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Abstract: What are the nearest approaches of the natural powers of two irrational numbers,
allowing for arbitrarily large exponents? In the case of the first two metallic means, a definitive
answer to this challenging question lies within reach. Despite the small magnitude of the golden
ratio, φ = (1 +

√
5)/2 ≈ 1.618, and the silver ratio, δs = 1 +

√
2 ≈ 2.414, the integers

approximated by their powers, namely the Lucas (Lm ≈ φm) and Pell–Lucas (Un ≈ δns ) num-
bers, never coincide except in trivial cases for which m = 0. The equation Lm = Un ± 1 has
only four solutions for m > 0, n > 0. The largest such encounter arises between L11 = 199 and
U6 = 198 whilst the separation between larger pairings, m > 11 and n > 6, always exceeds 42.
Keywords: Lucas series, Pell–Lucas series, Golden ratio, Silver ratio, Metallic means.
2010 Mathematics Subject Classification: 11B39, 14G05, 11D25.

1 Introduction

What is to prevent the natural powers of two irrational numbers α and β from possessing very
similar values? For example, if α = 3π/4 and β = exp(1), then although α7 ≈ 403.16 and
β6 ≈ 403.43 are of comparable magnitude, other exponents could potentially achieve superior
agreement. However, identifying a single example might well prove difficult, even if there
happens to be an infinite number of solutions.

This work will show that for a certain choice of α and β possessing certain properties, a global
analysis may be undertaken to determine the closest encounters between αm and βn involving all
permutations of the natural numbers m and n. The problem has some similarity to Catalan’s
conjecture, proven by Preda Mihăilescu in 2002, that 32 = 9 and 23 = 8 differ by less than
any other pairing of the powers of two natural numbers [3]. Unlike Catalan’s 1844 conjecture,

170

y.gofod@gmail.com


the present problem concerns the natural powers of irrational numbers. Nevertheless, works
exploring the intersections of integer sequences also have some relevance here [1, 4].

The metallic means are important geometrically [5] and correspond to positive solutions of
the equation Mh − 1/Mh = h where h ∈ N and Mh = (h +

√
h2 + 4)/2. These irrational

numbers all exceed unity and their natural powers approximate natural numbers, especially as the
exponents increase in value [12]. For example, M j

7 differs from an integer by less than 10−9 for
j > 8. The golden ratio, φ = M1 = 1/2 +

√
5/2, and the silver ratio, δs = M2 = 1 +

√
2, are

distinguished by elegant periodic continued fractions and infinitely nested radicals:

φ = 1 +
1

1 + 1
1+···

, δs = 2 +
1

2 + 1
2+···

φ =

√
1 +

√
1 +

√
1 +
√
· · · =

√
1 + φ, δs =

√
1 + δs +

√
1 + δs +

√
· · · =

√
1 + 2δs

As is well-known, if m > 1 where m is a natural number, φm approximates the terms of the
Lucas series, Lm, defined by L0 = 2, L1 = 1 and the recurrence relation Lm = Lm−1 + Lm−2.
Likewise, for n > 1, where n is a natural number, δns approximates the terms of the Pell–Lucas
series, Un, defined by U0 = 2, U1 = 2 and the recurrence relation Un = 2Un−1+Un−2. As m and
n increase, the errors in the approximations φm ≈ Lm and δns ≈ Un diminish exponentially.

Lucas numbers [7] are closely related to the Fibonacci numbers, Fm, which follow the same
recurrence relation but have different seed values [6]. Terms sharing the same index obey the
identity L2

m = 5F 2
m + 4 · (−1)m. Similarly, the Pell–Lucas numbers [9], also known as the

companion Pell numbers, are closely related to the Pell numbers, Pn, which follow the same
recurrence relation with different seed values [8]. Terms sharing the same index drawn from
these series obey the identity U2

n = 8P 2
n + 4 · (−1)n. Whereas the quotients Lm/Fm provide

optimal approximations to
√
5, the quotients Un/Pn provide optimal approximations to

√
8.

The terms of the Lucas series may be obtained directly from the golden ratio via the identity
Lm = φm + (−1)mφ−m. Likewise, the terms of the Pell–Lucas series may be obtained directly
from the silver ratio via the identity Un = δns + (−1)nδ−n

s . To summarise,

Lm =
√

5F 2
m + 4 · (−1)m = φm + (−1)mφ−m, (1)

Un =
√
8P 2

n + 4 · (−1)n = δns + (−1)nδ−n
s . (2)

Furthermore, both Lm and Un are expressible using hyperbolic functions,

Lm = φm + φ−m = 2 cosh(m lnφ) = 2 cosh(m · arcsinh1
2
) m even, (3)

Lm = φm − φ−m = 2 sinh(m lnφ) = 2 sinh(m · arcsinh1
2
) m odd, (4)

Un = δns + δ−n
s = 2 cosh(n ln δs) = 2 cosh(n · arcsinh1) n even, (5)

Un = δns − δ−n
s = 2 sinh(n ln δs) = 2 sinh(n · arcsinh1) n odd. (6)

The question addressed here is whether the nearest encounters between natural powers of the
golden and silver ratios, φm and δns , may be identified for m ≥ 1 and n ≥ 1. The analysis shall
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make use of the close ties between φm and the Fibonacci/Lucas series and between δns and the
Pell/Pell–Lucas series. It shall be shown that the only Lucas number present in the Pell–Lucas
series is L0 = 2, corresponding to a trivial index/exponent of zero. The work shall then proceed
to exhaustively identify solutions to the equation Lm = Un ± 1. Finally, the analysis shall be
extended to encompass small offsets other than unity, Lm = Un ± k where k � Lm, Un.

Whilst the natural powers of the golden and silver ratios approximate integers, those integers
maintain their distance from one another even when arbitrarily large exponents are considered.
It shall be shown that just four solutions exist to the equation Lm = Un ± 1, the largest being
L11 = U6+1, which involves the numbers 198 and 199. This result is rather remarkable when one
realises that all solutions to Lm = Un ± k involve terms smaller than L11 and U6 if 2 ≤ k ≤ 42.

2 Assessing solutions to φm ≈ δns via continued fractions

If Lm and Un are similar in value with m � 1 and n � 1, then φm ≈ δns , from which
m lnφ ≈ n ln δs. Consequently, the rational fraction m/n must approximate ln δs/ lnφ, an
irrational quantity. Since φ and δs are algebraic numbers exceeding unity, both ln δs ≈ 0.88137

and lnφ ≈ 0.48121 are transcendental. Were it true that m lnφ and n ln δs were equal it would
follow that lnφm = ln δns and hence (1/2 +

√
5/2)m = (1 +

√
2)n. However,

√
5 and

√
2 belong

to different quadratic fields. Therefore, the presumption that m lnφ = n ln δs is incorrect, which
implies that ln δs/ lnφ must be irrational. Thus, the continued fraction of ln δs/ lnφ, which may
also be expressed as sinh−1(1)/ sinh−1(1/2), possesses infinitely many terms, the first 67 being:

ln δs/ lnφ = [1; 1, 4, 1, 14, 1, 12, 1, 6, 1, 7, 4, 4, 1, 2, 7, 11, 6, 5, 1, 21, 1, 4,

1, 1, 5, 1, 2, 1, 2, 8, 1, 5, 2, 1, 1, 1, 1, 2, 3, 1, 166, 2, 2, 2, 1, 1

8, 1, 8, 4, 1, 1, 1, 2, 2, 1, 1, 6, 4, 1, 3, 2, 1, 1, 1, 2170, . . .] (7)

The 42-nd and 67-th terms are particularly large (166 and 2170). However, the following 800

terms are all less than a thousand. Truncation of an infinitely continued fraction yields optimal
rational approximations, obviating the need to consider alternatives of inferior quality. Table 1
presents the first 18 convergents (numbered W ) along with those obtained by truncation at ap-
pealing locations after 41 and 66 terms.

The most accurate convergents presented in the table only achieve agreement between Lm

and Un in a few leading digits, a minuscule fraction of the total digits. Approximately speaking,
the W -th convergent typically achieves agreement between Lm and Un in just the first W/2 dec-
imal digits, whereas Lm and Un have around 0.209m ≈ 0.383n decimal digits which, since
W ∼ ln(m), is roughly exp(W )/5. Thus, the fraction of correct leading decimal digits,
5W/2 exp(W ), declines exponentially, tending to zero as W → ∞. At the 66-th convergent,
5W/2 exp(W ) is already smaller than 10−26.

Moreover, since the next 800 terms of the continued fraction expansion are no larger than
2170 (the 67-th term) solutions in which a substantial fraction of the digits of Lm and Un agree
may be confidently dismissed for 67 ≤ W ≤ 867. Beyondm ≈ exp(867), one finds that both Lm

and Un exceed 10(10
376), far larger than a googolplex. There is therefore a strong suspicion that
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Lm = Un ± k has only a finite number of solutions for k � Lm, Un and that the indices of any
solutions will most probably be very small. The remainder of this work focuses on confirming
the validity of this suspicion, and compiling an exhaustive list of solutions for 0 ≤ k ≤ 16.

W m n |Lm − Un| Lm, Un Correct digits

1 1 1 1 1, 2 1/1

2 2 1 1 3, 2 1/1

3 9 5 6 76, 82 1/2

4 11 6 1 199, 198 3/3

5 163 89 5.5× 1031 1.2× 1034 2/34

6 174 95 8.5× 1032 2.3× 1036 3/36

7 2251 1229 10467 10470 3/470

8 2425 1324 10502 10507 5/507

9 16801 9173 103507 103511 4/3511

10 19226 10497 104013 104018 5/4018

11 151383 82652 1031631 1031637 6/31637

12 624758 341105 10130561 10130567 6/130567

13 2650415 1447072 10553897 10553904 7/553904

14 3275173 1788177 10684464 10684471 7/684471

15 9200761 5023426 101922837 101922845 8/1922845

16 67680500 36952159 1014144379 1014144388 9/14144388

17 753686261 411497175 10157511103 10157511113 10/157511113

18 4589798066 2505935209 10959211057 10959211067 10/959211067

41 4260682912080024725 2326245113670320106 109×1017−21 109×1017 21/109×1017

66 436211221992938−
− 874024224645141

238162342663948−
− 622139152815172

109×1028−33 109×1028 33/109×1028

Table 1. The W -th convergents for m/n ≈ ln(δs)/ ln(φ) ≈ 1.831570923907314796

3 Intersections of Lm and Un
The Lucas series and the Pell–Lucas series are the best known examples of Lucas V-Sequences
Vn(P,Q) which obey the recurrence relation Vn+2 = P ·Vn+1−Q ·Vn. Since these sequences all
commence with V0(P,Q) = 2 and V1(P,Q) = P the equality between L0 and U0 is, by definition,
unavoidable. As U1 = U0 there is also a semi-trivial solution, L0 = U1. The remaining question
addressed in this section is whether non-trivial solutions exist to the equation Lm = Un for which
m > 0 and n > 0.

Consider the identities (1) and (2). If m and n share the same parity, i.e. m ≡ n (mod 2),
then Lm = Un implies 5F 2

m = 8P 2
n . This is satisfied for F0 = P0 = 0, alluding to the trivial

solution at L0 = U0 = 2, but if Pn 6= 0, then Fm/Pn would have to equal the irrational quantity√
8/5. As Fm/Pn is rational,

√
F 2
m/P

2
n 6=

√
8/5, precluding non-trivial solutions to Lm = Un if

m 6= 0 and n 6= 0 share the same parity.
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If, on the other hand, m and n have opposite parity, then 5F 2
m = 8P 2

n ± 8. Whereas 8(P 2
n ± 1)

is always a multiple of eight, 5F 2
m is only a multiple of eight if m ≡ 0 (mod 6). Therefore, if m

is odd and n is even, then Lm 6= Un.
This leaves open the possibility of solutions to φm + φ−m = δns − δ−n

s for even m and odd n.
The existence here of a semi-trivial solution, φ0+φ0 = δs−1/δs = 2, prohibits congruences from
ruling out all solutions. For example, although comparison of 5F 2

m+4 and 8P 2
n−4 modulo 6 and

9 reveals that m ≡ 0 (mod 12) and n ≡ ±1 (mod 12), the door remains ajar to undiscovered
solutions.

If m is even and n is odd, then 5F 2
m = 8P 2

n − 8. Here, the quantity P 2
n − 1 must be a multiple

of both 2 and 5, so P 2
n − 1 = 10�, where � denotes the square of an integer. One then arrives at

the Pell equation a2−10b2 = 1. With
√
10 = [3; 6] ≈ 19/6, the fundamental solution is (a1 = 19,

b1 = 6) which is unacceptable since 19 is not a Pell number and
√

8× (19− 1)(19 + 1)/5 = 24

is not a Fibonacci number. An infinite number of alternative solutions exist for a and b but it
is the intersections between a and the Pell series that are of interest. Thus, the original task of
identifying solutions to Lm = Un has merely been transformed into another problem of
comparable complexity. Whereas methods for solving simultaneous Pellian equations are known,
they are computationally intensive [11].

If m is even, then Lm = φm + φ−m. From (2), U2
n = 8P 2

n − 4 for odd n, and thus if Lm = Un

for even m and odd n,

φm + φ−m =
√

8P 2
n − 4 (8)

φ2m + 2 + φ−2m = 8P 2
n − 4 (9)

(φ2m)2 + (6− 8P 2
n)φ

2m + 1 = 0 (10)

φ2m = (8P 2
n − 6±

√
(8P 2

n − 6)2 − 4)/2 (11)

φ2m = 4P 2
n − 3±

√
(4P 2

n − 3)2 − 1 (12)

Since φ has a
√
5 component, if m > 0, then φ2m also has a

√
5 component. Therefore, the

term under the radical must be a multiple of a square,

(4P 2
n − 3)2 − 1 = 5� (13)

8(2P 4
n − 3P 2

n + 1) = 5� (14)

8(2P 2
n − 1)(P 2

n − 1) = 5� (15)

This is a quartic equation in Pn with a finite number of integer solutions irrespective of
whether those solutions correspond to Pell numbers. The 2P 2

n − 1 term cannot be zero since that
would require Pn = 1/

√
2, which is irrational. However, if P 2

n = 1, the equation simplifies dra-
matically, yielding an acceptable solution alluding to the L0 = U1 solution for Lm = Un. Some
further simplification is possible by noting that 2

√
2/5×

√
(2P 2

n − 1)(P 2
n − 1) ∈ Z. From this,

one finds that (2P 2
n−1)(P 2

n−1) must be divisible by 2 and 5, giving (2P 2
n−1)(P 2

n−1) = 10�.
If P 2

n 6= 1, then this remains a quartic Diophantine equation which, based on the factorisation
presented, is unlikely to possess any other solutions.

For even m the Lucas numbers obey the identity Lm = L2
m/2 + 2 if m/2 is odd and, for even

m/2, Lm = L2
m/2− 2. Thus, if Un and Lm coincide, they must both be two distant from a square.
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Whilst this condition is invariably satisfied for Lm, it is not for Un. Recently, near-multiples of
squares have been identified for the Fibonacci, Lucas, Pell and Pell–Lucas integer sequences [2].
The findings, drawing upon results obtained via computer algebra, indicate that if n is odd, then
Un ± 2 is only square for U1 = 2 or U3 = 14. Whilst U1 = L0 = 2, the term U3 = 14 does
not coincide with any Lucas number. Hence, Lm = Un is only trivially satisfied for m = 0 and
n = 0, 1 (L0 = U0 = U1 = 2).

Due to the difficulty in assessing the reliability of mathematical results resting upon results
obtained by computer methods, another proof that Lm 6= Un shall be provided. For the odd m,
even n branch, Lm = Un is equivalent to φm − φ−m = δns + δ−n

s . Since it has already been
demonstrated that this has no solutions,

φm − δns 6= φ−m + δ−n
s . (16)

This inequality may be extended to even m and odd n as follows. If m is odd, then
φm − φ−m ∈ Z but if m is an even number larger than zero, then φm − φ−m is not an inte-
ger and, belonging to the quadratic field Q(

√
5), it has a non-zero

√
5 component. Similarly, if

n is even, then δns + δ−n
s ∈ Z but if n is odd, then δns + δ−n

s is not an integer and, belonging to
the quadratic field Q(

√
2), it has a non-zero

√
2 component. Thus, if m > 0, both φm − φ−m and

δns + δ−n
s are irrational and belong to different quadratic fields, prohibiting equality between the

two. Thus, the inequality φm − δns 6= φ−m + δ−n
s holds for all n ≥ 0 and m > 0, not merely odd

m and even n.
If Lm = Un and m is even and n is odd, then φm + φ−m = δns − δ−n

s and hence,

δns − φm = φ−m + δ−n
s . (17)

Whereas squaring the previous result gives (φm− δns )2 6= (φ−m + δ−n
s )2, squaring the present

equation yields (δns − φm)2 = (φ−m + δ−n
s )2. Since (δns − φm)2 and (φm − δns )

2 are identical
then, unless m = 0, a contradiction arises. Therefore, any solution to the equation Lm = Un must
involve m = 0. Thus, when m and n are of opposite parity, L0 = U1 = 2 is the only permissible
solution. It follows that the equation cosh(m lnφ) = sinh(n ln δs) can only be satisfied if m = 0

and n = 1. The corresponding result for odd m and even n is that sinh(m lnφ) 6= cosh(n ln δs).
In conclusion, the only solutions to the equation Lm = Un are the trivial case L0 = U0 = 2

and the semi-trivial case, L0 = U1 = 2. The absence of non-trivial solutions is not altogether
surprising given that m/n must approximate ln δs/ lnφ to increasingly high precision as m and n
increase.

4 Intersections of Lm and Un ± 1

Aside from the (unavoidable) initial term, it has been shown there is no Lucas number present
in the Pell–Lucas series. Hence, φm and δns never approximate the same integer for m > 1.
Nevertheless, this does not preclude encounters between φm and δns closer than unity, even for
arbitrarily large exponents.
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Since Lm = φm + φ−m for even m and Lm = φm − φ−m for odd m, solutions bifurcate
according to the parity of m. Similarly, since Un = δns + δ−n

s for even n and Un = δns − δ−n
s for

odd n, solutions bifurcate according to the parity of n. It is therefore convenient to subdivide the
question of whether solutions exist to Lm = Un ± 1 according to the parity of m and n. This
yields four distinct sub-cases which shall be analysed separately.

4.1 Solutions to Lm = Un ± 1 for m and n both even

With m and n even, both m/2 and n/2 are integers and the following identities hold:

Lm = L2
m/2 ± 2 (18)

Un = U2
n/2 ± 2 (19)

If Lm = Un ± 1, then L2
m/2 and U2

n/2 cannot differ by more than five and so:

|L2
m/2 − U2

n/2| = |Lm/2 − Un/2| × (Lm/2 + Un/2) ≤ 5 (20)

Previous analysis has shown that Lm 6= Un for m,n > 0 and thus Lm/2 6= Un/2. It follows
that |Lm/2 − Un/2| cannot be less than one and therefore Lm/2 + Un/2 ≤ 5. This can only be
satisfied if m/2 ≤ 2 and n/2 ≤ 1. Aside from the semi-trivial pairing (L2 = 3, U0 = 2), it is
easily confirmed that the only solution compatible with these constraints is (L4 = 7, U2 = 6),
which abides by the condition m,n ≥ 1.

4.2 Solutions to Lm = Un ± 1 for odd m and even n

As for the even m, even n case (19) still holds true here. Therefore, if Lm = Un ± 1, there must
be a perfect square at either Lm ± 1 or Lm ± 3. Since Un/2 ≡ 2 (mod 4), that square will be
congruent to 4 (mod 8). Furthermore, from (2) we have U2

n/2 = 8P 2
n/2 ± 4 and 8P 2

n/2 is twice
the square of an even number. Invariably, Un falls between U2

n/2 and 8P 2
n/2 here. If Lm = Un± 1,

then Lm must also lie between U2
n/2 and 8P 2

n/2. Hence, either Lm ± 1 or Lm ± 3 must be twice
the square of an even number.

It is known [2] that the only Lucas numbers 1 or 3 distant from twice a square are L0 = 2,
L1 = 1, L2 = 3, L3 = 4, L4 = 7 and L11 = 199. The same work also showed that, of these, the
only Lucas numbers 1 or 3 distant from twice a square areL1 = 1, L2 = 3, L4 = 7 andL11 = 199.
Since m must be odd, the only relevant solutions are the semi-trivial solution (L1 = 1, U0 = 2)
which is of no interest here as the index of the Pell–Lucas term is zero, along with a remarkably
large non-trivial solution at (L11 = 199, U6 = 198). This result was only to be anticipated based
on the fourth convergent of ln δs/ lnφ presented in Table 1.

4.3 Solutions to Lm = Un ± 1 for even m and odd n

As for the even m, even n case, (18) holds true again here. Therefore, if Lm = Un ± 1, a perfect
square must be present either at Un± 1 or at Un± 3. Furthermore, the identity L2

m/2 = 5F 2
m/2± 4
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applies so that Lm invariably falls between L2
m/2 and 5F 2

m/2. If Lm = Un ± 1, then Un must also
lie between L2

m/2 and 5F 2
m/2. Hence, either Un ± 1 or Un ± 3 must be a perfect square.

It is known [2] that the only Pell–Lucas numbers 1 or 3 distant from a square are U0 = 2,
U1 = 2, U2 = 6 and U5 = 82. It is, then, a trivial task to investigate U1 and U5, the only terms
with an odd index. Whereas there is no Lucas number adjacent to U5, L2 = 3 is adjacent to
U1 = 2. Therefore, only one acceptable solution exists for even m and odd n, (L2 = 3, U1 = 2),
corresponding to the second convergent of Table 1.

4.4 Solutions to Lm = Un ± 1 for m and n both odd

With both m and n odd, neither of the identities Lm = L2
m/2 ± 2 and Un = U2

n/2 ± 2 apply
here so there can be no expectation that either Lm or Un is adjacent to a square or the multiple
of a square. Despite the seeming freedom this affords, there is only one known solution for this
branch, L1 = U1 − 1. Its simplicity may be hinting that any further solutions must comply with
some stringent but hitherto unknown constraint.

Since the existence of at least one solution is not in doubt, arguments based on congruences
cannot completely rule out other solutions. Whilst it is straightforward to show that m and n
must be congruent to ±1 modulo 12, 24, or even 7920, it is uncertain whether a path could be
forged allowing such results to be extended to arbitrarily large moduli. Moreover, resistance to
congruence analysis extends to many equivalent formulations of the case in hand, obtained by
exploiting the panoply of identities the Lucas sequences give rise to, such as Un = LvLv+1 where
v = (m− 1)/2.

Nevertheless, congruences are of some avail in simplifying the problem. If m is a multiple of
three then Lm is even and so Lm± 1 is odd, prohibiting solutions. If m is not a multiple of 3 then
((Lm−1)2+4)/2 is always congruent to 2 (mod 4), a quadratic non-residue. Therefore, Lm−1

cannot equal Un since, via (2), that would require ((Lm−1)2+4)/2 = (U2
n+4)/2 = (2Pn)

2 = �.
Accordingly, Lm 6= Un + 1 if m and n are odd, leaving Lm = Un − 1 as the only remaining
possibility.

Although one cannot appeal to the presence of squares here, the identities Lm =
√

5F 2
m − 4

and Un =
√
8P 2

n − 4 still apply to this branch. Then, using a to denote Fm and b to denote Pn,
the equation Lm = Un − 1 becomes, using (1) and (2),

√
5a2 − 4 =

√
8b2 − 4− 1, (21)

5a2 − 4 = 8b2 − 4− 2
√
8b2 − 4 + 1, (22)

25a4 + 64b4 − 80a2b2 − 10a2 + 16b2 + 1 = 32b2 − 16, (23)

25a4 + 64b4 − 80a2b2 − 10a2 − 16b2 + 17 = 0. (24)

It would be advantageous to simplify this quartic Diophantine equation, if at all possible.
Continued fraction analysis indicates that any undiscovered solutions must correspond to large
values of Lm and Un. Clearly, the fourth order terms, 64b4 − 80a2b2 + 25a4, will be domi-
nant if Lm and Un are very large. Conveniently, these terms are encapsulated by the square,
(8b2− 5a2)2. Since U2

n−L2
m = (Un−Lm)(Un+Lm) and Un−Lm = 1 for the solutions sought,
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U2
n − L2

m = Lm + Un. From (2), U2
n = 8b2 − 4, and from (1), L2

m = 5a2 − 4. Thus,
U2
n − L2

m = 8b2 − 5a2, from which one obtains (8b2 − 5a2)2 = (Lm + Un)
2.

If c is defined as 8b2 − 5a2 then, in the presence of a solution, c = Lm + Un. The quartic
expression (24) is then the sum of c2 and lower order terms (a2, b2 and a numerical constant).
The same is true if various integer offsets are applied to c prior to taking the square of the result.
Therefore, the quartic may be rephrased in terms of (c + N)2 where N ∈ Z. The examples
provided below correspond to −4 ≤ N ≤ 4.

(c+ 4)2 = −30a2 + 80b2 − 1 (25)

(c+ 3)2 = −20a2 + 64b2 − 8 (26)

(c+ 2)2 = −10a2 + 48b2 − 13 (27)

(c+ 1)2 = 0a2 + 32b2 − 16 (28)

(c+ 0)2 = 10a2 + 16b2 − 17 (29)

(c− 1)2 = 20a2 + 0b2 − 16 (30)

(c− 2)2 = 30a2 − 16b2 − 13 (31)

(c− 3)2 = 40a2 − 32b2 − 8 (32)

(c− 4)2 = 50a2 − 48b2 − 1 (33)

It is apparent that the original quartic reduces to the quadratic (c + N)2 = pa2 + qb2 + r

where, by virtue of the fact that (c + N)2 − c2 = 2cN + N2 = N(N − 10a2 + 16b2) and
c2 = 10a2 + 16b2 − 17, the integer coefficients p, q and r are simple functions of N :

p = 10(1−N), q = 16(N + 1), r = N2 − 17. (34)

The resulting quadratic, pa2 + qb2 + r = (c+N)2, now reads

10(1−N)a2 + 16(N + 1)b2 +N2 − 17 = (c+N)2. (35)

If c+N = 0, then this quadratic in N has the solution

N = 5a2 − 8b2 ±
√
25a2 + 64b4 − 80a2b2 − 10a2 − 16b2 + 17 (36)

N = 5a2 − 8b2 = −c. (37)

The simplification to N = −c occurs because the term under the radical is the original quartic
expression which, providing Lm = Un − 1, is equal to zero.

For a valid solution, c +N = 0 leaving a simplified equation of the form pa2 + qb2 + r = 0

in the variables a and b. With just three exceptions, these equations are hyperbolic. A small
fraction of the equations pa2 + qb2 + r = 0 possess integral solutions (e.g. N = −3, N = −33
and N = −903). It is well-known that if a solution is present in equations of this form, then
an infinite number of other solutions may be obtained via composition. For those equations with
solutions, there may be more than one solution class present.

The only known solution for this branch, L1 = U1 − 1, corresponds to a2 = b2 = 1. The
expression pa2 + qb2 + r = 40a2 − 32b2 − 8 is, then, zero only if N = −3. This requires
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Lm + Un = 3 and, since Lm = Un − 1, one may obtain Lm = 1 and Un = 2 without recourse
to Lm =

√
5a2 − 4 and Un =

√
8b2 − 4. The simplicity of the known solution is elucidated by

rewriting (32) as follows:

(c− 3)2 = 36a2 + 4a2 − 36b2 + 4b2 − 8 (38)

= (6a− 6b)(6a+ 6b) + 4(a2 + b2)− 8. (39)

Thus, if a2 = b2, this equation simplifies to (c − 3)2 = 8(a2 − 1). Of the four intersections
{0, 1, 2, 5} between the Fibonacci and Pell series [1], c is an integer only if a2 = b2 = 1. Never-
theless, if the requirement a2 = b2 is abandoned, this equation has an infinite number of solutions
for some fixed value of c.

If c+N 6= 0, then the N2 terms cancel and the equation pa2 + qb2 + r = (c+N)2 simplifies
to a linear equation, whose solution is

N =
10a2 + 16b2 − c2 − 17

10a2 − 16b2 + 2c
. (40)

Should a, b and c combine to form a solution to Lm = Un − 1 it is easily shown using
c = 8b2−5a2 that both the numerator and the denominator here will be zero, leavingN undefined.
This reflects the fact that the entire family of equations pa2 + qb2 + r = (c + N)2 are, then,
simultaneously satisfied. Of course, c+N will only be zero in one instance.

Notice that p, q and r can alternatively be expressed in terms of Lm and Un:

p = 10(1 + Lm + Un) = 20(Lm + 1) = 20Un, (41)

q = 16(1− Lm − Un) = −32Lm = 32(1− Un), (42)

r = (Lm + Un)
2 − 17 = (2Lm + 1)2 − 17 = (2Un − 1)2 − 17. (43)

Accordingly, any solution to Lm = Un − 1, whether large or small, must satisfy

20UnF
2
m + (Lm + Un)

2 = 32LmP
2
n + 17, (44)

4Un(L
2
m + 4) + (Lm + Un)

2 = 4Lm(U
2
n + 4) + 17. (45)

The primary interest here is to uncover any large solutions to Lm = Un − 1, for which
N = −c = −(Lm + Un). Therefore, consider (35) in the limit N → −∞. Firstly, notice that if
N2 � 17, then p, q and r tend to the following values:

p→ −10N, q → 16N, r → N2. (46)

Adopting these limits as coefficients in (35) and assuming that a solution is present, which
imposes the constraint c+N = 0, yields the approximation −10Na2 + 16Nb2 +N2 ≈ 0. Since
N 6= 0, division by N is permissible, yielding

N ≈ 10a2 − 16b2 ≈ −2(8b2 − 5a2) ≈ −2c. (47)

This indicates that c + N ≈ −c, in contradiction to the condition c + N = 0 that must be
satisfied if a solution is present and N2 � 17. Therefore, the earlier presumption that a solution
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to the equation Lm = Un − 1 exists for large Lm and Un, or more precisely (Lm + Un)
2 � 17,

must be incorrect. Since it is clear from the convergents of ln δs/ lnφ that any undiscovered
solution requires Lm and Un to exceed 10(9×1028), if not 10(10376), numbers whose squares are
enormously larger than 17, one may confidently infer the non-existence of undiscovered solutions
to Lm = Un − 1 along this branch.

4.5 Revisiting large solutions for all branches

A cynic might object that results obtained via computer algebra are vulnerable to a variety of
drawbacks such as undetected silicon defects, memory failures, algorithmic oversights and tran-
scription errors. Such problems may be completely mitigated by deriving alternative proofs that,
in turn, may bolster confidence in the reliability of computational approaches. Here, searching for
small solutions is straightforward and the convergents of ln δs/ lnφ inform us that any undiscov-
ered solutions must be extremely large. The analysis of the previous section shall now be applied
to other branches to confirm the absence of any very large, hitherto undiscovered solutions to
the equation Lm = Un ± 1. This is a useful first step before attempting to generalise the existing
results. Consider first the case Lm = Un±1 where the corresponding quartics for each branch are
obtained via the identities L2

m = 5F 2
m ± 4 and U2

n = 8P 2
n ± 4 so that

√
5a2 ± 4 =

√
8b2 ± 4± 1:

(8b2 − 5a2)2 = 10a2 + 16b2 + 15 even m, even n, (48)

(8b2 − 5a2)2 = −70a2 + 144b2 − 65 even m, odd n, (49)

(8b2 − 5a2)2 = 90a2 − 112b2 − 65 odd m, even n, (50)

(8b2 − 5a2)2 = 10a2 + 16b2 − 17 odd m, odd n. (51)

Letting c = 8b2 − 5a2, the factorisation of these quartics can again be parametrised via the
equation (c+N)2 = pa2 + qb2 + r where p, q and r are given by

p = −10(N − 1), q = 16(N + 1), r = N2 + 15 even m, even n, (52)

p = −10(N + 7), q = 16(N + 9), r = N2 − 65 even m, odd n, (53)

p = −10(N − 9), q = 16(N − 7), r = N2 − 65 odd m, even n, (54)

p = −10(N − 1), q = 16(N + 1), r = N2 − 17 odd m, odd n. (55)

As before, solutions for each branch correspond to c + N = 0. Whilst c = 8b2 − 5a2 once
more, note that c is not necessarily equal to Lm + Un here, although the two are still closely
linked. For the odd m,n and even m,n branches, c = (Un − Lm)(Lm + Un) which is either
Lm + Un if Lm + 1 = Un or −(Lm + Un) if Lm − 1 = Un. For the even m, odd n branch,
c = (Un − Lm)(Lm + Un) + 8 which is either Lm + Un + 8 if Lm + 1 = Un or 8 − Lm − Un

if Lm − 1 = Un. For the odd m, even n branch, c = (Un − Lm)(Lm + Un) − 8 which is either
Lm + Un − 8 if Lm + 1 = Un or −(Lm + Un + 8) if Lm − 1 = Un.

There is one solution for each branch. For the even m,n branch, N = L4 + U2 = 13.
For the even m, odd n branch, N = L2 + U1 − 8 = −3. For the odd m, even n branch,
N = L11 + U6 + 8 = 405. Finally, for the odd m,n branch, N = −(L1 + U1) = −3.
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In each case, the limiting values of p, q and r as N → ±∞ are unchanged and so the ap-
proximation −10Na2 + 16Nb2 +N2 ≈ 0 still holds and so the same contradiction arises in that
c + N ≈ −c when in fact c + N = 0. Again, this is unacceptable since, for all these cases,
c is of comparable magnitude to Lm + Un � 0. Therefore, the presumption that a solution to
Lm = Un ± 1 exists for large Lm and Un must be incorrect.

5 Results: close encounters of the first two metallic means

The analysis technique of the previous section readily lends itself to the investigation of solutions
to Lm 6= Un±k for relatively small integers k under the assumption that k � Lm, Un. Unsurpris-
ingly, the same asymptotic inconsistency arises for very large terms of the Lucas and Pell–Lucas
series, the inference c + N ≈ −c when in fact c + N = 0. Thus, with the scaling of k being
a linear function of Lm and Un, arbitrarily large powers of the golden and silver ratio not only
maintain their distance from each other, but their minimum separation must increase in tandem
with Lm and Un. Consequently, the investigation of solutions to Lm = Un ± 2, Lm = Un ± 3

and so forth requires nothing more than the scrutiny of the smaller terms in the Lucas and Pell–
Lucas series and the first few convergents of the continued fraction of ln δs/ lnφ, from which
it is patently clear that even optimal approximations to ln δs/ lnφ soon fall hopelessly short of
achieving equality between Lm and Un after only the first six convergents. Thus, even a very
conservative search need not consider more than the first 174 terms of the Lucas series and the
first 95 terms of the Pell–Lucas series.

Due to the parallels between the natural powers of the golden and silver ratio and the terms
of the Lucas V -sequences they approximate, it therefore becomes a simple matter to compile a
brief and yet comprehensive list of the closest encounters between Lm ≈ φm and Un ≈ δns . An
ordered list of the 24 closest non-trivial approaches of terms belonging to the Lucas and Pell–
Lucas series are presented in Table 2 encompassing all differences of sixteen or less, 0 ≤ k ≤ 16.
The first offset with no solutions is Lm = Un ± 8. Terms beyond L11 or U6 do not participate
in solutions unless differences exceeding 42 are considered, highlighting the improbability of a
solution as large as L11 = 199, U6 = 198 existing for the simplest equation with non-trivial
solution, Lm = Un ± 1.

6 Conclusion

The natural powers of the golden and silver ratios shadow the terms of the Lucas and Pell–Lucas
series. The terms of the two series only coincide in trivial cases, both involving the Lucas term,
L0 = 2. This is inevitable as all Lucas V -sequences commence with the number two. It has been
shown here that the equation Lm = Un ± 1 has four non-trivial solutions, one for each parity
permutation of m and n. The largest such solution, (L11 = 199, U6 = 198), is considerably larger
than any other.

With the deviation between larger powers of the golden and silver ratios and the integers
decaying exponentially as m and n increase, the four solutions to Lm = Un ± 1 draw attention
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Equation Solution(s)
Lm = Un Trivial solutions only, L0 = U0 = U1

Lm = Un ± 1 (L1 = U1 − 1), (L2 = U1 + 1), (L4 = U2 + 1), (L11 = U6 + 1)
Lm = Un ± 2 (L3 = U1 + 2), (L3 = U2 − 2)
Lm = Un ± 3 (L2 = U2 − 3), (L5 = U3 + 3)
Lm = Un ± 4 (L6 = U3 + 4)
Lm = Un ± 5 (L1 = U2 − 5), (L4 = U1 + 5), (L5 = U2 + 5), (L7 = U4 − 5)
Lm = Un ± 6 (L9 = U5 − 6)
Lm = Un ± 7 (L4 = U3 − 7)
Lm = Un ± 9 (L5 = U1 + 9)
Lm = Un ± 10 (L3 = U3 − 10)
Lm = Un ± 11 (L2 = U3 − 11)
Lm = Un ± 12 (L6 = U2 + 12)
Lm = Un ± 13 (L1 = U3 − 13), (L8 = U4 + 13)
Lm = Un ± 15 (L7 = U3 + 15)
Lm = Un ± 16 (L6 = U1 + 16), (L6 = U4 − 16)

Table 2. The closest encounters for Lm = Un ± k with 0 ≤ k ≤ 16.

Series Term 0 1 2 3 4 5 6 7 8 9 10 11

Lucas Lm 2 1 3 4 7 11 18 29 47 76 123 199
Fibonacci Fm 0 1 1 2 3 5 8 13 21 34 55 89

Pell–Lucas Un 2 2 6 14 34 82 198 478 1154 2786 6726 16238
Pell Pn 0 1 2 5 12 29 70 169 408 985 2378 5741

Table 3. The first 12 terms of the Lucas, Pell–Lucas, Fibonacci and Pell series.

to the closest non-trivial encounters between the natural powers of the golden and silver ratios,
δs−φ ≈ 0.796, φ2−δs ≈ 0.204, φ4−δ2s ≈ 1.026 and φ11−δ6s ≈ 1.01. The adjacency ofL11 = 199

and U6 = 198 is surprising given the absence of solutions to the equation Lm = Un± k for terms
beyond L11 and U6 unless k > 42 (in particular, φ13 ≈ δ7s + 43). Consequently, all solutions
to the equation Lm = Un ± k for 0 ≤ k ≤ 42 are present in Table 3. The analysis has also
shown that the natural powers of the golden and silver ratios maintain an ever-increasing degree
of separation at largem and n. It is anticipated that the same applies to any pairing of the metallic
means belonging to different quadratic fields. This excludes pairings such as (M1, M4) or (M3,
M36), for which a list is available [10].

It is often claimed that the golden ratio is the most irrational of numbers owing to the difficulty
of its accurate approximation by the ratio of two integers. According to that reasoning the silver
ratio would be the second most irrational number, its continued fraction containing no terms
exceeding two. Nevertheless, optimal approximations for each are readily obtained via the ratios
of consecutive terms in the Fibonacci and Pell series and the metallic means are not as irrational
as many imagine. Amongst the Pisot numbers, the golden ratio and the silver ratio are the smallest
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quadratic irrationals.
Unlike most irrational numbers, the propensity of the natural powers of the golden and silver

ratios to cluster around the integers endows them with characteristics facilitating global analysis.
Whilst these powers are attracted to certain integers, they remain irrational and, in a sense, they
repel one another. The increasing separation that exists between Lm and Un as m and n increase
indicates that the terms of the continued fraction for ln δs/ lnφ cannot exceed certain bounds, and
hence cannot be truly random.

In closing, the present analysis establishes that the largest of the non-trivial encounters be-
tween Lm and Un occurs at L11 = 199 and U6 = 198. Since 198 and 199 correspond to the
atomic mass numbers of two stable isotopes of mercury, the only metallic element which is liquid
at ordinary temperatures and pressures (both STP and NTP), and 199Hg is the only stable nuclide
with 199 nucleons, it seems fitting to name the following theorem after the element mercury:

Mercury Theorem. For m > 0 and n > 0, the closest encounters between the Lucas terms
Lm and the Pell–Lucas terms Un correspond to four solutions of the equation Lm = Un ± 1, the
largest of which occurs at m = 11, n = 6 corresponding to L11 = 199 and U6 = 198, a pairing
exceeding any other close encounter between Lm and Un for which the difference is 42 or less.
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