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Abstract: A polynomial sequence is a sequence of n positive integers which represents the
values of an integer polynomial at the first n positive integers. We extend this notion to dif-
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points. Characterizations and their algebraic structures are determined.
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1 Introduction

Throughout the entire paper, n is a fixed positive integer. By a polynomial sequence (of length
n), we mean a sequence a := (a1, a2, ...., an) ∈ Zn for which there exists f(x) ∈ Z[x] such
that f(i) = ai (i = 1, 2, . . . , n), and f(x) is referred to as a polynomial which generates
the sequence a. Denote by Pn the set of all polynomial sequences. Cornelius and Schultz in [1]
characterized Pn using Lagrange and (implicitly) Newton interpolation polynomials and
determined the structure of Zn/Pn. In [4], the results of Cornelius–Schultz have been
generalized from Z to an integral domain D.
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Our first objective here is to extend these results further to differential polynomial sequences,
the concept that we now describe. Let I = (i1, i2, . . . , in) ∈ Dn with is 6= it for s 6= t, let
rj ∈ N0 := N ∪ {0} (j = 1, . . . , n), and let

A =
(
a
(0)
1 , a

(1)
1 , . . . , a

(r1)
1 , a

(0)
2 , a

(1)
2 , . . . , a

(r2)
2 , . . . , a(0)n , a(1)n , . . . , a(rn)n

)
∈ Dr1+···+rn+n.

If there exists f(x) ∈ D[x] \ {0} such that

f (m)(ij) = a
(m)
j (m = 0, 1, . . . , rj; j = 1, 2, . . . , n), (1)

then A is referred to as a D-pol seq (differential polynomial sequence) of order R = (r1, . . . , rn)

with respect to I , and denote the set of all differential polynomial sequences by ℘(R, I). It is easy
to check that the set ℘(R, I) is an abelian group under addition, and for c ∈ D if A ∈ ℘(R, I),
then c · A ∈ ℘(R, I), which shows that ℘(R, I) is a D-module.

Our second objective is to introduce and investigate the concept of difference polynomial
sequences. Let I = (1, 2, . . . , n) ∈ Zn. For a polynomial f(x), define its differences, [2, Section
2.7], by

(∆f)(x) = (∆1f)(x) := f(x + 1)− f(x)

(∆nf)(x) := (∆n−1f)(x + 1)− (∆n−1f)(x) (n ≥ 2).

For k ∈ {1, 2, . . . , n− 1}, let

Z[x]n := {f(x) ∈ Z[x] : deg f < n}
∆kZ[x]n := {g(x) ∈ Z[x]n−k : there exists f(x) ∈ Z[x]n such that (∆kf)(x) = g(x)}
∆kPn := {b := (b1, . . . , bn−k) ∈ Zn−k : there is f(x) ∈ Z[x] satisfying (∆kf)(i) = bi

(1 ≤ i ≤ n− k)}

The set ∆kPn is referred to as a ∆k-pol seq (kth difference polynomial sequence). The last part
of this work is to derive characterizations and related direct sum decompositions of the set ∆kPn.

2 Differential polynomial sequences

Recall, [5, Theorem 1], that there is a unique polynomial

H(x) := HA,I(x) ∈ DQ[x] (DQ the quotient field of D)

of degree less than n +
∑n

j=1 rj satisfying the same relations as in (1), viz.,

H(m)(ij) = a
(m)
j (0 ≤ m ≤ rj, 1 ≤ j ≤ n).

This polynomial, referred to as a generalized Hermite interpolation polynomial, has the following
explicit form

H(x) =
n∑

j=1

rj∑
m=0

Aj,m(x) a
(m)
j , (2)
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where

Aj,m(x) = Lj(x)
(x− ij)

m

m!

rj−m∑
t=0

1

t!
g
(t)
j (ij) (x− ij)

t

Lj(x) = (x− i1)
r1+1(x− i2)

r2+1 · · · (x− ij−1)
rj−1+1(x− ij+1)

rj+1+1 · · · (x− in)rn+1

gj(x) = 1/Lj(x).

(3)

We start with a characterization of ℘(R, I).

Theorem 2.1. Keeping the above notation, the sequence

A =
(
a
(0)
1 , a

(1)
1 , . . . , a

(r1)
1 , a

(0)
2 , a

(1)
2 , . . . , a

(r2)
2 , . . . , a(0)n , a(1)n , . . . , a(rn)n

)
is a D-pol seq (of order R with respect to I) if and only if its generalized Hermite interpolation
polynomial H(x), as in (2), is in D[x].

Proof. If A ∈ ℘(R, I), then there exists f(x) ∈ D[x] such that (1) holds. Let

p(x) := (x− i1)
r1+1(x− i2)

r2+1 · · · (x− in)rn+1 ∈ D[x], deg p(x) = n +
n∑

j=1

rj.

Since p(x) is monic, by the division algorithm, f(x) = q(x)p(x) + r(x), where q, r ∈ D[x] with
r ≡ 0 or deg r < n +

∑n
j=1 rj . Taking derivatives, we get

f (k)(x) =
k∑

m=0

(
k

m

)
p(m)(x)q(k−m)(x) + r(k)(x) (1 ≤ k ≤ rj).

It is easy to check that p(m)(ij) = 0 for all 1 ≤ j ≤ n, 0 ≤ m ≤ rj . Evaluating at these points,
we see that r(m)(ij) = f (m)(ij) = a

(m)
j . The uniqueness of the generalized Hermite interpolation

polynomial, H(x), shows then that H(x) ≡ r(x) ∈ D[x].
Conversely, if the Hermite interpolation polynomial, H(x), is in D[x], it is indeed a polyno-

mial generating the sequence A.

We proceed next to derive another characterization based on divided differences and Newton
polynomials. Given a set of n +

∑n
j=1 rj points (ij, a

(m)
j ) ∈ D2 (1 ≤ j ≤ n, 0 ≤ m ≤ rj) with

distinct ij . Recall, [5, p. 44], that the divided difference corresponding to these points is defined
by

[i1, . . . , i1︸ ︷︷ ︸
r1+1

, i2, . . . , i2︸ ︷︷ ︸
r2+1

, . . . , in, . . . , in︸ ︷︷ ︸
rn+1

] =
n∑

j=1

rj∑
m=0

1

m!

1

(rj −m)!
g
(rj−m)
j (ij) a

(m)
j ,

where the functions gj’s are as defined in (3). Apart from the explicit shape in (2) (Hermite form),
the unique interpolation polynomial corresponding to these points has another representation,
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known as its Newton form,

N(x) = [i1] + [i1, i1]p1(x) + · · ·+ [i1, . . . , i1︸ ︷︷ ︸
r1+1

, i2]p
r1+1
1 (x)

+ [i1, . . . , i1︸ ︷︷ ︸
r1+1

, i2, i2]p2(x) + · · ·+ [i1, . . . , i1︸ ︷︷ ︸
r1+1

, i2, . . . , i2︸ ︷︷ ︸
r2+1

, i3]p
r2+1
2 (x) + · · ·

+ [i1, . . . , i1︸ ︷︷ ︸
r1+1

, i2, . . . , i2︸ ︷︷ ︸
r2+1

, . . . , in, . . . , in︸ ︷︷ ︸
rn+1

]prnn (x)

=
n∑

j=1

 rj∑
q=1

[i1, . . . , i1︸ ︷︷ ︸
r1+1

, . . . , ij, . . . , ij︸ ︷︷ ︸
q+1

] pqj(x) + [i1, . . . , i1︸ ︷︷ ︸
r1+1

, . . . , ij, . . . , ij︸ ︷︷ ︸
rj+1

, ij+1] p
rj+1(x)


(4)

where

pqj(x) =

(
j−1∏
h=1

(x− ih)rh+1

)
(x− ij)

q (1 ≤ j ≤ n, 1 ≤ q ≤ rj + 1). (5)

The elements p0(x) := 1, pqj(x) are referred to as the Newton basis polynomials.
By the uniqueness of the interpolation polynomial and Theorem 2.1, we deduce that A is a

D-pol seq if and only if N(x) ≡ H(x) ∈ D[x]. Equating coefficients, we have:

Theorem 2.2. Keeping the above notation, the sequence A is a D-pol seq (of order R with respect
to I) if and only if all the divided differences

[i1], [i1, . . . , i1︸ ︷︷ ︸
r1 + 1

, i2], . . . , [i1, . . . , i1︸ ︷︷ ︸
r1 + 1

, i2, . . . , i2︸ ︷︷ ︸
r2+1

, i3], . . . , [i1, . . . , i1︸ ︷︷ ︸
r1 + 1

, . . . , in, . . . , in︸ ︷︷ ︸
rn + 1

]

are elements of D.

We collect now several special cases, whose straightforward verifications are omitted.

Corollary 2.2.1. Let A = (a, a(1), . . . , a(k)) ∈ Dk+1 and c ∈ D. Then

I. there exists T (x) = b0+b1(x−c)+ · · ·+bk(x−c)k ∈ D[x], where bj = a(j)/j! ∈ DQ (j =

0, 1, 2, . . . , k), such that T (j)(c) = aj for all j.

II. A is a D-pol seq⇐⇒ bj ∈ D for all j ⇐⇒ j! | a(j) for all j.

III. k!A is a D-pol seq; moreover, k! is the least positive integer for which this is true for such
sequence of length k + 1.

3 Difference polynomial sequences

Throughout this section, we fix the sequence I = (1, 2, . . . , n) and take D = Z. Clearly, ∆kZ[x]n
is a subset of Z[x]n−k; it is indeed a proper subset as seen from the example f(x) = 3x+1 ∈ Z[x]2
which is not an element of ∆Z[x]3 because ∆(ax2 + bx + c) = 2ax + a + b 6= 3x + 1 when
a, b, c ∈ Z. However, it is easy to check that both ∆kZ[x]n and ∆kPn are abelian groups under
addition. In fact, they are isomorphic as we now show using the same technique as in [1].
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Theorem 3.1. For 1 ≤ k ≤ n, the group
(
∆kZ[x]n,+

)
is isomorphic to

(
∆kPn,+

)
.

Proof. Since for each g(x) ∈ ∆kZ[x]n, there is a polynomial f(x) ∈ Z[x]n such that (∆kf)(x) =

g(x), define a map v : ∆kZ[x]n → ∆kPn by

v(g)(= v(∆kf)) := (∆kf(1),∆kf(2), . . . ,∆kf(n− k)).

It is easy to see that v is an additive homomorphism. To show that v is an isomorphism, it remains
to show that v is bijective. Let c = (c1, c2, . . . , cn−k) ∈ ∆kPn. Then there exists fc(x) ∈ Z[x]

such that
(∆kfc)(i) = ci (1 ≤ i ≤ n− k).

Recall from (5) that the Newton basis polynomials of order R = (0, . . . , 0) corresponding to
I = (1, 2, . . . , n) are

p0(x) := 1, pn(x) := (x− 1)(x− 2) · · · (x− n) ∈ Z[x]n+1 (n ∈ N). (6)

Since each pn(x) is monic, by the division algorithm,

fc(x) = q(x)pn(x) + r(x),

where q, r ∈ Z[x] with deg r ≤ n− 1 or r ≡ 0. Let m1(x) = xq(x + 1)− (x− n)q(x) ∈ Z[x],

mj(x) = xmj−1(x + 1)− (x− n + j − 1)mj−1(x) (2 ≤ j ≤ k).

Then
(∆kfc)(x) = (∆k qpn)(x) + (∆kr)(x) = pn−k(x)mk(x) + (∆kr)(x),

with deg(∆kr) ≤ n− k− 1, or ∆kr ≡ 0. Evaluating at i ∈ {1, . . . , n− k}, we see that (∆kr)(x)

generates the sequence c, which shows that v is surjective.
To show that v is injective, let g1, g2 ∈ ∆kZ[x]n with g1 = ∆kf1, g2 = ∆kf2 (f1, f2 ∈ Z[x]n)

be such that(
∆kf1(1), . . . ,∆kf1(n− k)

)
= v(g1(x)) = v(g2(x)) =

(
∆kf2(1), . . . ,∆kf2(n− k)

)
,

and so ∆kf1(i) = ∆kf2(i) (1 ≤ i ≤ n− k). Since both deg ∆kf1 and deg ∆kf2 are < n− k, and
the two polynomials agree at n− k distinct points, they must be identical, i.e., v is injective.

Our next result gives a necessary and sufficient condition for a sequence c ∈ Zn−k to be an
element in ∆kPn.

Theorem 3.2. Let c = (c1, c2, . . . , cn−k) ∈ Zn−k whose Newton interpolation polynomial (4) of
order R = (0, . . . , 0) is

Nc(x) =
n−k−1∑
i=0

dipi(x) ∈ Q[x]. (7)

Then c ∈ ∆kPn if and only if each di is an integer divisible by

(i + k)!/i! = (i + 1)(i + 2) · · · (i + k) (0 ≤ i ≤ n− k − 1).
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Proof. If c = (c1, c2, . . . , cn−k) ∈ Zn−k ∩ ∆kPn, then from the definition and the proof of
Theorem 3.1 there is f(x) ∈ Z[x]n satisfying

(∆kf)(i) = ci (1 ≤ i ≤ n− 1),

i.e., (∆kf)(x) generates c. The two polynomials Nc(x) and (∆f)(x) being of degree < n − k

and agreeing on n− k points, must be identical. Let the polynomial f(x) be written with respect
to Newton basis polynomials as

f(x) =
n−1∑
i=0

bipi(x),

and so all coefficients bi ∈ Z. Using ∆kpi(x) = i(i− 1) · · · (i− k + 1)pi−k(x), we get

n−k−1∑
i=0

dipi(x) = Nc(x) = (∆kf)(x) =
n−k−1∑
i=0

(i + 1)(i + 2) · · · (i + k)bi+k pi(x).

Equating coefficients, we get

di = (i + 1)(i + 2) · · · (i + k)bi+k (0 ≤ i ≤ n− k − 1), (8)

which shows that all di ∈ Z and (i + 1)(i + 2) · · · (i + k) | di.
Conversely, if each coefficient di in the Newton interpolation polynomial Nc(x) in (7) is

an integer divisible by (i + 1)(i + 2) · · · (i + k), i.e., the relation (8) holds, then retreating the
above steps, we see that the integers bk, . . . , bn−1 are uniquely determined from the di’s, while the
integers b0, . . . , bk−1 can be given arbitrarily. The sequence c is thus generated by (∆kf)(x) with
f(x) =

∑n−1
i=0 bipi(x), showing that c ∈ ∆kPn.

Remarks. In the last part of the proof of Theorem 3.2, the fact that the integer coefficients
b0, . . . , bk−1 can be chosen arbitrarily is a consequence of the fact that the operator ∆k annihilates
all polynomials of degree ≤ k − 1. Should these integers be required to be uniquely determined,
one possible condition to be imposed is that c ∈ ∆jPn for all j = 1, . . . , k.

The algebraic structures of related quotient groups will be explicitly determined next.

Theorem 3.3. For positive integers n ≥ 2 and 1 ≤ k ≤ n− 1, we have

I. Zn−k/∆kPn
∼= Z/k!Z⊕Z/(k + 1)!Z⊕Z/(k + 2)!Z⊕Z/(k + 3)!Z⊕ · · · ⊕Z/(n− 1)!Z.

II. Pn−k/∆kPn
∼= Z/k!

0!
Z ⊕ Z/ (k+1)!

1!
Z ⊕ Z/ (k+2)!

2!
Z ⊕ · · · ⊕ Z/ (n−1)!

(n−k−1)!
Z.

Proof. I. Since the Newton polynomials pi(x) (i = 0, 1, . . . , n − 1) as in (6), form a basis for
the Z-module Z[x]n, and for j ≥ k since

∆kpj(x) = j(j − 1) · · · (j − k + 1)pj−k(x) =
j!

(j − k)!
pj−k(x),

the polynomials

k!

0!
p0(x),

(k + 1)!

1!
p1(x),

(k + 2)!

2!
p2(x), . . . ,

(n− 1)!

(n− k − 1)!
pn−k−1(x)
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are elements of ∆kZ[x]n. In fact, it is easy to check that these elements form a Z-basis for
the Z-module ∆kZ[x]n. The map v : ∆kZ[x]n → ∆kPn, as defined in Theorem 3.1, being an
isomorphism shows then that the elements

v

(
s!

(s− k)!
ps−k(x)

)
(s = k, k + 1, . . . , n− 1)

form a Z-basis for ∆kPn. Let C = (ci,j)1≤i,j≤n−k be an (n−k)× (n−k) lower triangular matrix
with

ci,j =


{(k + j − 1)(k + j − 2) · · · j} · {(i− 1)(i− 2) · · · (i− j + 1)} if 2 ≤ j ≤ i ≤ n− k

k! if j = 1

0 if 1 ≤ i < j ≤ n− k.

= (k + j − 1)!

(
i− 1

j − 1

)
Clearly, the elements

v ((k + j − 1)(k + j − 2) · · · j pj−1(x)) = v

(
(k + j − 1)!

(j − 1)!
pj−1

)
(j = 1, 2, . . . , n− k)

represent the jth column of C. Next, let A = (ai,j)1≤i,j≤n−k be an (n − k) × (n − k) lower
triangular matrix with

ai,j =


(
i−1
j−1

)
if 2 ≤ j ≤ i ≤ n− k

1 if j = 1

0 if 1 ≤ i < j ≤ n− k,

=

(
i− 1

j − 1

)

and denote the jth column of A by e(j − 1) (j ∈ {1, 2, . . . , n − k}). Since A is unimodular,
i.e., detA = 1, we see that the elements e(j − 1) (j = 1, 2, . . . , n− k) form a Z-basis for Zn−k.
Let D be the (n− k)× (n− k) diagonal matrix whose jth diagonal entry is (k + j − 1)!, where
j = 1, 2, . . . , n− k. It is easily checked that C = AD, which in turn shows that

v ((k + j − 1)(k + j − 2) · · · j pj−1(x)) = (k + j − 1)! e(j − 1) (j = 1, 2, . . . , n− k),

and so {(k + j − 1)! e(j − 1) : j = 1, 2, . . . , n− k} forms a Z-basis for ∆kPn. Consequently, by
[3, Chapters 6, 8]

Zn−k/∆kPn =

〈
e(0)

〉
⊕
〈
e(1)

〉
⊕
〈
e(2)

〉
⊕ · · · ⊕

〈
e(n− k − 1)

〉
k!
〈
e(0)

〉
⊕ (k + 1)!

〈
e(1)

〉
⊕ (k + 2)!

〈
e(2)

〉
⊕ · · · ⊕ (n− 1)!

〈
e(n− k − 1)

〉
=

〈
e(0)

〉
k!
〈
e(0)

〉 ⊕ 〈
e(1)

〉
(k + 1)!

〈
e(1)

〉 ⊕ 〈
e(2)

〉
(k + 2)!

〈
e(2)

〉 ⊕ · · · ⊕ 〈
e(n− k − 1)

〉
(n− 1)!

〈
e(n− k − 1)

〉
∼= Z/k!Z⊕ Z/(k + 1)!Z⊕ Z/(k + 2)!Z⊕ Z/(k + 3)!Z⊕ · · · ⊕ Z/(n− 1)!Z.

II. As seen above, the set {(j − 1)!e(j − 1) | j = 1, . . . , n − k} forms a Z-basis for Pn−k, and
from part I, the set {(k + j − 1)!e(j − 1) | j = 1, 2, . . . , n− k} is a Z-basis for ∆kPn. Thus, by

64



[3, Chapters 6, 8] we have

Pn−k

∆kPn

=
0!
〈
e(0)

〉
⊕ 1!

〈
e(1)

〉
⊕ 2!

〈
e(2)

〉
⊕ · · · ⊕ (n− k − 1)!

〈
e(n− k − 1)

〉
k!
〈
e(0)

〉
⊕ (k + 1)!

〈
e(1)

〉
⊕ (k + 2)!

〈
e(2)

〉
⊕ · · · ⊕ (n− 1)!

〈
e(n− k − 1)

〉
=

〈
e(0)

〉
k!
〈
e(0)

〉 ⊕ 〈
e(1)

〉
(k + 1)!

〈
e(1)

〉 ⊕ 〈
e(2)

〉
3 · · · (k + 2)

〈
e(2)

〉 ⊕ · · · ⊕ 〈
e(n− 2)

〉
(n− k) · · · (n− 1)

〈
e(n− 2)

〉
∼= Z

/ k!

0!
Z ⊕ Z

/ (k + 1)!

1!
Z ⊕ Z

/ (k + 2)!

2!
Z ⊕ · · · ⊕ Z

/ (n− 1)!

(n− k − 1)!
Z.
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