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1 Introduction  

This is an attempt to extend Carlitz’ multisection techniques to generalized binomial coefficients 

[1]. Carlitz has utilized multivariable generating functions to treat the sums of products of what 

Riordan [2] calls the cycles of binomial coefficients. These cycles have the form 
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and they are part of number theory called multisection of series. Their properties have been 

developed in a series of beautiful papers by Carlitz [3, 4, 5, 6, 7]. They are related to lacunary 

recurrence formulas [8, 9] which were expounded by Lehmer [9], who developed them for the 

Bernoulli and Euler numbers [11]. 

2 Multisections 

Multisection of series is a very old process which uses the primitive roots of unity to divide a 

given series into a number of sections [12]. If r is a primitive m-th root of unity, that is 1,mr 

1,r  then the k-th m-section of the series w(x) can be defined by 
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is a generating function for Horadam’s generalized sequence of numbers    qpbaww nn ,;,  

[13], for which we define 
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It follows that 
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Then with the corresponding Binet formula for the general terms: 
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(2.2) 

in which mm

mv    is a Lucas primordial number expressed in terms of the roots, assumed 

distinct, of the characteristic equation of  nw . On equating coefficients of x in (3.2), we can 

rearrange the terms to obtain the rather elegant result 
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where the right-hand side is the Kronecker delta. When j is unity, we get Equation (3.16) of 

Horadam [14]. 
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3 Cycles of generalized binomial coefficients 

Carlitz [1] used the fact that  

1
0 )1(

1




 








 
 i

j

j v
v

j

ji
. 

A neat analogue of this can be readily developed from Carlitz and Riordan [15]: put ,m j 1,x 

,n i y v   in Equation (7.4) of that paper and 
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in which we have Carlitz’ q-series analogue of the binomial coefficient 
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We also note a generalized cycle of Carlitz [17] which can be expressed as: 
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in which there are Fermatian q-numbers [18] which can be expressed as 
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Here the q is not necessarily the same as that of Horadam. For the origin of the more general  

q-series, see Eduard Heine [19].  

We now investigate a cycle of length two with mixed coefficients: 
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These are developed further by extending ideas outlined and developed in Riordan [20] and 

Carlitz [1].  
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The coefficient of w0 in (3.1) is the generating function 
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and the left-hand side of (3.1) can also be expressed as 
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and the coefficient of w0 in this is 
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is an associated Legendre polynomial [21]. It is related to the Legendre polynomial when n = m. 

Some of these ideas lead naturally into problems associated with the Jackson calculus of 

sequences [22] and the Staudt–Clausen Theorem [23].  

Henry Gould also pioneered some q-extensions of infinite sums of analogous sums [24] after 

proving similar results with ordinary binomial coefficients [25]. 

4 Conclusion 

In this paper, we have made an attempt to find different patterns of non-zero distinct  

integer solutions to the bi-quadratic equation with three unknowns given by 
2 2 411( ) 3( ) 10x y x y z    . As bi-quadratic equations are rich in variety, one may search for 

integer solutions to other choices of bi-quadratic and higher order equations with multivariaties 

along with suitable properties. 
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