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1 Introduction

The theory of formal power series is a useful tool in various branches of mathematics. It can
be applied, among others, in number theory [1], combinatorics [10], automata theory [5] and
statistics [4]. The theory of formal power series can be formulated in various ways. An elementary
approach to the theory of formal power series in one variable is presented by Niven [8]. A book
on formal power series in one variable is written by Wilf [13].

A formal power series in one variable is an expression of the form

∞
∑
i=0
a(i)θi.

It is in fact an efficient way to present the sequence or the arithmetical function (a(i))∞i=0.
The coefficient of θi gives the (i + 1)-st element in the sequence or the value of the
arithmetical function at i. For example, the formal power series 1+θ2+θ4+⋯ is an expression of
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the sequence (1,0,1,0,1, . . .). It can also be written as 1/(1−θ2). In the context of formal power
series we need not consider the convergence of the power series. We can handle it purely as an
algebraic object without analytic tools. Further, we do assign any value to the variable θ.
Therefore, it may be referred to as an indeterminate.

The purpose of this paper is to present the theory of formal power series in several variables
(or indeterminates) in an elementary way. This theory is a generalization of Niven’s theory. We
refer to a formal power series in n variables as an n-way array of complex or real numbers and
investigate its algebraic properties without analytic tools. We also consider the formal derivative,
logarithm and exponential of a formal power series in n variables. We give some applications to
the theory of multiplicative arithmetical functions in several variables and the theory of cumulants
in statistics.

2 Definition and basic properties

Definition 2.1. Suppose that a(i1, . . . , in) is a complex number for all i1, . . . , in ∈ N0, the set of
nonnegative integers. Then by a formal power series

∑
i1,...,in≥0

a(i1, . . . , in)θ
i1
1 ⋯θ

in
n

in n variables θ1, . . . , θn we mean the n-way array

(a(i1, . . . , in)∶ i1, . . . , in ∈ N0).

We denote by Pr the set of formal power series, whose coefficents are real numbers. By P0

and P1 we mean the sets of formal power series such that a(0, . . . ,0) = 0 and a(0, . . . ,0) = 1,
respectively.

We use the capital letters A,B,C to denote formal power series. The symbols a(i1, . . . , in),
b(i1, . . . , in), c(i1, . . . , in) stand for their coefficients.

Definition 2.2. The sum and product of formal power series are defined as

A +B = ∑
i1,...,in≥0

(a(i1, . . . , in) + b(i1, . . . , in))θ
i1
1 ⋯ θ

in
n

AB = ∑
i1,...,in≥0

( ∑
sj+tj=ij
j=1,...,n

a(s1, . . . , sn)b(t1, . . . , tn))θ
i1
1 ⋯ θ

in
n .

Further,

A = B ⇔ a(i1, . . . , in) = b(i1, . . . , in) for all i1, . . . , in ∈ N0,

A = 0 ⇔ a(i1, . . . , in) = 0 for all i1, . . . , in ∈ N0,

A = 1 ⇔ a(0, . . . ,0) = 1, a(i1, . . . , in) = 0 otherwise.

Theorem 2.1. The set of formal power series forms an integral domain with respect to the
addition and multiplication.
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Proof. We prove only that AB = 0 implies A = 0 or B = 0. Suppose AB = 0, but A ≠ 0

and B ≠ 0. Fix the indices j1, . . . , jn in the following way: Let j1 be the smallest index such that
a(j1, i2, . . . , in) ≠ 0 for some i2, . . . , in. Let j2 be the smallest index such that
a(j1, j2, i3, . . . , in) ≠ 0 for some i3, . . . , in. Continue in the similar manner. Let us fix the
indices k1, . . . , kn similarly using the coefficents of B. Then

∑
si+ti=ji+ki
i=1,...,n

a(s1, . . . , sn)b(t1, . . . , tn) = ∑
si+ti=ji+ki
i=2,...,n

a(j1, s2, . . . , sn)b(k1, t2, . . . , tn)

⋮

= a(j1, . . . , jn)b(k1, . . . , kn)

≠ 0,

which is impossible since AB = 0. This proves that A = 0 or B = 0.

3 Powers

Definition 3.1. Inverse of a formal power series A is defined by

AA−1 = A−1A = 1.

Theorem 3.1. If an inverse of a formal power series exists, it is unique.

Proof. Assume that AB = BA = 1 and AC = CA = 1. Then

B = B(AC) = (BA)C = C.

This proves the theorem.

Theorem 3.2. The inverse of A exists if and only if a(0, . . . ,0) ≠ 0.

Proof. Denote A−1 = B. Then the coefficients of B are determined by the equations

a(0, . . . ,0)b(0, . . . ,0) = 1,

a(1,0, . . . ,0)b(0, . . . ,0) + a(0, . . . ,0)b(1,0, . . . ,0) = 0,

⋮

∑
sj+tj=ij
j=1,...,n

a(s1, . . . , sn)b(t1, . . . , tn) = 0.

This has a solution in B if and only if a(0, . . . ,0) ≠ 0.

Definition 3.2. For m ∈ N, the set positive integers, define

Am = A⋯A (m factors).
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Lemma 3.1. Suppose that B ∈ P1. Then Bm ∈ P1. Denote Bm = C. Then

c(1,0, . . . ,0) =mb(1,0, . . . ,0),

c(0,1,0, . . . ,0) =mb(0,1,0, . . . ,0),

⋮

c(k1, . . . , kn) =ma(k1, . . . , kn)+

fm,k1,...,kn(a(i1, . . . , in)∶ ij ≤ kj, j = 1,2, . . . , n; (i1, . . . , in) ≠ (k1, . . . , kn))

where fm,k1,...,kn is a function of [(k1 + 1)⋯(kn + 1)] − 1 variables.

Theorem 3.3. Let A ∈ P1 and m ∈ N. Then there is a unique B ∈ P1 such that Bm = A.

Proof. Theorem 3.3 follows easily by Lemma 3.1.

Definition 3.3. Let A ∈ P1 and m ∈ N. Then the m-th root of A is the unique B ∈ P1 such that
Bm = A and it is denoted as B = A1/m.

Theorem 3.4. Let a(0, . . . ,0) ≠ 0 and m ∈ N. Then

(A−1)m = (Am)−1.

Proof. Clearly
Am(A−1)m = (AA⋯A)(A−1A−1⋯A−1) = 1;

hence the result holds.

Definition 3.4. Let A be any formal power series. Then define A0 = 1. If a(0, . . . ,0) ≠ 0 and
m ∈ N, then define

A−m = (Am)−1.

Definition 3.5. Let m ∈ Z, ` ∈ N and A ∈ P1. Then the (m/`)th power of A is defined as

Am/` = (A1/`)m.

Theorem 3.5. Suppose that A,B ∈ Pr and m ∈ N. Then, if m is odd, Am = Bm implies A = B,
and if m is even, Am = Bm implies A = ±B.

Proof. Clearly it is enough to consider the case A,B ≠ 0. Suppose that Am = Bm. Then,
Am −Bm = 0 or

m

∏
j=1

(A − ωjB) = 0,

where ω is an nth root of unity. Therefore

A − ωjB = 0

for some j = 1, . . . ,m. Since A,B ≠ 0 and the coefficients of A and B are real numbers, we have

A − ωjB ≠ 0

for all nonreal values of ωj . If m is odd, 1 is the only real number that ωj can catch up, and if m
is even, ωj can be ±1. Therefore, we have the theorem.
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4 Derivatives

Definition 4.1. The derivative of A with respect to the variable θk is defined by

Dk(A) = ∑
i1,...,in≥0

(ik + 1)a(i1, . . . , ik−1, ik + 1, ik+1, . . . , in)θ
i1
1 ⋯θ

in
n .

The m-th derivative is defined in the natural way and is denoted by Dm
k .

Definition 4.2. The scalar of A is defined by

S(A) = a(0, . . . ,0).

Theorem 4.1. We have

A = ∑
i1,...,in≥0

S(Di1
1 ⋯D

in
n (A))

i1!⋯in!
θi11 ⋯θ

in
n .

Proof. It can be shown that S(Di1
1 ⋯D

in
n (A)) = (i1!⋯in!)a(i1, . . . , in). The theorem follows from

this result.

Theorem 4.2. We have

Dk(A +B) =Dk(A) +Dk(B),

Dk(AB) =Dk(A)B +ADk(B),

Dk(A
m) =mAm−1Dk(A), m ∈ N,

Dk(A
−m) = −mA−m−1Dk(A), m ∈ N.

Proof. We prove only the second statement. The others are evident. Without loss of generality we
may assume that k = 1. Then the general coefficent of the formal power series of the right-hand
side is

∑
sj+tj=ij
j=1,...,n

(s1 + 1)a(s1 + 1, s2, . . . , sn)b(t1, . . . , tn) + ∑
sj+tj=ij
j=1,...,n

(t1 + 1)a(s1, . . . , sn)b(t1 + 1, t2, . . . , tn)

=
i1+1
∑
s1=1

∑
sj+tj=ij
j=2,...,n

s1a(s1, . . . , sn)b(i1 + 1 − s1, t2, . . . , tn)

+
i1

∑
s1=0

∑
sj+tj=ij
j=2,...,n

(i1 + 1 − s1)a(s1, . . . , sn)b(i1 + 1 − s1, t2, . . . , tn)

=
i1

∑
s1=1

∑
sj+tj=ij
j=2,...,n

(i1 + 1)a(s1, . . . , sn)b(i1 + 1 − s1, t2, . . . , tn)

+ ∑
sj+tj=ij
j=2,...,n

(i1 + 1)a(s1, . . . , sn)b(0, t2, . . . , tn)

+ ∑
sj+tj=ij
j=2,...,n

(i1 + 1)a(0, s2, . . . , sn)b(i1 + 1, t2, . . . , tn)

= (i1 + 1) ∑
sj+tj=i1+1

∑
sj+tj=ij
j=2,...,n

a(s1, s2, . . . , sn)b(t1, t2, . . . , tn),
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which is the general coefficient of the formal power series of the left-hand side. Therefore, the
statement holds.

Theorem 4.3. Suppose that A ∈ P1 and r is rational number. Then

Dk(A
r) = rAr−1Dk(A).

Proof. Denote r =m/`. Then

Dk((A
r)`) = `(Ar)`−1Dk(A

r).

On the other hand
Dk((A

r)`) =Dk(A
m) =mAm−1Dk(A).

Combining the above equations gives the desired result.

Definition 4.3. A sequence A1,A2, . . . of formal power series admits addition if for each n-tuple
(r1, . . . , rn) there exists a positive integer N such that

aj(i1, . . . , in) = 0

for all j ≥ N and 0 ≤ i1 ≤ r1, . . . ,0 ≤ in ≤ rn.

Theorem 4.4. Suppose that A1,A2, . . . is a sequence admitting addition. Then

Dk(A1 +A2 +⋯) =Dk(A1) +Dk(A2) +⋯

Proof. For each n-tuple (r1, . . . , rn) the coefficent of (θ1)r1⋯(θn)rn in the sum A1 + A2 + ⋯ is
equal to the coefficent of (θ1)r1⋯(θn)rn in the sum A1 + ⋯ + AN . Therefore, the coefficents of
(θ1)r1⋯(θk−1)rk−1(θk)rk−1(θk+1)rk+1⋯(θn)rn in Dk(A1 +A2 +⋯) and Dk(A1) +Dk(A2) +⋯ are
equal. This proves the theorem.

5 A logarithm function

Definition 5.1. Let A ∈ P1, and denote A = 1+B, where B ∈ P0. Then the formal logarithm of A
is defined by

log(A) = log(1 +B) =
∞
∑
j=1

(−1)j+1
Bj

j
∈ P0.

Theorem 5.1. Let A ∈ P1 and k = 1,2, . . . , n. Then

Dk(log(A)) = A−1Dk(A).

Proof. By Theorem 4.4,

Dk(log(A)) =Dk(log(1 +B)) =Dk(
∞
∑
j=1

(−1)j+1
Bj

j
) =

∞
∑
j=1
Dk((−1)

j+1Bj

j
)

=
∞
∑
j=1

(−1)j+1Bj−1Dk(B) =Dk(B)
∞
∑
j=1

(−1)j−1Bj−1

=Dk(B)(1 +B)−1 =Dk(A)A−1.
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Theorem 5.2. If A,C ∈ P1, then

log(AC) = log(A) + log(C).

Proof. By Theorems 5.1 and 4.2, we obtain

Dk(log(AC)) = (AC)−1Dk(AC) = (AC)−1[ADk(C) +CDk(A)]

= A−1Dk(A) +C−1Dk(C) =Dk(log(A)) +Dk(log(C)) =Dk (log(A) + log(C)) .

Since log(AC), log(A) + log(C) ∈ P0, we can deduce the result.

Theorem 5.3. Let A ∈ P1 and let r be a rational number. Then

log(Ar) = r log(A).

Proof. By Theorem 5.2, this result holds for positive integers r. Since log(1) = 0, this result holds
for r = 0. Further, log(A) + log(A−1) = log(AA−1) = log(1) = 0 and consequently log(A−1) =
− log(A). By induction on r we obtain log(Ar) = r log(A) for all integers r. If r = m/`, where
m and ` (≠ 0) are integers, we see that m log(A) = log(Am) = log((Ar)`) = ` log(Ar). Thus
log(Ar) = (m/`) log(A) = r log(A). Thus the theorem holds.

Theorem 5.4. Let A,C ∈ P1. If log(A) = log(C), then A = C.

Proof. For any k = 1,2, . . . , n,

(AC−1)−1Dk(AC
−1) =Dk(log(AC

−1)) =Dk(log(A) − log(C)) =Dk(0) = 0.

Here
(AC−1)−1 ≠ 0

and thus
Dk(AC

−1) = 0.

Therefore
AC−1 = 1,

and so we obtain the theorem.

Theorem 5.5. If B ∈ P0 and r is a rational number, then

(1 +B)r = 1 + rB +
r(r − 1)

2!
B2 +⋯ +

r(r − 1)⋯(r − j + 1)

j!
Bj +⋯

Proof. We adopt the usual notation

r(r − 1)⋯(r − j + 1)

j!
= (

r

j
).

Let C denote the formal power series of the right-hand side of the equation in the theorem. Then
for each k = 1,2, . . . , n,

Dk(C) =Dk(B)
∞
∑
j=1
j(
r

j
)Bj−1,
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and further

(1 +B)Dk(C) =Dk(B)
∞
∑
j=1
j(
r

j
)Bj−1 +Dk(B)

∞
∑
j=1
j(
r

j
)Bj

=Dk(B)
∞
∑
j=1
j(
r

j
)Bj−1 +Dk(B)

∞
∑
j=2

(j − 1)(
r

j − 1
)Bj−1

=Dk(B)r +Dk(B)
∞
∑
j=2

[j(
r

j
) + (j − 1)(

r

j − 1
)]Bj−1

= rDk(B) +Dk(B)
∞
∑
j=2
r(

r

j − 1
)Bj−1

= rDk(B)
∞
∑
j=0

(
r

j
)Bj = rDk(B)C.

Thus
(1 +B)Dk(C) = rDk(B)C.

Multiplying both sides by C−1(1 +B)−1 we obtain

C−1Dk(C) = r(1 +B)−1Dk(B) = r(1 +B)−1Dk(1 +B)

or
Dk(logC) =Dk(log(1 +B)r).

Since Dk(logC),Dk(log(1 +B)r) ∈ P0, we have

logC = log(1 +B)r,

and thus, by Theorem 5.4,
C = (1 +B)r.

This completes the proof.

6 An exponential function

Definition 6.1. For B ∈ P0 the exponential function is defined by

expB =
∞
∑
j=0

1

j!
Bj ∈ P1.

Theorem 6.1. Let B ∈ P0 and k = 1,2, . . . , n. Then

Dk(expB) =Dk(B) expB.

Proof. Since expB admits addition, we have

Dk(expB) =Dk(B)
∞
∑
j=1

1

(j − 1)!
Bn−1 =Dk(B)

∞
∑
j=0

1

j!
Bj =Dk(B) expB.
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Theorem 6.2. Let B,C ∈ P0. If expB = expC, then B = C.

Proof. Let k = 1,2, . . . , n. Then

Dk(expB) =Dk(expC)

and further
Dk(B) expB =Dk(C) expC.

Since expB = expC ≠ 0, we have
Dk(B) =Dk(C)

for all k = 1,2, . . . , n. Therefore, B = C, which was to prove.

Theorem 6.3. Let B ∈ P0. Then log(expB) = B.

Proof. For each k = 1,2, . . . , n,

Dk(log(expB)) = (expB)−1Dk(expB) = (expB)−1(expB)Dk(B) =Dk(B).

Since B, log(expB) ∈ P0, we can conclude the result.

Theorem 6.4. Let A ∈ P1. Then exp(logA) = A.

Proof. By Theorem 6.3,
log(exp(logA)) = logA.

Thus, by Theorem 5.4, we obtain the result.

Theorem 6.5. Let B,C ∈ P0. Then

exp(B +C) = (expB)(expC).

Proof. By Theorems 5.2 and 6.3,

log((expB)(expC)) = log(expB) + log(expC) = B +C.

Thus, by Theorem 6.4, we obtain the result.

Remark 6.1. It is easy to see that P1 forms an Abelian group with respect to multiplication and
P0 forms an Abelian group with respect to addition. By Theorems 5.4 and 6.2–6.5 we see that
these groups are isomorphic.

7 Applications to multiplicative arithmetical functions

The theory of multiplicative arithmetical functions of several variables originates to the seminal
paper of Vaidyanathaswamy [12] from 1931. Recently, this theory has been developed, e.g.,
in [3, 6, 11]. Formal power series is a useful tool in this theory as was already noted in [12]. We
here review some basics.
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An arithmetical function f of r variables is said to be multiplicative [12] if f(1, . . . ,1) ≠ 0

and
f(m1n1, . . . ,mrnr) = f(m1, . . . ,mr)f(n1, . . . , nr)

for all positive integers m1, . . . ,mr and n1, . . . , nr with (m1⋯mr, n1⋯nr) = 1. Clearly, if f is
multiplicative, f(1, . . . ,1) = 1. A multiplicative function f of r variables is totally determined by
the values f(pi1 , . . . , pir), where p goes through all primes and i1, . . . , ir ≥ 0. This means that it
is totally determined by the formal power series

f(p)(θ1, . . . , θr) = ∑
i1,...,in≥0

f(pi1 , . . . , pir)θi11 ⋯θ
ir
r ,

where p goes through all primes.
An arithmetical function f of r variables is said to be firmly multiplicative [3] if f(1, . . . ,1) ≠

0 and
f(m1n1, . . . ,mrnr) = f(m1, . . . ,mr)f(n1, . . . , nr)

for all positive integers m1, . . . ,mr and n1, . . . , nr with (m1, n1) = ⋯ = (mr, nr) = 1. Each
firmly multiplicative function is multiplicative. A firmly multiplicative function f of r variables
is totally determined by the values

f(1, . . . ,1, ps

®
jth term

,1, . . . ,1),

where p goes through all primes, s goes through the integers ≥ 1 and j goes through all the
places from 1 to r. Each firmly multiplicative function f of r variables can be written in the form
f(n1, . . . , nr) = f1(n1)⋯fr(nr), where f1, . . . , fr are multiplicative functions of one variable
[11]. Therefore,

f(p)(θ1, . . . , θr) = (f1)(p)(θ1)⋯(fr)(p)(θr).

An arithmetical function f of r variables is said to be completely multiplicative (or linear) [12]
if f(1, . . . ,1) ≠ 0 and

f(m1n1, . . . ,mrnr) = f(m1, . . . ,mr)f(n1, . . . , nr)

for all positive integers m1, . . . ,mr and n1, . . . , nr. Each completely multiplicative function is
firmly multiplicative. A completely multiplicative function f of r variables is totally determined
by the values

f(1, . . . ,1, p
®

jth term

,1, . . . ,1),

where p goes through all primes and j goes through all the places from 1 to r. Each completely
multiplicative function f of r variables can be written in the form f(n1, . . . , nr) = f1(n1)⋯fr(nr),
where f1, . . . , fr are completely multiplicative functions of one variable [11]. Therefore,

f(p)(θ1, . . . , θr) = (f1)(p)(θ1)⋯(fr)(p)(θr) =
1

1 − f1(p)θ1
⋯

1

1 − fr(p)θr
.
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The Dirichlet convolution of arithmetical functions f and g of r variables is defined as

(f ∗ g)(n1, . . . , nr) = ∑
d1∣n1

⋯ ∑
dr ∣nr

f(d1, . . . , dr)g(n1/d1, . . . , nr/dr).

Let δ be the arithmetical function of one variable defined as δ(1) = 1 and δ(n) = 0 otherwise, and
let δr be the arithmetical function of r variables defined as δr(n1, . . . , nr) = δ(n1)⋯δ(nr). Then
δr is the identity under the Dirichlet convolution, and it is completely multiplicative. The Dirichlet
inverse f−1 of an arithmetical function f of r variables exists if and only if f(1, . . . ,1) ≠ 0. For
each prime p, we have

(f ∗ g)(p)(θ1, . . . , θr) = f(p)(θ1, . . . , θr)g(p)(θ1, . . . , θr).

Further,
(δr)(p)(θ1, . . . , θr) = 1,

and therefore, if f(1, . . . ,1) ≠ 0,

(f−1)(p)(θ1, . . . , θr) =
1

f(p)(θ1, . . . , θr)
,

If f is a completely multiplicative function of r variables given as f(n1, . . . , nr) = f1(n1)⋯fr(nr),
where f1, . . . , fr are completely multiplicative functions of one variable, then

(f−1)(p)(θ1, . . . , θr) = (1 − f1(p)θ1)⋯(1 − fr(p)θr).

This means that

f−1(n1, . . . , nr) = f
−1
1 (n1)⋯f

−1
r (nr) = µ(n1)f1(n1)⋯µ(nr)fr(nr),

where µ is the number-theoretic Möbius function [1].

8 Applications to the theory of cumulants

In this section we apply formal power series to define the cumulants of a random vector and
to prove some basic properties for them. A formal point of view has been used previously for
example in Speed [9] and Kendall & Stuart [4]. On the other hand, the cumulants are often defined
by the Taylor expansion of the logarithm of the characteristic function (see [7]) and by the Taylor
expansion of the logarithm of the moment generating function (see [2]). However, adopting a
formal point of view we avoid discussing questions such as convergence and remainders.

Definition 8.1. We define the cumulants κ(X(r1)1 . . .X
(rm)
m ), r1, . . . , rm ∈ N0, of a random vector

(X1, . . . ,Xm) by

∑
r1,...,rm≥0

κ(X
(r1)
1 . . .X

(rm)
m )

θr11 ⋯θ
rm
m

r1!⋯rm!
= log ∑

r1,...,rm≥0
E{Xr1

1 ⋯X
rm
m }

θr11 ⋯θ
rm
m

r1!⋯rm!
.

Remark 8.1. If the expression of a cumulant contains a moment that does not exist, then we
define that the cumulant does not exist.
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Theorem 8.1. If the moment E{Xr1
1 . . .Xrm

m } exists, then the cumulants κ(X(s1)1 . . .X
(sm)
m ) with

s1 ≤ r1, . . . , sm ≤ rm exist.

Remark 8.2. Using the Taylor series Leonov & Shiryaev ([7], pp. 319–320) noted that if the
moments E{Xr1

1 . . .Xrm
m } with r1+⋯+ rm ≤ n exist, then the cumulants κ(X(r1)1 . . .X

(rm)
m ) with

r1 +⋯ + rm ≤ n exist.

Proof. By Definition 8.1, we have

∑
i1,...,im≥0

κ(X
(i1)
1 . . .X

(im)
m )

θi11 . . . θ
im
m

i1!⋯im!
= log ∑

i1,...,im≥0
E{X i1

1 . . .X
im
m }

θi11 ⋯θ
im
m

i1!⋯im!

= ∑
i1,...,im≥0
i1+⋯+im>0

E{X i1
1 . . .X

im
m }

θi11 ⋯θ
im
m

i1!⋯im!
−
1

2
( ∑

i1,...,im≥0
i1+⋯+im>0

E{X i1
1 . . .X

im
m }

θi11 ⋯θ
im
m

i1!⋯im!
)

2

+
1

3
( ∑

i1,...,im≥0
i1+⋯+im>0

E{X i1
1 . . .X

im
m }

θi11 ⋯θ
im
m

i1!⋯im!
)

3

−
1

4
( ∑

i1,...,im≥0
i1+⋯+im>0

E{X i1
1 . . .X

im
m }

θi11 ⋯θ
im
m

i1!⋯im!
)

4

+ −⋯

It is easy to see that the coefficent of θs11 ⋯θ
sn
n consists of terms of the form E{X i1

1 . . .X
im
m },

where i1 ≤ s1, . . . , im ≤ sm. These moments exist and thus the cumulants κ(X(s1)1 . . .X
(sm)
m ) with

s1 ≤ r1, . . . , sm ≤ rm exist. This completes the proof.

Theorem 8.2. Suppose rij ∈ N0, i ∈ {1,2, . . . ,m}, j ∈ {1,2, . . . , ni} and (X1, . . . ,Xm) is a
random vector such that the moment E{X

r11+⋯+r1n1
1 ⋯X

rm1+⋯+rmnm
m } exists. Then

κ(X
(r11)
1 . . .X

(r1n1)
1 X

(r21)
2 ⋯X

(r2n2)
2 ⋯X

(rm1)
m ⋯X

(rmnm)
m )

= κ(X
(r11+⋯+r1n1)
1 X

(r21+⋯+r2n2)
2 ⋯X

(rm1+⋯+rmnm)
m ).

(1)

Proof. As the moment E{X
r11+⋯+r1n1
1 ⋯X

rm1+⋯+rmnm
m } exists, so by Theorem 8.1 the cumulants

in (1) exist. Further, in proving (1) it suffices to consider the case n1 = 2, n2 = ⋯ = nm = 1. Then

∑
r11,r12,r2,...,rm≥0

κ(X
(r11)
1 X

(r12)
1 X

(r2)
2 . . .X

(rm)
m )

θr1111 θ
r12
12 θ

r2
2 ⋯θ

rm
m

r11!r12!r2!⋯rm!

= log ∑
r11,r12,r2,...,rm≥0

E{Xr11+r12
1 Xr2

2 . . .Xrm
m }

θr1111 θ
r12
12 θ

r2
2 ⋯θ

rm
m

r11!r12!r2!⋯rm!

= log ∑
r1,r2,...,rm≥0

E{Xr1
1 X

r2
2 . . .Xrm

m }
(∑r11+r12=r1

r1!
r11!r12!

θr1111 θ
r12
12 )θr22 ⋯θ

rm
m

r1!r2!⋯rm!

= log ∑
r1,r2,...,rm≥0

E{Xr1
1 X

r2
2 . . .Xrm

m }
(θ11 + θ12)r1θ

r2
2 ⋯θ

rm
m

r1!r2!⋯rm!
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= ∑
r1,r2,...,rm≥0

κ(X
(r1)
1 X

(r2)
2 . . .X

(rm)
m )

(θ11 + θ12)r1θ
r2
2 ⋯θ

rm
m

r1!r2!⋯rm!

= ∑
r1,r2,...,rm≥0

κ(X
(r1)
1 X

(r2)
2 . . .X

(rm)
m )

(∑r11+r12=r1
r1!

r11!r12!
θr1111 θ

r12
12 )θr22 ⋯θ

rm
m

r1!r2!⋯rm!

= ∑
r11,r12,r2,...,rm≥0

κ(X
(r11+r12)
1 X

(r2)
2 . . .X

(rm)
m )

θr1111 θ
r12
12 θ

r2
2 ⋯θ

rm
m

r11!r12!r2!⋯rm!
.

Thus

∑
r11,r12,r2,...,rm≥0

κ(X
(r11)
1 X

(r12)
1 X

(r2)
2 . . .X

(rm)
m )

θr1111 θ
r12
12 θ

r2
2 ⋯θ

rm
m

r11!r12!r2!⋯rm!

= ∑
r11,r12,r2,...,rm≥0

κ(X
(r11+r12)
1 X

(r2)
2 . . .X

(rm)
m )

θr1111 θ
r12
12 θ

r2
2 ⋯θ

rm
m

r11!r12!r2!⋯rm!
.

This gives the result.

Theorem 8.3. Suppose that (X1, . . . ,Xm) is a random vector such that the momentsE{Xr1
1 . . .Xrk

k }

with k ≤m exist. Then

κ(X
(r1)
1 . . .X

(rk)
k X

(0)
k+1 . . .X

(0)
m ) = κ(X

(r1)
1 X

(r2)
2 . . .X

(rk)
k ). (2)

Proof. By Theorem 8.1 the cumulants in (2) exist. Let

coeff(
θr11 ⋯θ

rm
m

r1!⋯rm!
)[A]

denote the coefficient of
θr11 ⋯θ

rm
m

r1!⋯rm!
in the formal power series A. Then

κ(X
(r1)
1 . . .X

(rk)
k X

(0)
k+1 . . .X

(0)
m )

= coeff(
θr11 ⋯θ

rk
k

r1!⋯rk!
)[log ∑

i1,...,im≥0
E{X i1

1 . . .X
im
m }

θi11 ⋯θ
im
m

i1!⋯im!
]

= coeff(
θr11 ⋯θ

rk
k

r1!⋯rk!
)[

∞
∑
j=1

(−1)j+1

j
( ∑

i1,...,im≥0
i1+⋯+im>0

E{X i1
1 . . .X

im
m }

θi11 ⋯θ
im
m

i1!⋯im!
)

j

]

= coeff(
θr11 ⋯θ

rk
k

r1!⋯rk!
)[

∞
∑
j=1

(−1)j+1

j
( ∑

i1,...,ik≥0
i1+⋯+ik>0

E{X i1
1 . . .X

ik
k }

θi11 ⋯θ
ik
k

i1!⋯ik!

+ ∑
i1,...,im≥0

ik+1+⋯+im>0

E{X i1
1 . . .X

im
m }

θi11 ⋯θ
im
m

i1!⋯im!
)

j

]

= coeff(
θr11 ⋯θ

rk
k

r1!⋯rk!
)[

∞
∑
j=1

(−1)j+1

j
( ∑

i1,...,ik≥0
i1+⋯+ik>0

E{X i1
1 . . .X

ik
k }

θi11 ⋯θ
ik
k

i1!⋯ik!
)

j

]
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= coeff(
θr11 ⋯θ

rk
k

r1!⋯rk!
)[log ∑

i1,...,ik≥0
E{X i1

1 . . .X
ik
k }

θi11 ⋯θ
ik
k

i1!⋯ik!
]

= κ(X
(r1)
1 . . .X

(rk)
k ).

This completes the proof.
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