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Abstract: Graph coloring is one of the research areas that shaped the graph theory as we know
it today. An equitable coloring of a graph G is a proper coloring of the vertices of G such that
color classes differ in size by at most one. The subdivision graph S(G) of a graph G is the graph
obtained by inserting a new vertex into every edge ofG. LetG1 andG2 be two graphs with vertex
sets V (G1) and V (G2), respectively. The subdivision-vertex join of two vertex disjoint graphs
G1 and G2 is the graph obtained from S(G1) and G2 by joining each vertex of V (G1) with every
vertex of V (G2). In this paper, we find the equitable chromatic number of subdivision vertex join
of cycle graph with path graph.
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1 Introduction

All graphs considered in this paper are connected, finite and simple, i.e., undirected, loop less and
without multiple edges, unless otherwise stated. Let G = (V,E) be a graph. A vertex coloring
(or simply coloring) of a graph G is an assignment of colors to the vertices of G such that no two
adjacent vertices receive the same color. In a vertex coloring of G, the set of vertices with the
same color is called a color class. A graph G is said to be equitably k-colorable [6] if the vertex
set V (G) can be partitioned into k independent sets V1, V2, . . . , Vk such that ||Vi| − |Vj|| ≤ 1

for every i and j. In other words an equitable coloring [8] of a graph is a proper coloring of
the vertices of G such that the color classes differ in size by at most one. If |Vi| = l for every
i = 1, 2, . . . , k, then G on n = kl vertices is said to be strong equitably k-colorable. The smallest
integer k for which G is equitably k-colorable is called the equitable chromatic number of G and
is denoted by χ=(G).

The coloring problem is one of the most important problems in the graph theory. As an exten-
sion of proper vertex coloring, edge coloring and total coloring, the concept and some conjectures
on the equitable total coloring are developed [8]. An application of equitable coloring is found
in transportation problems. Here, the vertices represent garbage collection routes and two such
vertices are joined by an edge when the corresponding routes should not be run on the same day.
The problem of assigning one of the six days of the work to each route becomes the problem of
6-coloring of G [6]. On practical grounds it might also be desirable to have an approximately
equal number of routes run on each of the six days. So we have to color the graph in the equitable
way.

The notion of equitable colorability was introduced by Meyer [6]. However, an earlier work
of Hajnal and Szemeredi showed that a graph G with degree ∆(G) is equitably k-colorable if
k ≥ ∆(G) + 1. The degree of a vertex in G is the number of vertices adjacent to it. The
maximum degree over all vertices in G is denoted by ∆(G).
In 1973, Meyer [6] formulated the following conjecture
Conjecture 1 Equitable Coloring Conjecture (ECC)
For any connected graph G, other than a complete graph or an odd cycle, χ=(G) ≤ ∆(G).
We also have a stronger conjecture
Conjecture 2 Equitable ∆-Coloring Conjecture
If G is a connected graph of degree ∆, other than a complete graph, an odd cycle or a complete
bipartite graph K2n+1,2n+1 for any n ≥ 1, then G is equitably ∆-colorable.

Definition 1.1. The subdivision graph S(G) [5] of the graph G is obtained from G by inserting
a new vertex of degree 2 on each edge of G. For k ≥ 1, the k-th subdivision graph Sk(G) is
obtained from G by inserting k new vertices of degree 2 on each edge of G.

Definition 1.2. The subdivision-vertex join [2] of two vertex disjoint graphs G1 and G2 denoted
by G1∨̇G2, is the graph obtained from S(G1) and G2 by joining each vertex of V (G1) with every
vertex of V (G2).

Let Cm and Pn denote the cycle and path graph with m and n vertices, respectively. By
definition of subdivision vertex join of graphs [1, 3, 7] we subdivide each edge of the cycle graph

191



and join each vertex of the cycle graph with every vertex of the path graph [4, 5, 8].
Throughout this paper, {vi : 1 ≤ i ≤ m},{ui : 1 ≤ i ≤ m} and {si : 1 ≤ i ≤ n} denote the
vertices of cycle, the subdivided vertices of the cycle and the vertices of the path, respectively.
The total number of vertices of the subdivision vertex join graph is 2m+ n.

Example 1.3. Subdivision vertex join of a cycle graph C3 with a path graph P3 is given in the
following Fig. 1.

Figure 1. C3∨̇P3

2 Main results

Theorem 2.1. The equitable chromatic number of subdivision vertex join of a cycle graph Cm

and a path graph Pn is given by the following formulas:

1. χ=(Cm∨̇Pn) = 3 if 0 ≤ |m− n| ≤ 2.

2. χ=(Cm∨̇Pn) = 3 if |m− n| ≥ 3 for m > n.

3. χ=(Cm∨̇Pn) = 4 if 3 ≤ |m− n| ≤ dm
2

+ 1e for m < n.

4. χ=(Cm∨̇Pn) =

⌈
2m+ n+ 1

m+ 1

⌉
otherwise for m < n.

Proof. By the definition of subdivision vertex join of two graphs the edges of the cycle graph are
subdivided and each vertex of the cycle graph is joined with every vertices of the path graph. The
assigning of colors to the vertices of cycle, its subdivided vertices and the vertices of the path are
done as follows.

1. For 0 ≤ |m− n| ≤ 2.

(a) For |m− n| = 0, the colors are assigned by the following subcases

i. If m and n are even
If m = n = 2k for k ≥ 2 we set the partition of V as follows:
V1 = {vi : 1 ≤ i ≤ 2k},
V2 = {u2i−1 : 1 ≤ i ≤ k} ∪ {s2i−1 : 1 ≤ i ≤ k},
V3 = {u2i : 1 ≤ i ≤ k} ∪ {s2i : 1 ≤ i ≤ k}.
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Clearly, V1, V2, V3 are independent sets of V (Cm∨̇Pn).
Also, |V1| = |V2| = |V3| = 2k.
Thus, the inequality ||Vi| − |Vj|| ≤ 1 holds for every i and j.

ii. If m and n are odd
If m = n = 2k − 1 for k ≥ 2 we set the partition of V as follows:
V1 = {vi : 1 ≤ i ≤ 2k − 1}
V2 = {u2i−1 : 1 ≤ i ≤ k} ∪ {s2i : 1 ≤ i ≤ k − 1}
V3 = {u2i : 1 ≤ i ≤ k − 1} ∪ {s2i−1 : 1 ≤ i ≤ k}

Clearly, V1, V2, V3 are independent sets of V (Cm∨̇Pn).
Also, |V1| = |V2| = |V3| = 2k − 1.
Thus, the inequality ||Vi| − |Vj|| ≤ 1 hold for every i and j.

Thus (i) and (ii) show that the sets form an equitable 3-coloring of G.

(b) For |m− n| = 1.

The vertices vi : 1 ≤ i ≤ m of the cycle Cm are assigned color 1. Colors 2 and 3
are assigned, alternatively to the subdivided vertices of the cycle Cm and the path Pn

(color 1 being forbidden) with the following cases.

i. m is even and n is odd
The subdivided vertices ui : 1 ≤ i ≤ m are assigned the colors 2 and 3, alterna-
tively such that the colors 2 and 3 are being assigned m

2
times each. Similarly the

path Pn are assigned the colors 2 and 3, alternatively with color 2 being assigned
n+ 1

2
times and color 3 being assigned times

n− 1

2
. Hence, the color classes

are as follows:
V1 = {v1, v2, . . . , vm}
V2 = {u1, u3, . . . , um−1} ∪ {s1, s3, . . . , sn}
V3 = {u2, u4, . . . , um} ∪ {s2, s4, . . . , sn−1}

|V1| = |V2| = m|, V3| = m− 1, for m > n,
|V1| = |V3| = m, |V2| = m+ 1, for m < n.
Thus, the inequality ||Vi| − |Vj|| ≤ 1 hold for every i and j.

ii. m is odd and n is even
The subdivided vertices ui : 1 ≤ i ≤ m are assigned the colors 2 and 3, alter-
natively with color 2 being assigned m+1

2
times and color 3 being assigned m−1

2

times. The vertices of the path Pn are assigned the colors 2 and 3, alternatively
with n

2
times each. Hence the color classes are as follows:

V1 = {v1, v2, . . . , vm}
V2 = {u1, u3, . . . , um} ∪ {s1, s3, . . . , sn−1}
V3 = {u2, u4, . . . , um−1} ∪ {s2, s4, . . . , sn}

|V1| = |V2| = m, |V3| = m− 1, for m > n,
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|V1| = |V3| = m, |V2| = m+ 1, for m < n.
Thus, the inequality ||Vi| − |Vj|| ≤ 1 hold for every i and j.
Thus (i) and (ii) show that the sets form an equitable 3-coloring of G.

(c) For |m− n| = 2, the coloring is done by the following subcases

i. m and n are even
The subdivided vertices ui : 1 ≤ i ≤ m are assigned the colors 2 and 3, alterna-
tively such that the colors 2 and 3 are being assigned m

2
times each. The vertices

of the path Pn are assigned the colors 2 and 3, alternatively with n
2

times each.
Hence the color classes are as follows:
V1 = {v1, v2, . . . , vm}
V2 = {u1, u3, . . . , um−1} ∪ {s1, s3, . . . , sn−1}
V3 = {u2, u4, . . . , um} ∪ {s2, s4, . . . , sn}

|V1| = m, |V2| = |V3| = m− 1, for m > n,
|V1| = m, |V2| = |V3| = m+ 1, for m < n.
Thus, the inequality ||Vi| − |Vj|| ≤ 1 hold for every i and j.

ii. m and n are odd
The subdivided vertices ui : 1 ≤ i ≤ m are assigned the colors 2 and 3, alter-
natively with color 2 being assigned m+1

2
times and color 3 being assigned m−1

2

times. The vertices of the path Pn are assigned the colors 2 and 3, alternatively
with color 2 being assigned n−1

2
times and color 3 being assigned n+1

2
times.

Hence the color classes are as follows:
V1 = {v1, v2, . . . , vm}
V2 = {u1, u3, . . . , um} ∪ {s2, s4, . . . , sn−1}
V3 = {u2, u4, . . . , um−1} ∪ {s1, s3, . . . , sn}

|V1| = m, |V2| = |V3| = m− 1, for m > n,
|V1| = m, |V3| = |V2| = m+ 1, for m < n.
Thus, the inequality ||Vi| − |Vj|| ≤ 1 hold for every i and j.

Thus, (i) and (ii) shows that the set form an equitable 3-coloring of G.
Hence χ=(Cm∨̇Pn) = 3 if 0 ≤ |m− n| ≤ 2.

2. For |m− n| ≥ 3,m > n

The assigning of colors equitably are done by one of the following cases

Case 1: (2m+ n) mod 4 = 0.

The vertices vi : 1 ≤ i ≤ 2m+n
4

of the cycle Cm are all assigned color 1 and the remaining
vertices vi : 2m+n

4
+ 1 ≤ i ≤ m are assigned color 2. Thus color 2 is assigned 2m−n

4

times. Now we assign the colors to the subdivided vertices ui : 1 ≤ i ≤ m . Color 2 is
assigned to the subdivided vertices ui : 1 ≤ i ≤ n

2
and the remaining subdivided vertices

ui : n
2

+ 1 ≤ i ≤ m are assigned the colors 3 and 4, alternatively. Color 3 is assigned
d2m−n

4
e times and color 4 is assigned d2m−n

4
e times.

194



The path Pn is colored with two colors 3 and 4, alternatively (colors 1 and 2 being for-
bidden) such that the vertices {s1, s2, . . . , sn−1, sn} are assigned the colors {3, 4, . . . 3, 4},
respectively. Colors 3 and 4 are assigned n

2
times each.

Thus, color 1 is assigned 2m+n
4

times, colors 2, 3 and 4 assigned 2m−n
4

+ n
2

times each. All
the four colors are assigned 2m+n

4
times satisfying equitable coloring.

Case 2: (2m+ n) mod 4 = 1.

The vertices vi : 1 ≤ i ≤ b2m+n
4
c of the cycle Cm are all assigned color 1 and the remaining

vertices vi :
(⌊

2m+n
4

⌋
+ 1

)
≤ i ≤ m are assigned color 2. Thus color 2 is assigned d2m−n

4
e

times.

Now, we assign the colors to the subdivided vertices ui : 1 ≤ i ≤ m. Color 2 is assigned
to the subdivided vertices ui : 1 ≤ i ≤ dn

2
e and the remaining subdivided vertices ui :(

dn
2
e+ 1

)
≤ i ≤ m are assigned the colors 3 and 4, alternatively. Color 3 is assigned

d2m−n
4
e times and color 4 is assigned d2m−n

4
e times.

The path Pn is colored with two colors 3 and 4, alternatively (colors 1 and 2 being forbid-
den) such that the vertices {s1, s3, . . . , sn} are assigned the colors {4, 3, . . . , 3, 4}, respec-
tively. Color 3 is assigned bn

2
c times and color 4 is assigned dn

2
e times.

Thus, color 1 is assigned b2m+n
4
c times, color 2 is assigned d2m+n

4
e, colors 3 and 4 are

assigned b2m+n
4
c each. The four colors are assigned either b2m+n

4
c or d2m+n

4
e satisfying

equitable coloring.

Case 3: (2m+ n) mod 4 = 2.

The vertices vi : 1 ≤ i ≤ d2m+n
4
e of the cycle Cm are all assigned color 1 and the remaining

vertices vi : d2m+n
4
e + 1 ≤ i ≤ m are assigned color 2. Thus color 2 is assigned b2m−n

4
c

times.

Now, we assign the colors to the subdivided vertices ui : 1 ≤ i ≤ m. Color 2 is assigned to
the subdivided vertices ui : 1 ≤ i ≤ n

2
and the remaining subdivided vertices ui : n

2
+ 1 ≤

i ≤ m are assigned the colors 3 and 4,alternatively. Color 3 is assigned d2m−n
4
e times and

color 4 is assigned b2m−n
4
c times.

The path Pn is colored with two colors 3 and 4, alternatively (colors 1 and 2 being forbid-
den) such that the vertices {s1, s3, . . . , sn} are assigned the colors {4, 3, . . . , 3, 4}, respec-
tively. Color 3 is assigned n

2
times and color 4 is assigned n

2
times.

Thus, color 1 is assigned d2m+n
4
e times, color 2 is assigned b2m+n

4
c times, color 3 is as-

signed d2m+n
4
e times and color 4 is assigned b2m+n

4
c times. The four colors are assigned

either b2m+n
4
c or d2m+n

4
e satisfying equitable coloring.

Case 4: (2m+ n) mod 4 = 3.

The vertices vi : 1 ≤ i ≤ d2m+n
4
e of the cycle Cm are all assigned color 1 and the remaining

vertices vi : d2m+n
4
e + 1 ≤ i ≤ m are assigned color 2. Thus color 2 is assigned b2m−n

4
c

times.
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Now, we assign the colors to the subdivided vertices ui : 1 ≤ i ≤ m. Color 2 is assigned
to the subdivided vertices ui : 1 ≤ i ≤ dn

2
e and the remaining subdivided vertices ui :

dn
2
e+ 1 ≤ i ≤ m are assigned the colors 3 and 4, alternatively. Color 3 is assigned b2m−n

4
c

times and color 4 is assigned b2m−n
4
c times.

The path Pn is colored with two colors 3 and 4, alternatively (colors 1 and 2 being forbid-
den) such that the vertices {s1, s3, . . . , sn} are assigned the colors {3, 4, . . . , 3, 4}, respec-
tively. Color 3 is assigned dn

2
e times and color 4 is assigned bn

2
c times.

Thus, colors 1,2,3 are assigned d2m+n
4
e times each, color 4 is assigned b2m+n

4
c times. The

four colors are assigned either d2m+n
4
e or b2m+n

4
c times satisfying equitable coloring.

Thus, all the above cases are equitably 4-colorable and the inequality, ||Vi|−|Vj|| ≤ 1 holds
for every i and j.
Hence χ = (Cm∨̇Pn) = 4 if |m− n| ≥ 3.

3. 3 ≤ |m− n| ≤
(
dm

2
e+ 1

)
for m < n

The total number of vertices of the cycle and its subdivided vertices are 2m and the number
of vertices of the path is n. Hence the total number of vertices is 2m+ n. Let us assign the
colors equitably to the vertices 2m+ n. Assign color 1 to the vertices vi : 1 ≤ i ≤ b2m+n

4
c

of the cycle Cm.

(i) If b2m+n
4
c = m then the remaining number of vertices will be m+ n

(i.e.,) {u1, u3, u5, . . . , um} ∪ {s1, s3, s5, . . . , sn}. Since each vertex of the cycle is
joined to every vertex of the path color 1 is forbidden. Also in the path graph since
no two adjacent vertices can have same color we use two additional colors 2 and 3.
To satisfy the equitability one more additional color should be used (i.e.,) color 4.
Hence the colors 2, 3 and 4 are assigned, alternatively to the consecutive vertices
{u1, u3, u5, . . . , um, s1, s3, s5, . . . , sn}. Each of these three colors is assigned either
d2m+n

4
e or b2m+n

4
c times.

Hence all the four colors are assigned either d2m+n
4
e or b2m+n

4
c times such that the

color classes differ in sizes by at most 1.

(ii) If b2m+n
4
c 6= m then the remaining vertices of the cycle Cm are assigned color 2.

Since each vertex of the cycle is joined to every vertex of the path colors 1 and 2
are forbidden. Also in the path graph since no two adjacent vertices can have same
color we use two additional colors 3 and 4. Hence a minimum of four colors should
be used. On checking the equitability maximum of four colors is enough. Color 2 is
assigned to the subdivided vertices such that the total number of vertices having color
2 is either d2m+n

4
e or b2m+n

4
c times. Now for the remaining subdivided vertices and

the vertices of the path colors 3 and 4 are assigned, alternatively. Hence all the four
colors are assigned either d2m+n

4
e or b2m+n

4
c times such that the color classes differ in

sizes by at most 1.
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Therefore all the four colors are assigned either d2m+n
4
e or b2m+n

4
c times such that the

color classes differ in sizes by at most 1.

Hence χ = (Cm∨̇Pn) = 4 if 3 ≤ |m− n| ≥ dm
2
e+ 1 for m < n.

4. d2m+n+1
m+1

e otherwise for m < n.

The total number of vertices of the subdivision vertex join graph of the cycle with path
is 2m + n. By the construction of equitable coloring, all the vertices receive the colors
according to any one of the following cases:

(i) If all the vertices of the cycle receive the same color 1.

In this case, color 1 appears at the maximum of m times. Since each vertex of the
cycle is connected to every vertices of the path, color 1 is forbidden. Hence the m
subdivided vertices of the cycle and n vertices of the path should be given different
colors. Number of colors to be assigned to these vertices is dm+n

m+1
e.

Hence dm+n
m+1
e + 1 = d2m+n+1

m+1
e colors are assigned to the vertices of the subdivision

graph. Let color 2 be assigned to all the subdivided vertices of the cycle and the
vertices of the path are assigned the remaining colors, alternatively.

(ii) If the vertices of the cycle receive the color 1 with another color 2.

In this case, color 1 appears at the maximum of m times. Since each vertex of the
cycle is connected to every vertices of the path, color 1 is forbidden. Color 2 is
assigned to the remaining vertices of the cycle. Hence colors 1 and 2 are forbidden
for the vertices of the path. Color 2 is assigned to the subdivided vertices of the cycle
such that color 2 appears at mostm times. Remaining subdivided vertices of the cycle
and n vertices of the path should be given different colors to get an equitable coloring.
Total number of colors received by all the vertices of the subdivision vertex join graph
is dm+n

m+1
e+ 1 = d2m+n+1

m+1
e.

Hence χ = (Cm∨̇Pn) = d2m+n+1
m+1

e otherwise for m < n.

3 Conclusion

In this present paper, we have discussed the equitable coloring on subdivision vertex join of cycle
Cm with path Pn. As a motivation this work can be extended to find the equitable chromatic
number, equitable edge chromatic number and equitable total chromatic number for subdivision
vertex join of different families of graphs also in general an two arbitrary graphs.
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