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1 Introduction

For q = exp(2πiτ), the Dedekind η-function η(τ) is defined for Im(τ) > 0 by

η(τ) = q1/24
∞∏
n=1

(1− qn), (1)

where here and throughout this paper, we assume |q| < 1. As customary, we define

(a; q)0 := 1, (a; q)n :=
n−1∏
k=0

(1− aqk) and (a; q)∞ :=
∞∏
n=0

(1− aqn).

For |ab| < 1, Ramanujan’s general theta-function and the Jacobi’s triple product identity [9, p.35]
is given by

f(a, b) :=
∞∑

n=−∞

an(n+1)/2bn(n−1)/2 = (−a; ab)∞(−b; ab)∞(ab; ab)∞.
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The three most important special cases of f(a, b) [9, p.36] are

ϕ(q) := f(q, q) =
∞∑

n=−∞

qn
2

= (−q; q2)2∞(q
2; q2)∞ =

(−q;−q)∞
(q;−q)∞

, (2)

ψ(q) := f(q, q3) =
∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

, (3)

f(−q) := f(−q,−q2) =
∞∑

n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞ := q−1/24η(τ). (4)

Also after Ramanujan, define
χ(q) := (−q; q2)∞,

The Bailey’s 6ψ6 summation formula [1] is defined as

∞∑
n=−∞

(qa
1/2
1 ,−qa1/21 , b1, c, d, e; q)n(qa

2
1/b1cde)

n

(a
1/2
1 ,−a1/21 , a1q/b1, a1q/c, a1q/d, a1q/e; q)n

=
(a1q, a1q/b1c, a1q/b1d, a1q/b1e, a1q/cd, a1q/ce, a1q/de, q, q/a1; q)∞
(a1q/b1, a1q/c, a1q/d, a1q/e, q/b1, q/c, q/d, q/e, qa21/b1cde; d)∞

,

where (a1, a2, ..., an; q)∞ = (a1; q)∞(a2; q)∞...(an; q)∞. Setting a1 = ab, b1 = a = c, d = b = e

in the summation formula and then replacing q by q4, we obtain

∞∑
n=−∞

[
aq4n

(1− aq4n)2
− bq4n

(1− bq4n)2

]
= af 6

4

f(−ab,−q4/ab)f(−b/a,−aq4/b)
f 2(−a,−q4/a)f 2(−b,−q4/b)

. (5)

The Ramanujan type Eisenstein’s series are defined as

P (q) := 1− 24
∞∑
m=1

mqm

1− qm
= 1− 24

∞∑
m=1

σ1(m)qm,

Q(q) := 1 + 240
∞∑
m=1

m3qm

1− qm
= 1− 240

∞∑
m=1

σ3(m)qm

and

R(q) := 1− 504
∞∑
m=1

m5qm

1− qm
= 1− 504

∞∑
m=1

σ5(m)qm.

If l is any positive integer, then Pl be defined by

Pl = P (ql).

Ramanujan, in his lost notebook [22], recorded some of the identities involving incomplete
elliptic integrals and integrals of theta functions. The function f is the Dedekind η-function
as defined in (1). If

v(q) :=
qf 3(−q)f 3(−q15)
f 3(−q3)f 3(−q5)

,
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then ∫ q

0

f(−t)f(−t3)f(−t5)f(−t15)dt = 1

5

∫ 2 tan−1(1/
√
5)

2 tan−1 1√
5

√
1−11v−v2

1+v−v2

dϕ√
1− 9

25
sin2 ϕ

.

We have never seen the identities of the above type. Furthermore, S. Raghavan and S. S.
Rangachari [20] have proved all these types of integral identities recorded by Ramanujan by
employing the modular forms. For example, for four identities including the above, Raghavan
and Rangachari appealed to differential equations satisfied by certain coefficients of η-functions
which can be found in [15]. In an effort to find Ramanujan methods and to better understand the
origin of these identities, Berndt et. al. [10] have devised the proofs independent of the theory
of modular forms. Particularly they have relied on the results found in his notebooks [23] and
lost notebook [22]. To prove these integrals Berndt et. al. [10] have used identities for the
Eisenstein series. These relations and several η-function identities are found in Ramanujan’s
second notebook and also from the unorganized pages of his lost note book. Using the represen-
tations of Eisenstein series, N. D. Baruah and B. C. Berndt [8] deduced several Ramanujan-type
series for 1/π. Also in [13], S. Cooper and S. Cooper and D. Ye [14] deduced some interesting
series for 1/π.

In this paper, we derive some relations between Eisenstein series. Using Eisenstein series
relations we construct certain differential equations. Also, using the above differential equations,
we deduce certain incomplete elliptic integrals. The relations between Eisenstein series are
also used to obtain an approximation to 3/π. Further, as an application, we evaluate certain
convolution sums for the derived identities involving Eisenstein series. Section 2 is dedicated to
record some preliminary results.

2 Preliminary results

For convenience, we denote f(−qn) by fn for a positive integer n. It is easy to see that

ϕ(−q) =
f 2
1

f2
, ψ(q) =

f 2
2

f1
, ϕ(q) =

f 5
2

f 2
1 f

2
4

, ψ(−q) = f1f4
f2

,

χ(q) =
f 2
2

f1f4
, χ(−q) = f1

f2
and f(q) =

f 3
2

f1f4
. (6)

Now, we define some formula for ϕ, ψ at different arguments in terms of α, q and
z := 2F1

(
1
2
, 1
2
; 1; α

)
, recorded by Ramanujan [9, pp.122−124].

ϕ(q) :=
√
z, (7)

ϕ(−q) :=
√
z(1− α)1/4, (8)

ϕ(−q2) :=
√
z(1− α)1/8, (9)

ϕ(q2) :=

√
z

2
(1 +

√
1− α)1/2, (10)
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ψ(q) :=

√
z

2

(
αq−1

)1/8
, (11)

ψ(−q) :=

√
z

2

(
α(1− α)q−1

)1/8
. (12)

Lemma 2.1. We have

ϕ(−q)ϕ(q) = ϕ2(−q2), (13)

ϕ(q)ψ(q2) = ψ2(q), (14)

ϕ2(q) + ϕ2(−q) = 2ϕ2(q2). (15)

Proof. The identities (13)−(15) are due to Ramanujan [21] and for a proof see [9].

Lemma 2.2. We have

1− xn = x1/n and z1/n =
√
nzn, (16)

P (e−2π
√
n) = (1− 2xn)

∞∑
k=0

(3k + 1)AkX
k
n, (17)

P (e−2π
√
2) + P (e−

√
2π) =

6
√
2

π
, (18)

where Xn = 4xn(1− xn) and Ak =
(1/2)3k
k!3

, k ≥ 0 .

Proof. For a proof one can see [7, 8].

Lemma 2.3. We have the following identities:

P1 − 2P2 = ϕ4(−q)− 2ϕ4(q), (19)

P1 − 4P4 = −3ϕ4(q), (20)

P2 − 2P4 = 8qψ4(q2)− ϕ4(q). (21)

Proof. For a proof of (19) and (20) one can see [25]. Proof of (21) follows directly by eliminating
P1 between (19) and (20).

3 Relations between the Eisenstein series P (q) and P (qn)

Theorem 3.1. We have

P1 − 3P2 + 2P4 = 6
ϕ2(q2)

ψ2(−q)
[
ϕ2(q2)ψ2(−q)− ϕ2(−q2)ψ2(q)

]
.

Proof. Setting a = q and b = −1 in (5), we obtain

∞∑
n=−∞

[
q4n+1

(1− q4n+1)2
+

q4n

(1 + q4n)2

]
= qf 6

4

f(q, q3)f(1/q, q5)

f 2(−q,−q3)f 2(1, q4)
,
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which is equivalent to

∞∑
n=0

q2n+1

(1− q2n+1)2
+

∞∑
n=−∞

q4n

(1 + q4n)2
=
ϕ4(−q4)ψ2(q)

4ψ2(−q)
. (22)

Setting a = q2 and b = −1 in (5), we find that

∞∑
n=−∞

[
q4n+2

(1− q4n+2)2
− q4n

(1 + q4n)2

]
= q2f 6

4

f(q2, q2)f(1/q2, q6)

f 2(−q2,−q2)f 2(1, q4)
.

Using the multiplicative identity [12, Entry 25, p. 40], ϕ4(−q4) = ϕ2(q2)ϕ2(−q2) and after
simplification, we obtain

2
∞∑
n=0

q4n+2

(1− q4n+2)2
+

∞∑
n=−∞

q4n

(1 + q4n)2
=
ϕ4(q2)

4
. (23)

Using (23) in (22) and the above multiplicative identity, we obtain

∞∑
n=0

q2n+1

(1− q2n+1)2
− 2

∞∑
n=0

q4n+2

(1− q4n+2)2
=
ϕ4(−q2)ψ2(q)

4ψ2(−q)
− ϕ4(q2)

4
.

Expanding each of these summands into a well known geometric series, then interchanging the
order of the summation, adding the inner geometric series and upon using the definition of Pn,
we complete the proof.

Theorem 3.2. We have

P2 − 6P4 + 8P8 = 12
ψ2(−q)
ψ2(q)

[
qψ4(−q2) + ϕ4(−q4)

4

]
.

Proof. Set a = −q2 and b = −q in (5), we obtain

∞∑
n=−∞

[
q4n+1

(1 + q4n+1)2
− q4n+2

(1 + q4n+2)2

]
= −q2f 6

4

f(−q3,−q)f(−1/q,−q5)
f 2(q2, q2)f 2(q, q3)

,

which is equivalent to

∞∑
n=−∞

q4n+1

(1 + q4n+1)2
− 2

∞∑
n=0

q2n+2

(1 + q2n+2)2
+ 2

∞∑
n=0

q4n+2

(1 + q4n+2)2
=
qψ(−q2)ψ2(−q)

ψ2(q)
. (24)

On setting a = −1 and b = −q in (5), we see that

∞∑
n=−∞

[
q4n+1

(1 + q4n+1)2
− q4n

(1 + q4n)2

]
= f 6

4

f(−q,−q3)
f 2(1, q4)f(q, q3)

,

which is equivalent to

∞∑
n=−∞

q4n+1

(1 + q4n+1)2
= 2

∞∑
n=1

q4n

(1 + q4n)2
− ϕ4(−q4)ψ2(−q)

4ψ2(q)
+

1

4
.
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Using (24) in the above and on simplification, we deduce that

4
∞∑
n=0

q4n

(1 + q4n)2
− 2

∞∑
n=1

q2n

(1 + q2n)2
=
ψ2(−q)
ψ2(q)

{
qψ4(−q2) + ϕ4(−q4)

4

}
− 1

4
.

We expand summands into geometric series, and then interchange the order of summation, adding
the inner geometric series and finally using the definition of Pn, we obtain the result.

Theorem 3.3. We have

P1 − 8P8 = −12
ψ2(−q)
ψ2(q)

[
qψ4(−q2) + ϕ4(−q4)

4
+

7

6
ϕ4(q) +

1

6
ϕ4(−q)

]
.

Proof. Replacing q by q1/7 in (5) and then setting a = −1 and b = q, we find that

P1 − 4P4 = −3ϕ4(q).

Using this in Theorem 3.2, we obtain

3P1 − 2P2 − 16P8 = −24
ψ2(−q)
ψ2(q)

[
qψ4(−q2) + ϕ4(−q4)

4

]
− 9ϕ4(q). (25)

Using (19) in (25), we complete the proof.

4 Construction of differential equations

Theorem 4.1. If

v := q1/8
f(−q4)
f(−q)

then
q

v

dv

dq
=
ϕ4(q)

8
.

Proof. By the definition of theta function, we note that

v = q1/8
f(−q4)
f(−q)

= q1/8
(q4; q4)∞
(q; q)∞

.

Logarithmically differentiating v, we deduce that

1

v

dv

dq
=

1

q

∞∑
n=1

nqn

1− qn
− 1

q

∞∑
n=1

4nq4n

1− q4n
+

1

8q
.

By the definition of Eisenstein series, we have

1

v

dv

dq
=

1

24q
[4P4 − P1] .

Using (20) in the above and then rearranging the terms, we arrive at the desired result.

35



Theorem 4.2. If

v := q7/24
f(−q8)
f(−q)

,

then
q

v

dv

dq
= −1

2

ψ2(−q)
ψ2(q)

[
qψ4(−q2) + ϕ4(−q4)

4

]
− 1

12
ϕ4(−q)− 7

12
ϕ4(q).

Proof. Logarithmically differentiating v, we find that

1

v

dv

dq
=

1

q

∞∑
n=1

nqn

1− qn
− 1

q

∞∑
n=1

8nq8n

1− q8n
+

7

24q

=
1

24q
[P1 − 8P8] .

Using Theorem 3.3 in the above, we complete the proof.

Theorem 4.3. If

v := q1/24
f(−q2)
f(−q)

then
q

v

dv

dq
=
ϕ4(q)

12
− ϕ4(−q)

24

Proof. By logarithmic differentiation of v, we deduce that

1

v

dv

dq
=

1

q

∞∑
n=1

nqn

1− qn
− 1

q

∞∑
n=1

2nq2n

1− q2n
+

1

24q
.

Using the definition of Eisenstein series, we obtain

q

v

dv

dq
=

2P2 − P1

24
.

Using (19) in the above, we get the required result.

Theorem 4.4. If

v := q−5/24
f(−q)f(−q4)
f(−q8)f(−q2)

,

then

q

v

dv

dq
= − ψ

2(−q)
12ψ2(q)

[
qψ4(−q2) + ϕ4(−q4)

4

]
− 1

12
ϕ4(−q)− 1

2
ϕ4(q)− 2

3
qψ4(q2).

Proof. By logarithmic differentiation of v, we deduce

1

v

dv

dq
= −1

q

∞∑
n=1

nqn

1− qn
+

1

q

∞∑
n=1

2nq2n

1− q2n
− 1

q

∞∑
n=1

4nq4n

1− q4n
+

1

q

∞∑
n=1

8nq8n

1− q8n
− 5

24q
.

By using the definition of Eisenstein series, we have

1

v

dv

dq
=

1

24
(P1 − 2P2 + 4P4 − 8P8).

Using Theorem 3.2 and (21), we obtain the result.
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Theorem 4.5. If

v :=
f 2(−q)f(−q4)

f 3(−q2)
,

then
q

v

dv

dq
=

ϕ2(q2)

4ψ2(−q)
[
ϕ2(q2)ψ2(−q)− ϕ2(−q2)ψ2(q)

]
.

Proof. By logarithmic differentiation of v and simplification, we find that

1

v

dv

dq
= −2

q

∞∑
n=1

nqn

1− qn
+

3

q

∞∑
n=1

2nq2n

1− q2n
− 1

q

∞∑
n=1

4nq4n

1− q4n
.

Now by the definition of Eisenstein series, we have

q

v

dv

dq
=

1

12
(P1 − 3P2 + 2P4).

Finally, using Theorem 3.1 in the above, we readily arrive at the required result.

Theorem 4.6. If

v := q1/4
f(−q2)f 2(−q8)

f 3(−q4)
,

then
q

v

dv

dq
=
ψ2(−q)
2ψ2(q)

[
qψ4(−q2) + ϕ4(−q4)

4

]
.

Proof. Logarithmically differentiating v, we deduce

1

v

dv

dq
=− 1

q

∞∑
n=1

2nq2n

1− qn
− 2

q

∞∑
n=1

8nq8n

1− q8n
+

3

q

∞∑
n=1

4nq4n

1− q4n
+

1

4q

= − 1

12q
[P2 − 6P4 + 8P8] .

Using Theorem 3.2 in the above and on simplifying, we obtain the result.

5 Ramanujan type series for 3/π

Theorem 5.1. We have

3

π
=
∞∑
k=0

[(8− 5
√
2)(3k + 1) + (1−

√
2)](2

√
2− 2)3kAk.

where Ak =
(1/2)3k
k!3

, k ≥ 0 .

We can prove this theorem in two methods.
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Proof. First method: Using (9)−(12) in Theorem 3.1, we obtain

P1 − 3P2 + 2P4 = −3(1− x2)z22 .

From [11, Theorem 9.2], we have x2 = (
√
2− 1)2. Substituting in the above, we obtain

P1 − 3P2 + 2P4 = −6(
√
2− 1)z22 . (26)

Setting q = e−π/
√
2 and employing (18) and (20) in (26), and then comparing with (17) , simpli-

fying, we obtain the desired result.

Alternate method: By using (9) − (12) in Theorem 3.2, we deduce

P2 − 6P4 + 8P8 = 12(1− x(q))1/4(1− x(q2))1/2z2(q2)
[
x(q2)1/2

4
+

1

4

]
. (27)

Setting q = e−π/
√
2 and using (16), we find that

x(e−π/
√
2) = 1− x(e−π

√
2) = 1− x2, z(e−π/

√
2) =

√
2z(e−π

√
2) =

√
2z2.

Substituting these in (27), we have

P2 − 6P4 + 8P8 = 12x
1/4
2 (1− x2)1/2z22

[
x
1/2
2

4
+

1

4

]
.

From [11, Theorem 9.2], we have x2 = (
√
2− 1)2. Substituting in the above, we obtain

P2 − 6P4 + 8P8 = 6(
√
2− 1)z22 . (28)

On replacing q to q2 in (20), then setting q = e−π/
√
2 in the resulting identity, also using (18) in

(28) and further comparing with (17), then simplifying, we complete the proof.

6 Incomplete integrals

Theorem 6.1. If

v := v(q) :=
f 2(−q)f(−q4)

f 3(−q2)
, (29)

then ∫ q

0

1

t
ϕ4(−t)dt =

∫ v(q)

1

8t7

t8 − 1
dt.

Proof. Using (13) and (15) in Theorem 4.5, we have

q

v

dv

dq
=

[ϕ2(q) + ϕ2(−q)]
8ψ2(−q)

[
(ϕ(q) + ϕ(−q))ψ2(−q)− 2ϕ(q)ϕ(−q)ψ2(q)

]
.

Using (6) and simplifying, we arrive at

q

v

dv

dq
=

1

8

[
1−

(
1

v

)8
]
ϕ4(−q).
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Further, it follows that
ϕ4(−q)

q
dq =

8v7

v8 − 1
dv.

Let v(t) be defined by (29). Then the limits t = 0, q are transformed into v = 0, v(q) respectively
and the result directly follows.

Theorem 6.2. If

v := v(q) := q1/4
f(−q2)f 2(−q8)

f 3(−q4)
, (30)

then ∫ q

0

1

2
√
t
ψ4(−t)dt =

∫ v(q)

0

4t

4t4 + 1
dt.

Proof. Using (6) in Theorem 4.6 and then simplifying, we arrive at

1

2
√
q
ψ4(−q)dq = 4v

4v4 + 1
dv.

Let v(t) be defined by (30). Then the limits t = 0, q are transformed into v = 0, v(q), respectively,
and the result directly follows.

7 Convolution sums

Let N denote the set of natural numbers. Let Z denote the set of all integers. For k, n ∈ N, we set

σk(n) =
∑
d/n

dk,

where d runs through the positive integers dividing n. If n /∈ N, we set σk(n) = 0. We write σ(n)
for σ1(n). For a, b ∈ N with a ≤ b, we define the convolution sum Wa,b(n) by

Wa,b(n) :=
∑

al+bm=n

σ(l)σ(m).

For all n, the convolution
∑

i+kj=n

σ(i)σ(j) has been evaluated explicitly for k = 1, 2, 3, 4, 5, 6, 7, 8,

9, 12, 16, 18 and 24, by S. Alaca, A. Alaca and K. Williams. For wonderful work one can see
[2–6, 18, 19, 24, 26, 27]. Also E. X. W. Xia and O. X. M. Yao [28] derive the representations for
the convolution sums

∑
i+6j=n

σ(i)σ(j) and
∑

i+12j=n

σ(i)σ(j).

Theorem 7.1. For all n ∈ N, we have

i)
∑

2i+4j=n

σ(i)σ(j) =
1

24
σ
(n
2

)
− 5

16
nσ
(n
2

)
+

5

24
σ3

(n
2

)
+

5

12
nσ3

(n
4

)
− 1

12
nσ
(n
4

)
− 1

192
A(n) +

1

18
B(n)− 1

1536
C(n),
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ii)
∑

2i+8j=n

σ(i)σ(j) =
1

96
σ
(n
2

)
− 1

32
σ
(n
4

)
− 5

16
σ3

(n
4

)
+

5

8
σ3

(n
8

)
+

7

2
σ
(n
8

)
+

25

192
σ3

(n
2

)
− 7

32
nσ
(n
2

)
+

1

32
nσ
(n
4

)
− 1

6
nσ
(n
8

)
+

5

16
nσ
(n
4

)
− 1

192

[
− 1

192
A(n) +

1

18
B(n)− 1

1536
C(n)− 3D(n)− 1

2
E(n)

]
and

iii)
∑

i+8j=n

σ(i)σ(j) =
1

24
σ(n)− 1

32
nσ(n) +

1

24
σ
(n
8

)
− 1

4
nσ
(n
8

)
+

5

192
σ3(n)

+
5

3
σ3

(n
8

)
− 1

64
F (n),

where

∞∑
n=1

A(n)qn = ϕ2(q2)
ψ2(−q) [ϕ

2(q2)ψ2(−q)− ϕ2(−q2)ψ2(q)]
2,

1
256

+
∞∑
n=1

B(n)qn =
[
qψ4(−q2) + ϕ4(q)

16

]2
, 1 +

∞∑
n=1

C(n)qn = ϕ8(q),

1
16

+
∞∑
n=1

D(n)qn = ψ4(−q)
ψ4(q)

[
ϕ4(−q4)

4
+ qψ4(−q2)

]2
,

125
16

+
∞∑
n=1

E(n)qn =
(
−3ψ

2(−q)
ψ2(q)

[
qψ4(−q2) + ϕ4(−q4)

4

]
− 11

4
ϕ4(q)− 1

2
ϕ4(−q)

)2
,

49
144

+
∞∑
n=1

F (n)qn =
{
ψ2(−q)
ψ2(q)

[
qψ4(−q2) + ϕ4(−q4)

4

]
+ 7

24
ϕ4(q) + 1

24
ϕ4(−q)

}2

.

Proof of i). On squaring Theorem 3.1, we obtain

P 2(q) + 9P 2(q2)+4P 2(q4)− 6P (q)P (q2) + 4P (q)P (q4)− 12P (q2)P (q4)

= 36
ϕ2(q2)

ψ2(−q)
[
ϕ2(q2)ψ2(−q)− ϕ2(−q2)ψ2(q)

]2
.

(31)

From [16, 17], we have

P 2(q) = 1 +
∞∑
n=1

(240σ3(n)− 288nσ(n))qn. (32)

On employing (32) and the definition of P (ql) in (31) and then equating the coefficients of qn, we
obtain

60σ3(n)− 72nσ(n) + 540σ3

(n
2

)
− 324nσ

(n
2

)
+ 12σ(n) + 36σ

(n
2

)
+ 240σ3

(n
4

)
− 24σ

(n
4

)
+ 72σ

(n
2

)
− 864

∑
i+2j=n

σ(i)σ(j) + 576
∑

i+4j=n

σ(i)σ(j)− 1728
∑

2i+4j=n

σ(i)σ(j)

= 9A(n),
(33)

where A(n) is as defined earlier. On squaring the identities (19) and (20), employing (32) and
then equating the coefficients of qn on both sides, we have∑

i+2j=n

σ(i)σ(j) =
5

48
σ3(n)−

1

8
nσ(n) +

5

12
nσ3

(n
2

)
− 1

4
nσ
(n
2

)
+

1

24
σ
(n
2

)
+

1

24
σ(n)− 1

9
B(n),

(34)
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and ∑
i+4j=n

σ(i)σ(j) =
5

96
σ3(n)−

1

16
nσ(n) +

5

6
nσ3

(n
4

)
− 1

4
nσ
(n
4

)
+

1

24
σ
(n
4

)
+

1

24
σ(n)− 1

512
C(n),

(35)

where B(n) and C(n) are as defined earlier. Now on employing (34) and (35) in (33), we obtain
the result.
Proof of ii). On squaring Theorem 3.2, we have

P 2(q2) + 36P 2(q4) + 64P 2(q8)−12P (q2)P (q4) + 16P (q2)P (q8)− 96P (q4)P (q8)

= 144
ψ4(−q)
ψ4(q)

[
qψ4(−q2) + ϕ4(−q4)

4

]2
.

On employing (32) and the definition of P (ql) in the above, then comparing the coefficients of qn

on both sides and after simplification, we obtain

5σ3

(n
2

)
− 2σ

(n
2

)
− 3nσ

(n
2

)
+ 180σ3

(n
4

)
− 54nσ

(n
4

)
+ 54σ

(n
4

)
− 40nσ

(n
8

)
+ 320σ3

(n
8

)
+ 48σ

(n
8

)
− 144

∑
2i+4j=n

σ(i)σ(j) + 192
∑

2i+8j=n

σ(i)σ(j)

− 1152
∑

4i+8j=n

σ(i)σ(j) = 3D(n), (36)

where D(n) is as defined earlier. Subtracting (20) from Theorem 3.3, we deduce

P4 − 2P8 = −3
ψ2(−q)
ψ2(q)

[
qψ4(−q2) + ϕ4(−q4)

4

]
− 11

4
ϕ4(q)− 1

2
ϕ4(−q).

Squaring the above, then employing (32), the definition of P (ql) and further comparing the
coefficients of qn on both sides, we obtain∑

4i+8j=n

σ(i)σ(j) =
5

48
σ3

(n
4

)
− 1

32
nσ
(n
4

)
+

5

12
σ3

(n
8

)
− 1

16
nσ
(n
8

)
+

1

24
σ
(n
4

)
+

5

8
σ
(n
8

)
− E(n)

2304
,

(37)

where E(n) is as defined earlier. Substituting (37) and Theorem 7.1(i) in (39) and simplifying,
we obtain the result.
Proof of iii). Squaring Theorem 3.3, then using (32) and the definition of P (ql) and finally
comparing the coefficients of qn, we obtain the result.
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