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Abstract: We obtain explicit formulas for the number of monic irreducible polynomials with
prescribed constant term and degree qk over a finite field. These formulas are derived from work
done by Yucas. We show that the number of polynomials of a given constant term depends only
on whether the constant term is a residue in the underlying field. We further show that as k
becomes large, the proportion of irreducible polynomials having each constant term is asymptot-
ically equal.
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1 Introduction

The distribution of primes across equivalence classes in modular arithmetic is a well-studied
problem in number theory. According to Dirichlet’s Theorem, the proportion of primes in each
equivalence class for a given modulus is asymptotically equal. When only primes less than some
finite bound are considered, however, there are usually more primes of the form 4n + 3 than of
the form 4n + 1, a phenomenon known as Chebyshev’s bias. Rubinstein and Sarnak show in [4]
that, assuming the Generalized Riemann Hypothesis, this bias generalizes to other moduli: for a
fixed k, primes of the form kn + a are more common when a is not a quadratic residue mod k
than when it is.
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In this paper, we will show that a related bias holds for monic irreducible polynomials over
Zp whose degree is qk for some odd prime q. In this case, the number of monic irreducible
polynomials with a given constant term a is related to whether a is a residue in the underlying
field. As the degree grows larger, however, the proportion of such polynomials ending in each
possible constant term is asymptotically equal.

Throughout this paper, p and q are assumed to be odd primes, φ denotes the Euler phi function,
and Φn denotes the nth cyclotomic polynomial. Much of the other notation follows Yucas in [5].

Let N(n, a, p) denote the number of monic irreducible polynomials over Zp of degree n with
constant term (−1)na. We limit our discussion to polynomials where the degree is a power
of an odd prime. To establish a formula for N(n, a, p), Yucas considers the possible orders of
irreducible polynomials. For n ∈ N, define a set

Dn = {r : r|pn − 1 but r - pm − 1 for 1 ≤ m < n}.

Note that Dn is the set of possible orders of polynomials of degree n over Z∗p. For any r ∈ Dn,

we can write r = drmr where dr = gcd
(
r, p

n−1
p−1

)
. When n is a power of a prime, we have the

following characterization of Dn:

Lemma 1.1. Let n = qk for some k ∈ N, then

Dn = {r : r|pqk − 1 but r - pqk−1 − 1}.

Proof. Note that gcd(pq
k−1, pm−1) = pgcd(q

k,m)−1 (see Lemma 12.6 in [1]). If gcd(qk,m) = 1

and r ∈ Dn with r|pm− 1, then r|p− 1. Otherwise, r|pm− 1 for some divisor m of qk, i.e., r|pqi

for some 0 ≤ i < k. But pqi − 1 divides pqk−1 − 1 for any 0 ≤ i ≤ k − 1.

Lemma 1.1 allows us to focus our attention on divisors of pqk−1 − 1 instead of looking for all
possible values of m where r|pm − 1. Using this set Dn and the order of the element a ∈ Z∗p,
Yucas derives the following formula for N(n, a, p):

Theorem 1.2 ([5, Theorem 3.5]). Suppose a ∈ Z∗p has order m. Then

N(n, a, p) =
1

nφ(m)

∑
r∈Dn
mr=m

φ(r).

While this gives a method for computing N(n, a, p) in any case, it does not provide a clear way
to compare different cases. Our goal is to establish the distribution of constant terms for a fixed p
and qk for k ∈ N. This depends on the distribution of qth powers in Z∗p.

Definition 1.3. Let a ∈ Z∗p. If there is some b ∈ Z∗p such that bq ≡ a (mod p), then a is a
q-residue in Z∗p.

As we see in Theorem 1.4, the distribution of q-residues in Z∗p depends on whether q divides p−1,
which allows us to determine the number of q-residues in Z∗p in Proposition 1.5.
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Theorem 1.4 ([3, Theorem 2.37]). If p is a prime and gcd(a, p) = 1, then the congruence
xn ≡ a (mod p) has gcd(n, p−1) solutions or no solution according as a

p−1
gcd(n,p−1) ≡ 1 (mod p)

or not.

Proposition 1.5. If gcd(q, p − 1) = q, then there are p−1
q
q-residues in Z∗p. Otherwise, every

element of Z∗p is a q-residue.

Proof. Observe that gcd(a, p) = 1 for every a ∈ Z∗p. If gcd(q, p − 1) = q, then q|p − 1.
By Theorem 1.4, for any a ∈ Z∗p, xq ≡ a (mod p) has gcd(q, p − 1) = q solutions or no
solutions. Hence p−1

q
values of a have a solution to that equation. If gcd(q, p − 1) = 1, then

a
p−1
1 ≡ 1 (mod p) because Z∗p has p− 1 elements. So every a ∈ Z∗p is a q-residue.

In Section 2, we will consider the case where gcd(q, p − 1) = 1. We will prove that for any
a ∈ Z∗p,

N(qk, a, p) =
pq

k − pqk−1

qk(p− 1)
.

In the case where gcd(q, p − 1) = q, the value of N(qk, a, p) depends on whether or not a is a
q-residue in Z∗p. We will address this in Sections 3 and 4. In particular, we will show that

N(qk, a, p) =
pq

k − 1

qk(p− 1)

whenever a is not a q-residue in Z∗p and

N(qk, a, p) =
pq

k − qpqk−1
+ q − 1

qk(p− 1)

whenever a is a q-residue in Z∗p.
In Yucas’s formula, N(qk, a, p) represents the number of irreducible monic polynomials with

a constant term of (−1)q
k
a. In our case, we assume q is an odd prime, hence N(qk, a, p) is the

number of monic irreducible polynomials with a constant term of −a. Since a is a q-residue if
and only if −a is a q-residue, N(qk, a, p) is the number of irreducible monic polynomials with
constant term either a or −a.

2 A formula for N(qk, a, p) when gcd(q, p− 1) = 1

Before we can compute N(qk, a, p) when gcd(q, p − 1) = 1, we need to present some ancillary
results. Recall that r = drmr where dr = gcd

(
r, p

n−1
p−1

)
and mr is the order of r in Z∗p.

Lemma 2.1. Let r ∈ Dn. Then r|pn−1
p−1 if and only if mr = 1.

Proof. If r divides pn−1
p−1 , then dr = r implies mr = 1. Conversely, mr = 1 implies r = dr and

thus r divides pn−1
p−1 .
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Theorem 2.2. Let n = qk for some k ∈ N, and let R1 = {r ∈ Dn : mr = 1}. Then

R1 =

{
r ∈ N : r|p

qk − 1

p− 1
and r - pqk−1 − 1

}
.

Proof. Let S =
{
r ∈ N : r|pq

k−1
p−1 and r - pqk−1 − 1

}
. Let r ∈ R1, then mr = 1 implies r|pq

k−1
p−1

by Lemma 2.1. By the definition of Dn, r does not divide pm − 1 for any 1 ≤ m < n and hence
r - pqk−1 − 1. So r ∈ S and R1 ⊆ S.

Next suppose r ∈ S. By Lemma 1.1, r ∈ Dn, andmr = 1 by Lemma 2.1. Thus, S ⊆ R1.

Corollary 2.2.1. Let k ∈ N, n = qk, and gcd(q, p− 1) = 1. For any r ∈ Dn, dr ∈ R1.

Proof. Since r ∈ Dn with order mr, r - pqk−1 − 1, say t is a prime dividing r but not pqk−1 − 1.

If t|mr, then t|p − 1 which means t|pqk−1 − 1, a contradiction. So t|dr, thus dr - pqk−1 − 1. By

definition of dr, dr|p
qk−1
p−1 , hence dr ∈ R1.

Lemma 2.3. For i ∈ N, gcd(Φq(p
i), p− 1) ≤ q.

Proof. Let s = gcd(Φq(p
i), p− 1). Then, we can write p− 1 = st for some t ∈ N. It follows that

Φq(p
i) = Φq((st+ 1)i) = (st+ 1)i(q−1) + (st+ 1)i(q−2) + ...+ (st+ 1)i + 1.

Expanding this expression yields q ones, and since s divides the remaining terms on that side of
the equation as well as Φq(p

i), s|q.

Lemma 2.4. For k ∈ N,

gcd

(
pq

k − 1

p− 1
, pq

k−1 − 1

)
=

 q · pq
k−1−1
p−1 if gcd(q, p− 1) = q

pq
k−1−1
p−1 if gcd(q, p− 1) = 1

.

Proof. Observe that pqk − 1 = (p− 1)
k−1∏
i=0

Φq

(
pq

i
)

. Hence

gcd

(
pq

k − 1

p− 1
, pq

k−1 − 1

)
= gcd

(
k−1∏
i=0

Φq

(
pq

i
)
, (p− 1)

k−2∏
i=0

Φq

(
pq

i
))

=

[
k−2∏
i=0

Φq

(
pq

i
)]

gcd
(

Φq

(
pq

k−1
)
, p− 1

)
=

[
pq

k−1 − 1

p− 1

]
gcd

(
Φq

(
pq

k−1
)
, p− 1

)
.

By Lemma 2.3, gcd
(

Φq

(
pq

k−1
)
, p− 1

)
equals 1 or q depending on whether q divides p− 1.

Corollary 2.4.1. For k ∈ N, if gcd(q, p−1) = 1, then gcd
(
pq

k−1
p−1 , p− 1

)
=1. If gcd(q, p− 1) = q,

then q is the only prime divisor of gcd
(

pq
k−1
p−1 , p− 1

)
.
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Proof. The results follow from the previous two lemmas and the fact that

pq
k − 1 = (p− 1)

k−1∏
i=0

Φq

(
pq

i
)
.

Theorem 2.5. Let k ∈ N, gcd(q, p− 1) = 1, and a ∈ Z∗p, then

N(qk, a, p) =
pq

k − qpqk−1

qk(p− 1)
.

Proof. Let n = qk and a have order m. By [5, Theorem 3.5], we have

N(qk, a, p) =
1

qkφ(m)

∑
r∈Dn
mr=m

φ(r).

For any r ∈ Dn with mr = m, we can write r = mrdr with gcd(mr, dr) = 1 by Corollary 2.4.1.
Thus, we have

N(qk, a, p) =
1

qkφ(m)

∑
r∈Dn
mr=m

φ(mr)φ(dr).

Recalling that
∑
d|n
φ(d) = n, we use Corollary 2.2.1 and properties of the Euler φ function to get

N(qk, a, p) =
1

qk

∑
dr| p

n−1
p−1

dr -pq
k−1−1

φ(dr) =
1

qk

 ∑
dr| p

n−1
p−1

φ(dr)−
∑

dr| gcd( p
n−1
p−1

,pqk−1−1)

φ(dr)

 .
From Lemma 2.4 we know

gcd

(
pq

k − 1

p− 1
, pq

k−1 − 1

)
=
pq

k−1 − 1

p− 1
,

thus

N(qk, a, p) =
1

qk

[
pq

k − 1

p− 1
− pq

k−1 − 1

p− 1

]

=
pq

k − 1− (pq
k−1 − 1)

qk(p− 1)

=
pq

k − qpqk−1

qk(p− 1)
.

3 Results when gcd(q, p− 1) = q and a is not a q-residue

When gcd(q, p−1) = q,Z∗p contains non q-residues as well as q-residues. The value ofN(qk, a, p)

depends on whether or not a is a q-residue. In this section, we will prove N(qk, a, p) = pq
k−1

qk(p−1)
when a is not a q-residue. Theorem 3.1 is important in proving this result, since it classifies the
maximum power of q dividing mr when r is not a q-residue.
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Theorem 3.1. Let Z∗p = 〈a〉 and let p− 1 = qis for some integer s with gcd(q, s) = 1 and some
i ∈ N. Let b = ak for some k ∈ Z with the order of b being mb. The following are equivalent.

1. b is not a q-residue.

2. qi|mb

3. q - gcd(k, p− 1).

Proof. First, we will show (1) ⇒ (2). Assume qi - mb, then mb = qjt for some 0 ≤ j < i and
integer t dividing s (since mr|p− 1) with gcd(q, t) = 1. Notice

ap−1 ≡ 1 ≡ bmb ≡ ambk (mod p).

So, p− 1|mbk, that is, (qis)|(qjtk) where j < i, hence qi−j|k, say k = qi−ju for some integer u.
It follows that

b = ak = aq
i−ju = (aq

i−j−1u)q

is a q-residue.
Next, we will prove (2) ⇒ (3). Assume qi|mb, then mb = qit for some integer t dividing s

with gcd(q, t) = 1. It follows that

|ak| = |b| = mb = qit =
p− 1

gcd(k, p− 1)
=

qis

gcd(k, p− 1)

and thus q - gcd(k, p− 1).
Finally, to show that (3) ⇒ (1), assume b is a q-residue, say b = ak = aqm for some m ∈ Z.

Then p− 1|(k − qm) implies (p− 1)u = k − qm for some u ∈ Z. Note qisu = k − qm implies
k = qisu+ qm. Since p− 1 and k are both divisible by q, so is gcd(k, p− 1).

Theorem 3.2. Let k ∈ N, gcd(q, p− 1) = q, and let a ∈ Z∗p be a non q-residue. Then,

N(qk, a, p) =
pq

k − 1

qk(p− 1)
.

Proof. Let n = qk and r ∈ Dn. Let p − 1 = qis for some integer s with gcd(s, q) = 1 and
i ∈ N. Since a is not a q-residue, and since mr|p− 1, by Theorem 3.1, mr = qiv for some integer

v such that v|s and with gcd(v, q) = 1. We can also write pq
k−1
p−1 = qjt for some integer t with

gcd(q, t) = 1 and j ∈ N. We claim that gcd(v, t) = 1. By Corollary 2.4.1, if gcd(p, q − 1) = q,
then q is the only prime divisor of

gcd

(
pq

k − 1

p− 1
, p− 1

)
= gcd

(
qjt, qis

)
.

Since mr divides p− 1, then q must also be the only prime divisor of gcd(qjt, qiv). We note that
since gcd(v, q) = gcd(t, q) = 1, and that q must be the only divisor of gcd(qjt, qiv), then we
must have gcd(v, t) = 1.
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We claim that r = qi+jvu for some u that divides t. Recall r = mrdr where dr = gcd
(
r, p

qk−1
p−1

)
,

and we have assumed mr = qiv. Since mr has qi as a factor, then dr must have qj as a factor as
well. The reasoning for this is if dr = q`u with gcd(q, u) = 1 and ` < j, then

dr = gcd

(
r,
pq

k − 1

p− 1

)
= gcd(mrdr, q

jt) = gcd((qiv)(q`u), qjt) = q`u

This implies that u must divide t. Observe that j ≥ ` + 1 and i + ` ≥ ` + 1 (because
i 6= 0), hence gcd((qiv)(q`u), qjt) should be divisible by q`+1, contradicting our assumption
that dr = q`u. Thus, qj|dr, and we can write dr = qju for some integer u which divides t and
where gcd(q, t) = 1. It follows that r = mrdr = (qiv)(qju) = qi+jvu where u|t. Note that
Corollary 2.4.1 implies that gcd(s, t) = 1. Thus, gcd(u, v) = 1 since u|t and v|s.

Now we can prove the theorem. By [5, Theorem 3.5], we have

N(qk, a, p) =
1

qkφ(m)

∑
r∈Dn
mr=m

φ(r).

The previous paragraph allows us to write

N(qk, a, p) =
1

qkφ(qi)φ(v)

∑
r∈Dn
u|t

φ(qi+jvu).

We can rewrite the φ(r) from this expression as φ(qi+i)φ(v)φ(u) since

gcd(v, q) = gcd(u, q) = gcd(v, u) = gcd(v, t) = gcd(q, t) = 1.

Now such an r from Dn cannot divide pm − 1 for any m < qk, but Lemma 1.1 implies we need
only check for divisors that come from pq

k−1 − 1. In this case, the fact that qi+j divides r and

pq
k − 1 =

(
pq

k − 1

p− 1

)
(p− 1) = (qjt)(qis) = qi+jst

prevents r from dividing pq` − 1 when ` < k. Hence we can say

N(qk, a, p) =
1

qkφ(qi)φ(v)

∑
u|t

φ(qi+j)φ(v)φ(u).

Using properties of the Euler φ function, we get

N(qk, a, p) =
φ(qi+j)φ(v)

qkφ(qi)φ(v)

∑
u|t

φ(u)

=
qi+j − qi+j−1

qk(qi − qi−1)
∑
u|t

φ(u)

=
qi+j−1(q − 1)

qkqi−1(q − 1)

∑
u|t

φ(u)

=
qjt

qk

=
pq

k − 1

qk(p− 1)
.
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4 Results when gcd(q, p− 1) = q and a is a q-residue

In Section 3, we were able to directly compute N(pk, a, p) when gcd(q, p − 1) = q and a is not
a q-residue. In order to compute N(qk, a, p) when gcd(q, p − 1) = q and a is a q-residue, we
will first compute N(qk, 1, p). We will then prove that N(qk, a, p) = N(qk, 1, p) whenever a is a
q-residue.

Theorem 4.1. Let k ∈ N and gcd(q, p− 1) = q, then

N(qk, 1, p) =
pq

k − qpqk−1
+ q − 1

qk(p− 1)
.

Proof. Let n = qk and let r ∈ Dn with mr = 1. By [5, Theorem 3.5], we have

N(qk, 1, p) =
1

qkφ(1)

∑
r∈Dn
mr=1

φ(r).

By Theorem 2.2 and properties of the Euler φ function, we get

N(qk, 1, p) =
1

qk

∑
r| p

n−1
p−1

r-pqk−1−1

φ(r) =
1

qk

 ∑
r| pn−1

p−1

φ(r)−
∑

r| gcd( pn−1
p−1

,pqk−1−1)

φ(r)

 .

From Lemma 2.4 we know

gcd

(
pq

k − 1

p− 1
, pq

k−1 − 1

)
= q · p

qk−1 − 1

p− 1
,

thus

N(qk, 1, p) =
1

qk

[
pq

k − 1

p− 1
− qp

qk−1 − 1

p− 1

]

=
pq

k − 1− q(pqk−1 − 1)

qk(p− 1)

=
pq

k − qpqk−1
+ q − 1

qk(p− 1)
.

Theorem 4.2. Let k ∈ N, k ≥ 2, gcd(q, p− 1) = q, and a be a q-residue. Then

N(qk, 1, p) = N(qk, a, p).

Proof. Let p− 1 = qjs, where gcd(s, q) = 1 and j ∈ N. Since p− 1|pqk−1 − 1, this implies that
pq

k−1 is a multiple of qjs. Furthermore, we can write pqk−1 − 1 = qi−1st where gcd(s, t) = 1,

gcd(t, q) = 1, and i− 1 > j. By Corollary 2.4.1, the only prime divisor of gcd
(

pq
k−1−1
p−1 , p− 1

)
is q, so gcd(s, t) = 1 and i− 1 > j.
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Now consider pqk − 1. We have pqk−1 − 1|pqk − 1, hence we can write pqk − 1 = qistu where
gcd(u, q) = gcd(s, tu) = 1. Note by Lemma 2.4, since qi−1|pqk−1 − 1, we have qi|pqk − 1.

Let n = qk and r ∈ Dn be a q-residue. Recall mr|p − 1, that is, mr|qjs. We also have

r = mrdr where dr = gcd
(
r, p

qk−1
p−1

)
= gcd(r, qi−jtu). By Theorem 3.1, r being a q-residue

implies qj does not divide mr (i.e., mr can have any power of q except the maximum qj).

First, let us evaluate N(qk, 1, p). If mr = 1, then r|pq
k−1
p−1 by Lemma 2.1 and r - pqk−1 − 1

because r ∈ Dn. In other words, r|qi−jtu and r - qi−1st. We claim that there exists u′ 6= 1

such that u′|r and u′|u. If not, then gcd(u, r) = 1 implies r|qi−jst. But then r|qi−1st, which is a
contradiction. Thus, r = q`t′u′ for some ` ∈ {0, . . . , i− j}, t′|t, u′|u, u′ 6= 1. Now we have

N(qk, 1, p) =
1

qkφ(1)

∑
r∈Dn
mr=1

φ(r)

=
1

qk

∑
`∈{0,...,i−j}
t′|t,u′|u,u′ 6=1

φ(q`)φ(t′)φ(u′)

=
qi−jt(u− 1)

qk

=
t(u− 1)

qk−i+j
.

Now suppose mr 6= 1, say mr = qbs′ for some b ∈ {0, . . . , j − 1} and s′|s. Note that
b ≤ j − 1 implies qj - mr and so qi - r. We claim that there exists u′|u, u′ 6= 1, such that u′|r.
If not, gcd(u, r) = 1 and r|pqk − 1 implies r|qist. But qi - r, so r|qi−1st, contradicting r ∈ Dn.

Thus, r = q`s′t′u′ for some ` ∈ {0, . . . , i − 1}, s′|s, t′|t, u′|u, u′ 6= 1. There are two cases to
consider: mr = s′ and mr = qbs′ for some b ∈ {0, . . . , j − 1}.

Case 1: (mr = s′) In this case ` ∈ {0, . . . , i− j}. It follows that

N(qk, a, p) =
1

qkφ(s′)

∑
r∈Dn
mr=s′

φ(r)

=
1

qkφ(s′)

∑
`∈{0,...,i−j}
t′|t,u′|u,u′ 6=1

φ(q`)φ(s′)φ(t′)φ(u′)

=
qi−jt(u− 1)

qk

=
t(u− 1)

qk−i+j

= N(qk, 1, p).

Case 2: (mr = qbs′) We claim ` = i − j + b for some b ∈ {1, . . . , j − 1}. If ` ≤ i − j, then

dr = gcd
(
r, p

qk−1
p−1

)
= gcd(q`s′t′u′, qi−jtu) = q`t′u′ implies b = 0, a contradiction. Hence,

` > i− j and we can write ` = i− j + b for some b ∈ {1, . . . , j − 1}. It follows that
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N(qk, a, p) =
1

qkφ(qbs′)

∑
r∈Dn

mr=qbs′

φ(r)

=
1

qkφ(qbs′)

∑
t′|t,u′|u,u′ 6=1

φ(qi−j+b)φ(s′)φ(t′)φ(u′)

=
1

qkφ(s′)(qb − qb−1)
∑

t′|t,u′|u,u′ 6=1

(qi−j+b − qi−j+b−1)φ(s′)φ(t′)φ(u′)

=
(qi−j+b − qi−j+b−1)t(u− 1)

qk(qb − qb−1)

=
t(u− 1)

qk−i+j

= N(qk, 1, p).

It is worthwhile to note that Theorem 2.5, Theorem 4.1, and Theorem 4.2 each produce a
formula for N(qk, a, p) that depends only on whether or not a is a q-residue. In particular,
N(qk, a, p) takes only one or two distinct values for a given qk and p. The following relationship
is particularly interesting:

Corollary 4.2.1. Let gcd(q, p − 1) = q and k ∈ N. If a is a non q-residue and b a q-residue in
Z∗p, then

N(qk, a, p)−N(qk, b, p) = N(qk−1, a, p).

While this corollary shows that the difference between N(qk, a, p) and N(qk, b, p) increases
as k increases, we will show that the ratio N(qk,a,p)

N(qk,b,p)
approaches one. If gcd(p− 1, q) = 1, then by

Theorem 2.5 the constant terms of all monic irreducible polynomials are uniformly distributed.
Thus, the ratio N(qk,a,p)

N(qk,b,p)
equals one for any a, b ∈ Z∗p.

Notice that by Theorem 3.2 the number of irreducible monic polynomials with constant term
a, where a is not a q-residue and gcd(p− 1, q) = q, is given by

pq
k − 1

qk(p− 1)
,

and when b is a q-residue, the number is

pq
k − qpqk−1 + q − 1

qk(p− 1)
.

Hence the ratio
N(qk, a, p)

N(qk, b, p)
=

pq
k − 1

qk(p− 1)
· qk(p− 1)

pqk − qpqk−1 + q − 1

approaches one as k approaches infinity.
This shows us that the proportions of constant terms of monic irreducible polynomials are

asymptotically equal, as their limits show a uniform distribution among the constant terms.
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