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Abstract: We study properties of generalized balancing numbers. We start with some basic
identities. Thereafter, we focus on connections to generalized Fibonacci numbers. Using gener-
ating functions we prove fundamental relations between these two sequences. Many interesting
examples involving balancing, Lucas-balancing, Fibonacci, and Lucas numbers are obtained as
special cases of our relations.
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1 Introduction

In 1999, Behera and Panda [1] introduced a new sequence of numbers called balancing numbers.
According to the authors, a positive integer x is a balancing number with balancer r, if it is the
solution to the Diophantine equation

1 + 2 + · · ·+ (x− 1) = (x+ 1) + (x+ 2) + · · ·+ (x+ r).

The set of balancing numbers is usually denoted by (Bn)n≥0. Behera and Panda [1] derived
interesting properties of these numbers. Among other results, they showed that Bn satisfies the
following recurrence relation of second order

Bn+1 = 6Bn −Bn−1, n ≥ 1, (1.1)

∗ Disclaimer: Statements and conclusions made in this article are entirely those of the author. They do not
necessarily reflect the views of LBBW.
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with initial terms B0 = 0 and B1 = 1. Another result about balancing numbers is, that Bn is
a balancing number, if and only if B2

n is a triangular number, i.e., 8B2
n + 1 is a perfect square.

Another interesting result from [1] is that the three functions

y1(x) = 2x
√
8x2 + 1, y2(x) = 3x+

√
8x2 + 1 and y3(x) = 17x+ 6

√
8x2 + 1,

also generate balancing numbers, i.e., yi(Bn) (i = 1, 2, 3) is a balancing number. The sequence
Cn =

√
8B2

n + 1 is called a Lucas-balancing number. It satisfies the same recurrence relation as
Bn,

Cn+1 = 6Cn − Cn−1, n ≥ 1, (1.2)

with initial terms C0 = 1 and C1 = 3. (Bn)n≥0 is sequence A001109 in the OEIS [16], whereas
(Cn)n≥0 has the id-number A001541 in OEIS.

The sequences Bn and Cn have been studied extensively in recent years. We refer to the
references [3, 7, 8, 11–15]. Some properties are similar to those for Fibonacci numbers. For
instance, the Catalan identities are given by ([3])

Bn+rBn−r −B2
n = −B2

r and Cn+rCn−r − C2
n = C2

r − 1. (1.3)

For r = 1, the Catalan identities reduce to the Cassini identities:

Bn+1Bn−1 −B2
n = −1 and Cn+1Cn−1 − C2

n = 8. (1.4)

A famous result concerning balancing numbers was obtained by Liptai in [8], where he proved
that there is no Fibonacci number within the set of balancing numbers except 1.

Generalizations of balancing numbers can be obtained in various ways (see [9] or [10]). In
the present paper we will take equations (1.1) and (1.2) as special examples of the more general
definition

bn+1 = 6bn − bn−1, n ≥ 1, (1.5)

with b0 = α and b1 = β. We assume that α and β are fixed integers with |α| + |β| > 0. The
sequence (bn(α, β))n≥0 will be called a generalized balancing sequence. Obviously, bn(0, 1) =

Bn and bn(1, 3) = Cn. For notational ease, we will write almost persistently bn for bn(α, β).
Finally, we remark that the bn as defined above are not balancing in the sense of [2].

In this article we prove many interesting properties of generalized balancing numbers. We
start with some basic identities. Thereafter, we focus on connections to generalized Fibonacci
numbers. Using generating functions we prove fundamental relations between these two fasci-
nating sequences.

2 Basic properties of generalized balancing numbers bn
Generating functions will play a key role in our proofs. For that reason, we start with the gener-
ating functions for bn. This approach can be also found in the articles [14] and [15] to establish
identities involving balancing and Lucas-balancing numbers.
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Proposition 2.1. The ordinary generating function for (bn)n≥0 is given by

fbn(x) =
α + (−6α + β)x

1− 6x+ x2
. (2.1)

Also, we have

fb2n(x) =
α + (−35α + 6β)x

1− 34x+ x2
, (2.2)

and

fb2n+1(x) =
β + (−6α + β)x

1− 34x+ x2
. (2.3)

Proof. The first result is obvious and follows from the definition and

fbn(x)− 6xfbn(x) + x2fbn(x) = α + (−6α + β)x.

The other statements follow from Lemma 2.2 in [4].

Using the generating function for bn, it is straightforward to derive their Binet form. We have

bn(α, β) = Xλn1 − Y λn2 , (2.4)

with
X =

β − αλ2
λ1 − λ2

and Y =
β − αλ1
λ1 − λ2

, (2.5)

where λ1 = 3 +
√
8 and λ2 = 3−

√
8. The constants λ1,2 are solutions to 1− 6x + x2 = 0. We

note that the Binet form can be utilized to extend the definition to negative indices:

b−n(α, β) = Xλ−n1 − Y λ−n2 = −(Y λn1 −Xλn2 ).

Observe that for bn = Bn we have X = Y = 1
λ1−λ2 and B−n = −Bn. Similarly, for bn = Cn we

have X = −Y = 1
2

and C−n = Cn.

A direct consequence of Proposition 2.1 are the following relations:

Corollary 2.2. For each n ≥ 0 we have

Cn = Bn+1 − 3Bn, (2.6)

6C2n = B2n+2 − 17B2n, (2.7)

and
C2n+1 + C2n−1 = 3(B2n+1 −B2n−1). (2.8)

Proof. The equations follow from

xfCn(x) = (1− 3x)fBn(x),

6xfC2n(x) = (1− 17x)fB2n(x),

and
(1 + x)fC2n+1(x) = (3− 3x)fB2n+1(x).
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Proposition 2.3. Catalan’s and Cassini’s identities for bn are given by

bn+r · bn−r − b2n = −XY (λr1 − λr2)2. (2.9)

Especially,
bn+1 · bn−1 − b2n = −32XY. (2.10)

Proof. We have

bn+r · bn−r − b2n = (Xλn+r1 − Y λn+r2 )(Xλn−r1 − Y λn−r2 )− (Xλn1 − Y λn2 )2

= 2XY −XY (λ2r1 + λ2r2 )

= −XY (λ2r1 + λ2r2 − 2(λ1λ2)
r)

= −XY (λr1 − λr2)2.

Next, we state two combinatorial formulas for bn.

Proposition 2.4. For each generalized balancing number bn it holds that

bn = α

bn
2
c∑

k=0

(−1)k
(
n− k
k

)
6n−2k + (−6α + β)

bn−1
2
c∑

k=0

(−1)k
(
n− 1− k

k

)
6n−1−2k. (2.11)

Proof. From (2.1) we obtain

fbn(x) =
(
α + (−6α + β)x

) ∞∑
n=0

(6x− x2)n.

Expand the term in brackets binomially, and the proof is completed.

The case bn = Bn appears as Theorem 3.1 in [14]. When bn = Cn, then the above identity
turns into

Cn =

bn
2
c∑

k=0

(−1)k
(
n− k
k

)
6n−2k − 3

bn−1
2
c∑

k=0

(−1)k
(
n− 1− k

k

)
6n−1−2k. (2.12)

Obviously, from (2.2) and (2.3) similar identities for b2n and b2n+1 can be derived. The next result
generalizes Theorem 3.3 from [14].

Proposition 2.5. For each generalized balancing number bn it holds that

bn = (X + Y )

bn+1
2
c∑

k=1

(
n

2k − 1

)
3n+1−2k(

√
8)2k−1 + (X − Y )

bn
2
c∑

k=0

(
n

2k

)
3n−2k · 8k. (2.13)

Proof. As in [14], we set λ1 = a+ b and λ2 = a− b with a = 3 and b =
√
8. This produces

bn = X(a+ b)n − Y (a− b)n =
n∑
k=0

(
n

k

)
an−kbk(X − Y (−1)k).

Now, split the sum into even and odd parts and the proof is completed.
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Proposition 2.6. For each n ≥ 0 we have the following identities:

2n∑
k=0

(
2n

k

)
bk = 8nbn, (2.14)

2n∑
k=0

(
2n

k

)
(−1)kbk = 4nbn, (2.15)

n∑
k=0

(
2n

2k

)
b2k = (23n−1 + 22n−1)bn, (2.16)

and for n ≥ 1
b 2n−1

2
c∑

k=0

(
2n

2k + 1

)
b2k+1 = (23n−1 − 22n−1)bn. (2.17)

Proof. The essential part in the proof is to observe that (λ1,2+1)2 = 8λ1,2 and (λ1,2−1)2 = 4λ1,2.
This, in combination with the binomial theorem, proves the first two equations. The third identity
follows from adding the first two equations, whereas the last identity is obtained by subtracting
these.

The next result provides us with a first convolution identity for generalized balancing num-
bers. The identity may be proved directly using the Binet form.

Theorem 2.7. Let l and m be integers. Then it holds that

n∑
k=0

bmk · bln−mk = (n+ 1)(X2λln1 + Y 2λln2 )

− XY

λm1 − λm2

(
λ
n(2m−l)+m
1 − λn(2m−l)+m2 + λln+m1 − λln+m2

)
. (2.18)

Especially, for l = m we have

n∑
k=0

bmk · bm(n−k) = (n+ 1)(X2λmn1 + Y 2λmn2 )− 2XY

λm1 − λm2
(λ

m(n+1)
1 − λm(n+1)

2 ). (2.19)

Proof. By the Binet formula with λ1λ2 = 1 we can calculate

n∑
k=0

bmk · bln−mk =
n∑
k=0

(
Xλmk1 − Y λmk2

)(
Xλln−mk1 − Y λln−mk2

)
= (n+ 1)

(
X2λln1 + Y 2λln2

)
−XY

n∑
k=0

(
λln2

(λ1
λ2

)mk
+ λln1

(λ2
λ1

)mk)
.
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Using the geometric series and simplifying yields

n∑
k=0

bmk · bln−mk = (n+ 1)
(
X2λln1 + Y 2λln2

)
−XY

(λm(n+1)
1 − λm(n+1)

2

λm1 − λm2

( 1

λ
n(m−l)
2

+
1

λ
n(m−l)
1

))
= (n+ 1)

(
X2λln1 + Y 2λln2

)
− XY

λm1 − λm2

(
λ
m(n+1)
1 − λm(n+1)

2

)(
λ
n(m−l)
1 + λ

n(m−l)
2

)
Expanding the terms in parentheses proves the formula.

For l = m = 1 and bn = Bn the formula reduces to

n∑
k=0

BkBn−k =
1

16

(
(n+ 1)Cn −Bn+1

)
, (2.20)

and for bn = Cn we obtain

n∑
k=0

CkCn−k =
1

2

(
(n+ 1)Cn +Bn+1

)
. (2.21)

Similarly, for l = m = 2

n∑
k=0

B2kB2(n−k) =
1

16

(
(n+ 1)C2n −

1

6
B2n+2

)
, (2.22)

and
n∑
k=0

C2kC2(n−k) =
1

2

(
(n+ 1)C2n +

1

6
B2n+2

)
. (2.23)

Generating functions are a prominent tool to prove different kinds of convolution sums. See
for instance [4], [5], and [6]. We give two advanced examples. Hereby, we focus on convolution
sums containing b2n and b2n+1. To abbreviate notation, we set α∗ = −6α+β and β∗ = −35α+6β.
The first result we would like to present is the following (symmetric) identity:

Theorem 2.8. For n ≥ 0 we have the following convolution:

n∑
k=0

b2k

(
β2b2(n+2−k) + 2α∗βb2(n+1−k) + α∗2b2(n−k)

)
+ b2n+2(b2β

2 + 2αα∗β) + αβ2b2n+4

=
n∑
k=0

b2k+1

(
α2b2(n+2−k)+1 + 2αβ∗b2(n+1−k)+1 + β∗2b2(n−k)+1

)
+b2n+3(b3α

2 + 2αββ∗) + α2βb2n+5. (2.24)

Proof. From (2.2) and (2.3) we deduce the relation

(β + α∗x)2f 2
b2n

(x) = (α + β∗x)2f 2
b2n+1

(x). (2.25)
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Expanding and writing it as a power series, we see that the LHS equals

LHS = β2

∞∑
n=0

n∑
k=0

b2kb2(n−k)x
n + 2α∗β

∞∑
n=1

n−1∑
k=0

b2kb2(n−1−k)x
n + α∗2

∞∑
n=2

n−2∑
k=0

b2kb2(n−2−k)x
n.

The RHS is given by

RHS = α2

∞∑
n=0

n∑
k=0

b2k+1b2(n−k)+1x
n + 2αβ∗

∞∑
n=1

n−1∑
k=0

b2k+1b2(n−1−k)+1x
n

+β∗2
∞∑
n=2

n−2∑
k=0

b2k+1b2(n−2−k)+1x
n.

The identity follows by gathering terms, comparing the coefficients of xn, and replacing n by
n+ 2.

When bn = Bn, then the formula reduces to

36
n∑
k=0

B2k+1B2(n−k)+1 = 6B2n+2 +
n∑
k=0

B2k

(
B2(n+2−k) + 2B2(n+1−k) +B2(n−k)

)
. (2.26)

When bn = Cn, then the convolution becomes
n∑
k=0

C2k

(
C2(n+2−k) − 2C2(n+1−k) + C2(n−k)

)
+ 15C2n+2 + C2n+4

=
1

9

n∑
k=0

C2k+1

(
C2(n+2−k)+1 − 34C2(n+1−k)+1 + 289C2(n−k)+1

)
+

1

3

(
C2n+5 − C2n+3

)
.

(2.27)

Theorem 2.9. For n ≥ 0 we have the following convolution:

n∑
k=0

b2k+1

(
(−α + 6β)b2(n+2−k)+1 − 2αb2(n+1−k)+1 − β∗b2(n−k)+1

)
+b2n+3(b3(−α + 6β)− 2αβ) + b2n+5β(−α + 6β)

= β2(n+ 3)b2n+6 + 2α∗β(n+ 2)b2n+4 + α∗2(n+ 1)b2n+2. (2.28)

Proof. Again, from (2.2) and (2.3) we derive the relation

(β + α∗x)2f ′b2n(x) = ((−α + 6β)− 2αx− β∗x2)f 2
b2n+1

(x), (2.29)

where f ′b2n(x) is the first derivative with respect to x. The remaining part of the proof is as in the
last theorem. We omit the lengthy details.

When bn = Bn, then the formula simplifies to
n∑
k=0

B2k+1

(
B2(n+2−k)+1 −B2(n−k)+1

)
=

1

6

(
(n+ 3)B2n+6 + 2(n+ 2)B2n+4 + (n+ 1)B2n+2

)
− 35B2n+3 −B2n+5. (2.30)
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When bn = Cn, then the convolution becomes

n∑
k=0

C2k+1

(
17C2(n+2−k)+1 − 2C2(n+1−k)+1 + 17C2(n−k)+1

)
= 9(n+ 3)C2n+6 − 18(n+ 2)C2n+4 + 9(n+ 1)C2n+2 − 51C2n+5 − 1677C2n+3.(2.31)

Equations (2.2) and (2.3) allow to produce more results of this kind. We leave it to the inter-
ested reader.

3 Connections to generalized Fibonacci numbers

This section contains new fundamental relations between balancing and Fibonacci numbers.
Analogous results for Fibonacci and Tribonacci numbers have been established recently in [5]
and [6]. As usual, let (un)n≥0 be a generalized Fibonacci sequence, i.e.,

un = un−1 + un−2, n ≥ 2, (3.1)

where u0 and u1 are arbitrary numbers not both being zero. When u0 = 0 and u1 = 1, then
un = Fn is the Fibonacci sequence (A000045 in the OEIS [16]) and when u0 = 2 and u1 = 1,
then un = Ln is the Lucas sequence (A000032 in [16]). Our first result is the following theorem.

Theorem 3.1. Let (bn)n≥0 and (un)n≥0 denote the generalized balancing and Fibonacci se-
quences, respectively. Then, for each n ≥ 2, we have the following identity:

u0bn + (u1 − u0)bn−1 = αun + (β − α)un−1 +
n−2∑
k=0

uk(5bn−1−k − 2bn−2−k). (3.2)

Proof. The generating function for (un)n≥0 is given by

fun(x) =
u0 + (u1 − u0)x

1− x− x2
. (3.3)

Now, notice that

1− 6x+ x2 = 1− x− x2 − 5x+ 2x2 =
u0 + (u1 − u0)x− 5xfun(x) + 2x2fun(x)

fun(x)
.

Hence, using the generating function (2.1)

(u0 + (u1 − u0)x− 5xfun(x) + 2x2fun(x))fbn(x) = (α + (−6α + β)x)fun(x). (3.4)

For the LHS we have

LHS = u0

∞∑
n=0

bnx
n + (u1 − u0)

∞∑
n=1

bn−1x
n − 5

∞∑
n=1

n−1∑
k=0

ukbn−1−kx
n

+2
∞∑
n=2

n−2∑
k=0

ukbn−2−kx
n.
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The RHS equals

RHS = α

∞∑
n=0

unx
n + (−6α + β)

∞∑
n=1

un−1x
n.

Comparing the coefficients of xn gives the statement.

As special cases of Theorem 3.1 we state explicit results for the pairs (bn = Bn, un = Fn),
(bn = Bn, un = Ln), (bn = Cn, un = Fn), and (bn = Cn, un = Ln). When bn = Bn and
un = Fn, then equation (3.2) simplifies to

Bn = Fn +
n−1∑
k=0

Fk(5Bn−k − 2Bn−1−k). (3.5)

When bn = Bn and un = Ln, then equation (3.2) becomes

2Bn = Bn−1 + Ln−1 +
n−2∑
k=0

Lk(5Bn−1−k − 2Bn−2−k). (3.6)

When bn = Cn and un = Fn, then we get

Cn = Fn+1 + 2Fn +
n−1∑
k=0

Fk(5Cn−k − 2Cn−1−k). (3.7)

Finally, when bn = Cn and un = Ln, then

2Cn = Cn−1 + Ln + 2Ln−1 +
n−2∑
k=0

Lk(5Cn−1−k − 2Cn−2−k). (3.8)

Our next theorem deals with even indexed numbers b2n and u2n.

Theorem 3.2. For n ≥ 1 the following identity holds:

u0b2n + (u1 − 2u0)b2n−2 − αu2n + (35α− 6β)u2n−2 = 31
n−1∑
k=0

u2kb2(n−1−k). (3.9)

Proof. The generating function for (u2n)n≥0 is given by (see for instance [6])

fu2n(x) =
u0 + (u1 − 2u0)x

1− 3x+ x2
. (3.10)

Comparing this function with the generating function (2.2) and using similar arguments as in the
previous proof, we can derive the following relation:

(u0 + (u1 − 2u0)x− 31xfu2n(x))fb2n(x) = (α + (−35α + 6β)x)fu2n(x). (3.11)

Comparing the coefficients of xn establishes the identity.

As specific examples of the theorem we can state the following mixed convolution identities:
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1. b2n = B2n and u2n = F2n:

n∑
k=0

F2kB2(n−k) =
1

31

(
B2n − 6F2n

)
. (3.12)

2. b2n = B2n and u2n = L2n:

n∑
k=0

L2kB2(n−k) =
1

31

(
2B2n+2 − 3B2n − 6L2n

)
. (3.13)

3. b2n = C2n and u2n = F2n:

n∑
k=0

F2kC2(n−k) =
1

31

(
C2n − F2n+2 + 17F2n

)
. (3.14)

4. b2n = C2n and u2n = L2n:

n∑
k=0

L2kC2(n−k) =
1

31

(
2C2n+2 − 3C2n − L2n+2 + 17L2n

)
. (3.15)

The next theorem contains relations for the odd indexed numbers b2n+1 and u2n+1.

Theorem 3.3. For n ≥ 1 the following identity holds:

u1b2n+1 + (u0 − u1)b2n−1 − βu2n+1 + (6α− β)u2n−1 = 31
n−1∑
k=0

u2k+1b2(n−1−k)+1. (3.16)

Proof. The generating function for (u2n+1)n≥0 is (see for instance [6])

fu2n+1(x) =
u1 + (u0 − u1)x
1− 3x+ x2

. (3.17)

In view of the generating function (2.3) we get the relation:

(u1 + (u0 − u1)x− 31xfu2n+1(x))fb2n+1(x) = (β + (−6α + β)x)fu2n+1(x). (3.18)

Again, comparing the coefficients of xn proves the desired identity.

As examples we get the following set of mixed convolutions involving odd indices:

1. b2n+1 = B2n+1 and u2n+1 = F2n+1:

n∑
k=0

F2k+1B2(n−k)+1 =
1

31

(
B2n+3 −B2n+1 − F2n+3 − F2n+1

)
. (3.19)

2. b2n+1 = B2n+1 and u2n+1 = L2n+1:

n∑
k=0

L2k+1B2(n−k)+1 =
1

31

(
B2n+3 +B2n+1 − L2n+3 − L2n+1

)
. (3.20)
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3. b2n+1 = C2n+1 and u2n+1 = F2n+1:
n∑
k=0

F2k+1C2(n−k)+1 =
1

31

(
C2n+3 − C2n+1 − 3F2n+3 + 3F2n+1

)
. (3.21)

4. b2n+1 = C2n+1 and u2n+1 = L2n+1:
n∑
k=0

L2k+1C2(n−k)+1 =
1

31

(
C2n+3 + C2n+1 − 3L2n+3 + 3L2n+1

)
. (3.22)

Moreover, adding (3.19) and (3.20) gives
n∑
k=0

(F2k+1 + L2k+1)B2(n−k)+1 =
1

31

(
2B2n+3 − (F2n+3 + L2n+3)− (F2n+1 + L2n+1)

)
. (3.23)

In a similar manner, we get
n∑
k=0

(F2k+1 +L2k+1)C2(n−k)+1 =
1

31

(
2C2n+3− 3(F2n+3 +L2n+3)+ 3(F2n+1 +L2n+1)

)
. (3.24)

Two additional identities can be obtained by subtracting the above equations.

We point out that the six generating functions for bn, b2n, b2n+1, un, u2n, and u2n+1 can be
combined in a few more ways to easily produce more results of this nature. We provide three
additional relations without proof.

Theorem 3.4. For n ≥ 1 the following identity holds:

u0bn + (u1 − 2u0)bn−1 − αu2n + (6α− β)u2n−2 = 3
n−1∑
k=0

u2kbn−1−k. (3.25)

Theorem 3.5. For n ≥ 1 the following identity holds:

u1bn + (u0 − u1)bn−1 − αu2n+1 + (6α− β)u2n−1 = 3
n−1∑
k=0

u2k+1bn−1−k. (3.26)

Theorem 3.6. For n ≥ 1 the following identity holds:

u1b2n + (u0 − u1)b2n−2 − αu2n+1 + (35α− 6β)u2n−1 = 31
n−1∑
k=0

u2k+1b2(n−1−k). (3.27)

From these relations we get
n∑
k=0

F2kBn−k =
1

3

(
Bn − F2n

)
, (3.28)

n∑
k=0

F2k+1Bn−k =
1

3

(
Bn+1 −Bn − F2n+1

)
(3.29)

and
n∑
k=0

F2k+1B2(n−k) =
1

31

(
B2n+2 −B2n − 6F2n+1

)
. (3.30)

More specific examples are left to the interested reader.
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