1}}{q^k(p-1)}. \]

Proof. Let \(n = q^k \) and \(a \) have order \(m \). By [5, Theorem 3.5], we have
\[N(q^k, a, p) = \frac{1}{q^k \phi(m)} \sum_{r \in D_n, m_r = m} \phi(r). \]

For any \(r \in D_n \) with \(m_r = m \), we can write \(r = m_r d_r \) with \(\gcd(m_r, d_r) = 1 \) by Corollary 2.4.1. Thus, we have
\[N(q^k, a, p) = \frac{1}{q^k \phi(m)} \sum_{m_r = m} \phi(m_r) \phi(d_r). \]

Recalling that \(\sum_{d \mid n} \phi(d) = n \), we use Corollary 2.2.1 and properties of the Euler \(\phi \) function to get
\[N(q^k, a, p) = \frac{1}{q^k} \sum_{d_r \mid \frac{p^k - 1}{p-1}} \phi(d_r) \left[\sum_{d_r \mid \frac{p^k - 1}{p-1}} \phi(d_r) - \sum_{d_r \mid \gcd(\frac{p^k - 1}{p-1}, p^{q^k-1} - 1)} \phi(d_r) \right]. \]

From Lemma 2.4 we know
\[\gcd\left(\frac{p^{q^k} - 1}{p-1}, \frac{p^{q^k} - 1}{p-1} - 1\right) = \frac{p^{q^k} - 1}{p-1}, \]
thus
\[N(q^k, a, p) = \frac{1}{q^k} \left[\frac{p^{q^k} - 1}{p-1} - \frac{p^{q^k-1} - 1}{p-1} \right] \]
\[= \frac{p^{q^k} - 1}{q^k(p-1)} - \frac{p^{q^k-1} - 1}{q^k(p-1)} \]
\[= \frac{p^{q^k} - qp^{q^k-1}}{q^k(p-1)}. \]

3 Results when \(\gcd(q, p-1) = q \) and \(a \) is not a \(q \)-residue

When \(\gcd(q, p-1) = q \), \(\mathbb{Z}_p^* \) contains non \(q \)-residues as well as \(q \)-residues. The value of \(N(q^k, a, p) \) depends on whether or not \(a \) is a \(q \)-residue. In this section, we will prove \(N(q^k, a, p) = \frac{p^{q^k} - 1}{q^k(p-1)} \) when \(a \) is not a \(q \)-residue. Theorem 3.1 is important in proving this result, since it classifies the maximum power of \(q \) dividing \(m_r \) when \(r \) is not a \(q \)-residue.
Theorem 3.1. Let $\mathbb{Z}_p^* = \langle a \rangle$ and let $p - 1 = q^i s$ for some integer s with $\gcd(q, s) = 1$ and some $i \in \mathbb{N}$. Let $b = a^k$ for some $k \in \mathbb{Z}$ with the order of b being m_b. The following are equivalent.

1. b is not a q-residue.
2. $q^i | m_b$
3. $q \nmid \gcd(k, p - 1)$.

Proof. First, we will show $(1) \Rightarrow (2)$. Assume $q^i \nmid m_b$, then $m_b = q^j t$ for some $0 \leq j < i$ and integer t dividing s (since $m_r | p - 1$ with $\gcd(q, t) = 1$). Notice

$$a^{p - 1} \equiv 1 \equiv b^m \equiv a^{mk} \pmod{p}.$$

So, $p - 1 | m_b k$, that is, $(q^i s) | (q^j tk)$ where $j < i$, hence $q^{i - j} | k$, say $k = q^{i - j} u$ for some integer u. It follows that

$$b = a^k = a^{q^{i - j} u} = (a^{q^{i - j} - 1} u)^q$$

is a q-residue.

Next, we will prove $(2) \Rightarrow (3)$. Assume $q^i | m_b$, then $m_b = q^j t$ for some integer t dividing s with $\gcd(q, t) = 1$. It follows that

$$|a^k| = |b| = m_b = q^j t = \frac{p - 1}{\gcd(k, p - 1)} = \frac{q^i s}{\gcd(k, p - 1)}$$

and thus $q \nmid \gcd(k, p - 1)$.

Finally, to show that $(3) \Rightarrow (1)$, assume b is a q-residue, say $b = a^k = a^{qm}$ for some $m \in \mathbb{Z}$. Then $(p - 1)(k - qm)$ implies $(p - 1)u = k - qm$ for some $u \in \mathbb{Z}$. Note $q^i su = k - qm$ implies $k = q^i su + qm$. Since $p - 1$ and k are both divisible by q, so is $\gcd(k, p - 1)$. \qed

Theorem 3.2. Let $k \in \mathbb{N}$, $\gcd(q, p - 1) = q$, and $a \in \mathbb{Z}_p^*$ be a non q-residue. Then,

$$N(q^k, a, p) = \frac{p^{q^k} - 1}{q^k(p - 1)}.$$

Proof. Let $n = q^k$ and $r \in D_n$. Let $p - 1 = q^s$ for some integer s with $\gcd(s, q) = 1$ and $i \in \mathbb{N}$. Since a is not a q-residue, and since $m_r | p - 1$, by Theorem 3.1, $m_r = q^j v$ for some integer v such that $v|s$ and with $\gcd(v, q) = 1$. We can also write $\frac{p^{q^k} - 1}{p - 1} = q^j t$ for some integer t with $\gcd(q, t) = 1$ and $j \in \mathbb{N}$. We claim that $\gcd(v, t) = 1$. By Corollary 2.4.1, if $\gcd(p, q - 1) = q$, then q is the only prime divisor of

$$\gcd \left(\frac{p^{q^k} - 1}{p - 1}, p - 1 \right) = \gcd \left(q^j t, q^i s \right).$$

Since m_r divides $p - 1$, then q must also be the only prime divisor of $\gcd(q^j t, q^i v)$. We note that since $\gcd(v, q) = \gcd(t, q) = 1$, and that q must be the only divisor of $\gcd(q^j t, q^i v)$, then we must have $\gcd(v, t) = 1$. \qed
We claim that \(r = q^{i+j}vu \) for some \(u \) that divides \(t \). Recall \(r = m_r d_r \), where \(d_r = \gcd \left(r, \frac{p^k - 1}{p - 1} \right) \), and we have assumed \(m_r = q^i \). Since \(m_r \) has \(q^j \) as a factor, then \(d_r \) must have \(q^j \) as a factor as well. The reasoning for this is if \(d_r = q^j u \) with \(\gcd(q, u) = 1 \) and \(\ell < j \), then

\[
 d_r = \gcd \left(r, \frac{p^k - 1}{p - 1} \right) = \gcd(m_r d_r, q^j t) = \gcd((q^j v)(q^j u), q^j t) = q^j u
\]

This implies that \(u \) must divide \(t \). Observe that \(j \geq \ell + 1 \) and \(i + \ell \geq \ell + 1 \) (because \(i \neq 0 \)), hence \(\gcd((q^j v)(q^j u), q^j t) \) should be divisible by \(q^{\ell+1} \), contradicting our assumption that \(d_r = q^j u \). Thus, \(q^j \mid d_r \) and we can write \(d_r = q^j u \) for some integer \(u \) which divides \(t \) and where \(\gcd(q, t) = 1 \). It follows that \(r = m_r d_r = (q^j v)(q^j u) = q^{i+j} vu \) where \(u \mid t \). Note that Corollary 2.4.1 implies that \(\gcd(s, t) = 1 \). Thus, \(\gcd(u, v) = 1 \) since \(u \mid t \) and \(v \mid s \).

Now we can prove the theorem. By [5, Theorem 3.5], we have

\[
 N(q^k, a, p) = \frac{1}{q^k \phi(m)} \sum_{r \in D_n \atop m_r = m} \phi(r).
\]

The previous paragraph allows us to write

\[
 N(q^k, a, p) = \frac{1}{q^k \phi(q^i) \phi(v)} \sum_{u \mid t \atop r \in D_n} \phi(q^{i+j} vu).
\]

We can rewrite the \(\phi(r) \) from this expression as \(\phi(q^{i+j}) \phi(v) \phi(u) \) since

\[
 \gcd(v, q) = \gcd(u, q) = \gcd(v, u) = \gcd(v, t) = \gcd(q, t) = 1.
\]

Now such an \(r \) from \(D_n \) cannot divide \(p^m - 1 \) for any \(m < q^k \), but Lemma 1.1 implies we need only check for divisors that come from \(p^{k-1} - 1 \). In this case, the fact that \(q^{i+j} \) divides \(r \) and

\[
 p^t - 1 = \left(\frac{p^k - 1}{p - 1} \right) (p - 1) = (q^j t)(q^i s) = q^{i+j} st
\]

prevents \(r \) from dividing \(p^t - 1 \) when \(\ell < k \). Hence we can say

\[
 N(q^k, a, p) = \frac{1}{q^k \phi(q^i) \phi(v)} \sum_{u \mid t} \phi(q^{i+j}) \phi(v) \phi(u).
\]

Using properties of the Euler \(\phi \) function, we get

\[
 N(q^k, a, p) = \frac{\phi(q^{i+j}) \phi(v)}{q^k \phi(q^i) \phi(v)} \sum_{u \mid t} \phi(u)
\]

\[
 = \frac{q^{i+j} - q^{i+j-1}}{q^k(q^i - q^{i-1})} \sum_{u \mid t} \phi(u)
\]

\[
 = \frac{q^{i+j-1}(q - 1)}{q^k q^{i-1}(q - 1)} \sum_{u \mid t} \phi(u)
\]

\[
 = \frac{q^j t}{q^k}
\]

\[
 = \frac{p^{k-1}}{q^k (p - 1)}.
\]
4 Results when $\gcd(q, p - 1) = q$ and a is a q-residue

In Section 3, we were able to directly compute $N(p^k, a, p)$ when $\gcd(q, p - 1) = q$ and a is not a q-residue. In order to compute $N(q^k, a, p)$ when $\gcd(q, p - 1) = q$ and a is a q-residue, we will first compute $N(q, 1, p)$. We will then prove that $N(q^k, a, p) = N(q^k, 1, p)$ whenever a is a q-residue.

Theorem 4.1. Let $k \in \mathbb{N}$ and $\gcd(q, p - 1) = q$, then

$$N(q^k, 1, p) = \frac{p^{q^k} - qp^{q^k - 1} + q - 1}{q^k(p - 1)}.$$

Proof. Let $n = q^k$ and let $r \in D_n$ with $m_r = 1$. By [5, Theorem 3.5], we have

$$N(q^k, 1, p) = \frac{1}{q^k\phi(1)} \sum_{r \in D_n \atop m_r = 1} \phi(r).$$

By Theorem 2.2 and properties of the Euler ϕ function, we get

$$N(q^k, 1, p) = \frac{1}{q^k} \sum_{r \mid q^k - 1 \atop r \nmid p^{q^k - 1} - 1} \phi(r) = \frac{1}{q^k} \left[\sum_{r \mid q^k - 1} \phi(r) - \sum_{r \mid \gcd(q^k - 1, p^{q^k - 1} - 1)} \phi(r) \right].$$

From Lemma 2.4 we know

$$\gcd\left(\frac{p^{q^k} - 1}{p - 1}, p^{q^k - 1} - 1\right) = q \cdot \frac{p^{q^k - 1} - 1}{p - 1},$$

thus

$$N(q^k, 1, p) = \frac{1}{q^k} \left[\frac{p^{q^k} - 1}{p - 1} - q \frac{p^{q^k - 1} - 1}{p - 1} \right] = \frac{p^{q^k} - 1 - q(p^{q^k - 1} - 1)}{q^k(p - 1)} = \frac{p^{q^k} - qp^{q^k - 1} + q - 1}{q^k(p - 1)}.$$

Theorem 4.2. Let $k \in \mathbb{N}$, $k \geq 2$, $\gcd(q, p - 1) = q$, and a be a q-residue. Then

$$N(q^k, 1, p) = N(q^k, a, p).$$

Proof. Let $p - 1 = q^i s$, where $\gcd(s, q) = 1$ and $j \in \mathbb{N}$. Since $p - 1|p^{q^k - 1} - 1$, this implies that $p^{q^k - 1}$ is a multiple of $q^i s$. Furthermore, we can write $p^{q^k - 1} - 1 = q^{i - 1} s t$ where $\gcd(s, t) = 1$, $\gcd(t, q) = 1$, and $i - 1 > j$. By Corollary 2.4.1, the only prime divisor of $\gcd\left(\frac{p^{q^k - 1}}{p - 1}, p - 1\right)$ is q, so $\gcd(s, t) = 1$ and $i - 1 > j$.

79
Now consider $p^{\ell k} - 1$. We have $p^{\ell k - 1} \mid p^{\ell k} - 1$, hence we can write $p^{\ell k} - 1 = q^i stu$ where $\gcd(u, q) = \gcd(s, tu) = 1$. Note by Lemma 2.4, since $q^{i - 1} \mid p^{\ell k - 1}$, we have $q^i \mid p^{\ell k} - 1$.

Let $n = q^k$ and $r \in D_n$ be a q-residue. Recall $m_r \mid p - 1$, that is, $m_r \mid q^s$. We also have $r = m_r d_r$ where $d_r = \gcd \left(r, \frac{p^k - 1}{p - 1} \right) = \gcd(r, q^{j - 1} tu)$. By Theorem 3.1, r being a q-residue implies q^i does not divide m_r (i.e., m_r can have any power of q except the maximum q^i).

First, let us evaluate $N(q^k, 1, p)$. If $m_r = 1$, then $r \mid \frac{p^k - 1}{p - 1}$ by Lemma 2.1 and $r \mid p^{\ell k} - 1$ because $r \in D_n$. In other words, $r \mid q^{j - 1} tu$ and $r \mid q^{i - 1} st$. We claim that there exists $u' \neq 1$ such that $u' \mid r$ and $u' \mid u$. If not, then $\gcd(u, r) = 1$ implies $r \mid q^{i - 1} st$. But then $r \mid q^{i - 1} st$, which is a contradiction. Thus, $r = q^i t'u'$ for some $\ell \in \{0, \ldots, i - j\}$, $t' \mid t$, $u' \mid u$, $u' \neq 1$. Now we have

$$N(q^k, 1, p) = \frac{1}{q^k \phi(1)} \sum_{r \in D_n} \phi(r)$$

$$= \frac{1}{q^k} \sum_{\ell \in \{0, \ldots, i - j\}} \phi(q^\ell) \phi(t') \phi(u')$$

$$= \frac{q^{i - j} t(u - 1)}{q^k}$$

$$= \frac{t(u - 1)}{q^{k - i + j}}.$$

Now suppose $m_r \neq 1$, say $m_r = q^b s'$ for some $b \in \{0, \ldots, j - 1\}$ and $s' \mid s$. Note that $b \leq j - 1$ implies $q^j \nmid m_r$ and so $q^j \nmid r$. We claim that there exists $u' \mid u$, $u' \neq 1$, such that $u' \mid r$. If not, $\gcd(u, r) = 1$ and $r \mid p^{\ell k} - 1$ implies $r \mid q^i st$. But $q^i \mid r$, so $r \mid q^{i - 1} st$, contradicting $r \in D_n$.

Thus, $r = q^i s't'u'$ for some $\ell \in \{0, \ldots, i - j\}$, $s' \mid s$, $t' \mid t$, $u' \mid u$, $u' \neq 1$. There are two cases to consider: $m_r = s'$ and $m_r = q^b s'$ for some $b \in \{0, \ldots, j - 1\}$.

Case 1: ($m_r = s'$) In this case $\ell \in \{0, \ldots, i - j\}$. It follows that

$$N(q^k, a, p) = \frac{1}{q^k \phi(s')} \sum_{r \in D_n} \phi(r)$$

$$= \frac{1}{q^k \phi(s')} \sum_{\ell \in \{0, \ldots, i - j\}} \phi(q^\ell) \phi(s') \phi(t') \phi(u')$$

$$= \frac{q^{i - j} t(u - 1)}{q^k}$$

$$= \frac{t(u - 1)}{q^{k - i + j}}$$

$$= N(q^k, 1, p).$$

Case 2: ($m_r = q^b s'$) We claim $\ell = i - j + b$ for some $b \in \{1, \ldots, j - 1\}$. If $\ell \leq i - j$, then $d_r = \gcd \left(r, \frac{p^k - 1}{p - 1} \right) = \gcd(q^b s't'u', q^{j - 1} tu) = q^{i - j} u'$ implies $b = 0$, a contradiction. Hence, $\ell > i - j$ and we can write $\ell = i - j + b$ for some $b \in \{1, \ldots, j - 1\}$. It follows that

$$80$$
\[N(q^k, a, p) = \frac{1}{q^k \phi(q^k s')} \sum_{r \in D_n} \phi(r) \]
\[= \frac{1}{q^k \phi(q^k s')} \sum_{t' \mid t, u' \mid u, u' \neq 1} \phi(q^{-j+b}) \phi(s') \phi(t') \phi(a') \]
\[= \frac{1}{q^k \phi(s') (q^b - q^{b-1})} \sum_{t' \mid t, u' \mid u, u' \neq 1} (q^{-j+b} - q^{-j+b-1}) \phi(s') \phi(t') \phi(a') \]
\[= \frac{t(u-1)}{q^k (q^b - q^{b-1})} \]
\[= \frac{t(u-1)}{q^{k-i+j}} \]
\[= N(q^k, 1, p). \]

It is worthwhile to note that Theorem 2.5, Theorem 4.1, and Theorem 4.2 each produce a formula for \(N(q^k, a, p) \) that depends only on whether or not \(a \) is a \(q \)-residue. In particular, \(N(q^k, a, p) \) takes only one or two distinct values for a given \(q^k \) and \(p \). The following relationship is particularly interesting:

Corollary 4.2.1. Let \(\gcd(q, p-1) = q \) and \(k \in \mathbb{N} \). If \(a \) is a non-\(q \)-residue and \(b \) a \(q \)-residue in \(\mathbb{Z}_p^* \), then

\[N(q^k, a, p) - N(q^k, b, p) = N(q^{k-1}, a, p). \]

While this corollary shows that the difference between \(N(q^k, a, p) \) and \(N(q^k, b, p) \) increases as \(k \) increases, we will show that the ratio \(\frac{N(q^k, a, p)}{N(q^k, b, p)} \) approaches one. If \(\gcd(p-1, q) = 1 \), then by Theorem 2.5 the constant terms of all monic irreducible polynomials are uniformly distributed. Thus, the ratio \(\frac{N(q^k, a, p)}{N(q^k, b, p)} \) equals one for any \(a, b \in \mathbb{Z}_p^* \).

Notice that by Theorem 3.2 the number of irreducible monic polynomials with constant term \(a \), where \(a \) is not a \(q \)-residue and \(\gcd(p-1, q) = q \), is given by

\[\frac{p^a - 1}{q^k (p-1)}, \]

and when \(b \) is a \(q \)-residue, the number is

\[\frac{p^b - qp^{b-1} + q - 1}{q^k (p-1)}. \]

Hence the ratio

\[\frac{N(q^k, a, p)}{N(q^k, b, p)} = \frac{p^a - 1}{q^k (p-1)} \cdot \frac{q^k (p-1)}{p^b - qp^{b-1} + q - 1} \]

approaches one as \(k \) approaches infinity.

This shows us that the proportions of constant terms of monic irreducible polynomials are asymptotically equal, as their limits show a uniform distribution among the constant terms.
References

