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Abstract: In this paper, we consider two statistics on bargraphs, which are defined to be lat-
tice paths in the first quadrant, starting at the origin and ending upon first return to the x-axis.
Each bargraph is represented as a sequence of columns π1π2 . . . πm such that column k contains
πk cells. First we enumerate interior vertices, where naturally, interior vertex is a vertex that
belongs to exactly four cells of bargraphs. Then we enumerate d-edges - edges that contain d
interior vertices. More precisely, we find the generating function for the number of bargraphs
with n cells and m columns according: to interior vertices and according to horizontal (vertical)
d-edges. In addition we consider several special cases in detail, where we obtain asymptotic re-
sults for total number of statistics under consideration.
Keywords: Bargraphs, Generating functions, Interior vertices, Interior edges.
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1 Introduction

Bargraphs are lattice paths in N2
0, where N0 = {0, 1, 2, . . .}, starting at the origin and ending with

its first return to the x-axis that have three types of steps: an up step u = (0, 1), a down step
d = (0,−1), and a horizontal step h = (1, 0). Note that an up step cannot directly follow a down
step, and vice versa. Also note that horizontal steps must all lie strictly above the x-axis.

Given a bargraph B, four vertices A(x, y), B(x+ 1, y), C(x+ 1, y + 1), D(x, y + 1) that lie
either along B or within the area it subtends in the first quadrant determine a cell of B. The edges
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of B are the sets {A,B}, {A,D}, {B,C}, {C,D}. Thus edges are either horizontal or vertical
lines.

A bargraph can be identified as a sequence of columns s = s1s2 · · · sm such that the j-th
column (from the left) contains sj cells, where m denotes the number of horizontal steps of the
bargraph. We denote the set of all bargraphs with n cells andm columns by Cn,m. Bargraphs with
n cells and m columns are in a one-to-one correspondence with compositions of n with exactly
m parts, thus |Cn,m| =

(
n−1
m−1

)
(see [11], p.2).

The origin of bargraphs can be traced back to [1], where it was presented a solution of a
linear solid-on-solid (SOS) model, by observing that the problem of SOS walks that do not touch
the surface other than last time is equivalent to the problem of enumerating bargraph polygons
according to perimeter and area.

Bargraphs, also referred to as wall polyominoes [2] or skylines [3], have recently been studied
from different point of views and connections to different fields have appeared. Prellberg and
Brak [4] and Feretić [5] proved some fundamental results on bargraph by establishing a generating
function in two variables x and y according to the number of horizontal and up steps, respectively.
Other enumerative results related to bargraphs were found by Blecher et al., where bargraphs were
enumerated according to statistics: levels [6], peaks [7], descents [8] and walls [9]. Deutsch and
Elizalde [10] studied bargraphs as Motzkin paths without peaks or valleys. Therein by using the
recursive structure of Motzkin paths, bargraphs were enumerated with respect to several statistics
(height of the first column, double rises, double falls, corners, etc).

Some recent results in relation to bargraphs appear in [13, 14, 17] where the authors studied
several statistics on bargraphs such as the area and up step on set partitions, border and tangent
cells, corners in compositions and set partitions presented as bargraph.

Recently, in [18], the author counted number interior vertices in set partitions which presented
as bargraphs, and here we extend it to counting to all bargraphs.

We refer to [15] for statistics on permutations of length n represented geometrically as bar-
graphs having the same number of horizontal steps.

For results involving enumeration of integer partitions according to the number of corners in
their corresponding Ferrers diagrams see [12].

Bargraphs also have connections to statistical physics where they represent frequency dia-
grams and have been used to model polymers [1, 16].

In this paper we will consider new statistics on bargraphs.
The organization of this paper is as follows. In the next section, we introduce new statistics

on bargraphs. In the third section, we find the generating function for the bargraphs with n cells
and m columns according to the interior vertices (the concepts in this paragraph will be defined
in the next section). From this we establish an explicit formula for the total number of interior
vertices in all bargraphs with n cells. In the sections 4 and 5 we enumerate bargraphs with n cells
and m columns according to number of horizontal d edges and vertical d-edges, respectively. In
both those sections we consider some special cases where we find asymptotic formula for the
total number of horizontal (vertical) d-edges, with d ∈ {0, 1, 2}.
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2 Preliminaries

A vertex is called an interior vertex if it is adjacent to exactly four different cells of bargraph
B, otherwise it is called a boundary vertex. In the Figure 1, it is given the bargraph B =

235243164231 and its interior vertices. Let Intv(B) denote the set of interior vertices of a given
bargraph B. Further define intv(B) :=| Intv(B) |. For the given bargraph in Figure 1 we have
that

Intv(B) = {(1, 1), (2, 1), (2, 2), (3, 1), (4, 1), (5, 1), (5, 2), (8, 1), (8, 2), (8, 3), (9, 1), (9, 2)},
thus we have that intv(B) = 12.

t t t t tt t ttt t t
Figure 1. The bargraph B = 235243164231 and its interior vertices

A horizontal/vertical edge of a bargraph is called a d-h-edge/d-v-edge if it is formed from
d interior vertices. Let EHIntd(B)/EV Intd(B) denote the set of horizontal/vertical edges
formed from d interior vertices. Further define ehintd(B) :=| EHIntd(B) | and evintd(B) :=|
EV Intd(B) |. For the given bargraph in Figure 2 we have that ehint0(B) = 15, evint0(B) = 12,
ehint1(B) = 4, evint1(B) = 10, ehint2(B) = 7 and evint2(B) = 4. Clearly,

3∑
d=0

ehintd(B) =
3∑
d=0

evintd(B) = n+m

for any bargraph of n with m columns.

ss s ss s ss s
Figure 2. The bargraph 534332 and its 2-edges.

3 Interior vertices

Let I(x, y) = I(x, y; q) (respectively, Ia(x, y) = Ia(x, y; q)) be the generating function for the
number of bargraphs with n cells and m columns (respectively, such that the length of the first
column is a) according to the number of interior vertices, namely,

I(x, y) =
∑
n≥0

n∑
m=0

xnym
∑

B∈C(n,m)

qintv(B),

Ia(x, y) =
∑
n≥a

n∑
m=1

xnym
∑

aB′∈C(n,m)

qintv(aB
′).
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By definitions, we have

Ia(x, y) = xay + xay
a∑
b=1

qb−1Ib(x, y) + xayqa−1
∑
b≥a+1

Ib(x, y),

which is equivalent to

Ia(x, y) = xay(1− qa−1) + xay
a∑
b=1

(qb−1 − qa−1)Ib(x, y) + xayqa−1I(x, y). (1)

Define
I(x, y|u) = I(x, y; q, u) = 1 +

∑
a≥1

Ia(x, y)u
a.

Clearly, I(x, y|1) = I(x, y). By multiplying (1) by ua and summing over a ≥ 1, we obtain

I(x, y|u)− 1 =
xyu

1− xu
+

xyu(1− q)
q(1− xu)(1− qxu)

(I(x, y|qxu)− 1) +
xyu

1− qxu
(I(x, y)− 1).

Let |x|, |q|, |y|, |u| < 1. By iterating last equation infinitely many times, we obtain

I(x, y|u) = 1 +
∑
j≥0

(1− q)jq(
j
2)x(

j+2
2 )yj+1uj+1 (qj(1− q)xj+1u+ (1− qjxj+1u)I(x, y))∏j

i=0(1− qixi+1u)(1− qi+1xi+1u)
.

By setting u = 1, and using I(x, y; 1) = I(x, y), we can state the following result.

Theorem 3.1. We have

I(x, y; q) =
1 +

∑
j≥1

(1−q)jq(
j
2)x(

j+1
2 )+jyj∏j−1

i=0 (1−qixi+1)(1−qi+1xi+1)

1−
∑

j≥0
(1−q)jq(

j
2)x(

j+2
2 )yj+1

(1−qj+1xj+1)
∏j−1
i=0 (1−qixi+1)(1−qi+1xi+1)

.

Note that I(x, y; 1) = 1
1− xy

1−x
, as expected. By differentiating I(x, y; q) with respect to q and

evaluating it at q = 1, Theorem 3.1 gives

d

dq
I(x, y; q) |q=1=

d

dq

1 + (1− q)x2y

1−
∑1

j=0
(1−q)jq(

j
2)x(

j+2
2 )yj+1

(1−qj+1xj+1)
∏j−1
i=0 (1−qixi+1)(1−qi+1xi+1)

,

which leads to
d

dq
I(x, y; q) |q=1=

y2x4

(1− x2)(1− x− xy)2
.

Hence, we have the following result.

Corollary 3.2. The total number of interior vertices in all bargraphs with n cells is given by

3n− 11

9
2n−2 +

1

18
(9 + (−1)n).
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4 Horizontal d-edges

Let H(x, y) = H(x, y; q0, q1, q2) be the generating function for the number of bargraphs with n
cells and m columns according to the number of horizontal d-edges, namely,

H(x, y) =
∑
n≥0

n∑
m=0

xnym
∑

B∈C(n,m)

2∏
d=0

q
ehintd(B)
d .

Let B be any nonempty bargraph and let its column lengths be b1, b2, · · · bm. Then B can be
decomposed as either m = 1, or b1, . . . , bm,m ≥ 2 or there exits j such that b1, b2, . . . , bj−1,m ≥
2 and bj = 1. Thus,

H(x, y) = 1 +
q20xy

1− q0x
+ q21q

−2
2 H̃(x, q2xy) + q20xy(H(x, y)− 1)

+ q20xy

(
q21q
−1
2 H̃(x, q2xy) +

q30x
2y

1− q0x

)
H(x, y),

where H̃(x, y) = H(x, y)−1− q20xy

1−q0x is the generating function for the number of bargraphs with
n cells and m ≥ 2 columns according to the number of horizontal d-edges. Hence, we can state
the following result.

Theorem 4.1. The generating functionH(x, y) = H(x, y; q0, q1, q2) satisfies the following recur-
rence relation

H(x, y) =
1− q20xy +

q20xy

1−q0x + q21q
−2
2

(
H(x, q2xy)− 1− q20q2x

2y

1−q0x

)
1− q20xy −

q50x
3y2

1−q0x − q
2
0q

2
1q
−2
2 xy

(
H(x, q2xy)− 1− q20q2x

2y

1−q0x

) .
From the above theorem, we have

H(x, y) =
1

q20xy +
(1−q20xy)2−

q40(1+q0x)x
2y2

1−q0x

1−q21q
−2
2 +

q20(q0−q
2
1q
−1
2 )x2y

1−q0x
+q21q

−2
2 H(x,q2xy)

,

which leads to an explicit formula for H(x, y) in terms of continued fractions.

Corollary 4.2. We have

H(x, y; q0, q1, q2) =
1

q20xy +
α(y)

β(y)+
q21q
−2
2

q20q2x
2y+

α(q2xy)

β(q2xy)+
q21q
−2
2

q20q
2
2x

3y+
α(q22x

2y)

β(q22x
2y)+

q21q
−2
2

...

,

where α(y) = (1− q20xy)2 −
q40(1+q0x)x

2y2

1−q0x and β(y) = 1− q21q−22 +
q20(q0−q21q

−1
2 )x2y

1−q0x .

Note that by Theorem 4.1 we have that H(x, y; 1, 1, 1) = H(x,xy;1,1,1)
1−xyH(x,xy;1,1,1)

, which leads to
H(x, y; 1, 1, 1) = 1−x

1−x−xy , as expected.
Next, we consider several special cases.
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4.1 Total number of horizontal 0-edges

Theorem 4.1 with q0 = q and q1 = q2 = 1 gives

H(x, y; q, 1, 1) =

(q−1)q2x2y
1−qx +H(x, xy; q, 1, 1)

1 + (1−q)q4x3y2
1−qx − q2xyH(x, xy; q, 1, 1)

.

Let f(x, y) = d
dq
H(x, y; q, 1, 1) |q=1. Then

f(x, y) =
xy(x5y2 + 2x3(x− 1)y − (x− 1)2(x− 2)

(1− x− xy)2(1− x)
+

(1− x− x2y)2

(1− x− xy)2
f(x, xy),

which implies

f(x, y) =
xy(x5(x+ 1)y2 + 2x3(x3 − 1)y − (x− 2)(x2 − 1)(x3 − 1))

(1− x2)(1− x3)(1− x− xy)2
.

In particular,

f(x, y) =
(2x6 + 3x5 + x4 − 3x3 − 2x2 − x+ 2)x

(1− x2)(1− x3)(1− 2x)2
.

Thus, we can state the following result.

Corollary 4.3. Asymptotically, the total number of all horizontal 0-edges over all bargraphs of n
is given by 13n

21
2n when n→∞.

4.2 Total number of horizontal 1-edges

Theorem 4.1 with q1 = q and q0 = q2 = 1 gives

H(x, y; 1, q, 1) =
1− xy + xy

1−x + q2
(
H(x, xy; 1, q, 1)− 1− x2y

1−x

)
1− xy − x3y2

1−x − q2xy
(
H(x, xy; 1, q, 1)− 1− x2y

1−x

) .
Let f(x, y) = d

dq
H(x, y; 1, q, 1) |q=1. Then

f(x, y) =
2x4y2(1− x− x2y)
(1− x− xy)2(1− x)

+
(1− x− x2y)2

(1− x− xy)2
f(x, xy),

which implies

f(x, y) =
(1− x3 − x2(1 + x)y)x4y2

(1− x2)(1− x3)(1− x− xy)2
.

In particular,

f(x, y) =
(1− x2 − 2x3)x4

(1− x2)(1− x3)(1− 2x)2
.

Thus, we can state the following result.

Corollary 4.4. Asymptotically, the total number of all horizontal 1-edges over all bargraphs of n
is given by n

21
2n when n→∞.
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4.3 Total number of horizontal 2-edges

Theorem 4.1 with q2 = q and q0 = q1 = 1 gives

H(x, y; 1, 1, q) =
1 + x2y

1−x + q−2
(
H(x, qxy; 1, 1, q)− 1− qx2y

1−x

)
1− xy − x3y2

1−x − q−2xy
(
H(x, qxy; 1, 1, q)− 1− qx2y

1−x

) .
Let f(x, y) = d

dq
H(x, y; 1, 1, q) |q=1. Then by using the fact that H(x, y; 1, 1, 1) = 1−x

1−x−xy , we
obtain

f(x, y) =
y3x6

(1− x− xy)2(1− x)
+

(1− x− x2y)2

(1− x− xy)2
f(x, xy),

which implies

f(x, y) =
x6y3

(1− x)(1− x3)(1− x− xy)2
.

In particular,

f(x, y) =
x6

(1− x)(1− x3)(1− 2x)2
.

Thus, we can state the following result.

Corollary 4.5. Asymptotically, the total number of all horizontal 2-edges over all bargraphs of n
is given by n

28
2n when n→∞.

5 Vertical d-edges

Let V (x, y) = V (x, y; q0, q1, q2) be the generating function for the number of bargraphs with n
cells and m columns according to the number of vertical d-edges, namely,

V (x, y) =
∑
n≥0

n∑
m=0

xnym
∑

B∈C(n,m)

2∏
d=0

q
evintd(B)
d .

Let Ṽ (x, y) = Ṽ (x, y; q0, q1, q2) be the generating function for the number of bargraphs with n
cells and m columns according to the number of vertical d-edges such that the length of each
column is at least 2.

Let B be any nonempty bargraph and let its column lengths be b1, b2, · · · , bm. Then B can be
decomposed as either b1, . . . , bm ≥ 2, m = b1 = 1, b1, . . . , bm−1 ≥ 2 and bm = 1 with m ≥ 2,
b1 = 1 with m ≥ 2, or there exits j such that b1, b2, . . . , bj−1 ≥ 2 and bj = 1 with 2 ≤ j ≤ m−1.
Thus,

V (x, y) = Ṽ (x, y) + q20xy + q0xy(Ṽ (x, y)− 1)

+ q0xy(V (x, y)− 1) + xy(Ṽ (x, y)− 1)(V (x, y)− 1).

Let B be any nonempty bargraph and let its column lengths be b1, b2, · · · , bm such that bi ≥ 2 for
all i = 1, 2, . . . ,m. Then B can be decomposed as either b1, . . . , bm ≥ 3, m = 1 and b1 = 2,
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b1, . . . , bm−1 ≥ 3 and bm = 2 with m ≥ 2, b1 = 2 with m ≥ 2, or there exits j such that
b1, b2 . . . , bj−1 ≥ 3 and bj = 2 with 2 ≤ j ≤ m− 1. Thus,

Ṽ (x, y) = 1 +
q20
q2
(Ṽ (x, q2xy)− 1) + q40x

2y +
q21q

2
0

q2
x2y(Ṽ (x, q2xy)− 1)

+ q21x
2y(Ṽ (x, y)− 1) +

q41
q20q2

x2y(Ṽ (x, q2xy)− 1)(Ṽ (x, y)− 1).

Hence, we have the following result.

Theorem 5.1. Let W (x, y) = Ṽ (x, y)− 1. Then we have

V (x, y) = 1− q0 +
q0 +W (x, y)

1− q0xy − xyW (x, y)
,

W (x, y) =
q20
q2
· q

2
0q2x

2y + (1 + q21x
2y)W (x, q2xy)

1− q21x2y −
q41
q20q2

x2yW (x, q2xy)
.

Note that by finding W (x, y) in terms of V (x, y) and then substituting the expression into the
second equation, one can obtain a relation between V (x, y) and V (x, q2xy). Moreover, Theo-
rem 5.1 with q0 = q1 = q2 = 1 gives

V (x, y; 1, 1, 1) =
W (x, y; 1, 1, 1)

1− xy − xyW (x, y; 1, 1, 1)
,

W (x, y; 1, 1, 1) =
x2y + (1 + x2y)W (x, xy; 1, 1, 1)

1− x2y − x2yW (x, xy; 1, 1, 1)
.

It is not hard to see that W (x, y; 1, 1, 1) = x2y
1−x−x2y and V (x, y; 1, 1, 1) = 1−x

1−x−xy . Similarly, as in
the previous section, one can show the following result.

Corollary 5.2. The generating function for the total number of all vertical d-edges over all bar-
graphs of n is given by

d

dq0
V (x, y; q0, 1, 1) |q0=1 =

(x5y − 2x3y − 2x2 − xy + 2)xy

(1− x2)(1− x− xy)2
,

d

dq1
V (x, y; 1, q1, 1) |q1=1 =

2x4y2

(1− x− xy)2
,

d

dq2
V (x, y; 1, 1, q2) |q2=1 =

(2x2y + x2 + 2xy + x+ 1)x6y2

(1− x3)(1 + x)(1− x− xy)2
.

Asymptotically, the total number of all 0-edges (respectively, 1-edges, 2-edges) over all bargraphs
of n is given by 25n

48
2n (respectively, n

8
2n and 13n

336
2n) when n→∞.
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