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Abstract: An addition chain is a sequence of integers such that every element in the sequence
is the sum of two previous elements. They have been much studied, and generalized to addition-
subtraction chains, Lucas chains, and Lucas addition-subtraction chains. These various chains
have been useful in finding efficient exponentiation algorithms in groups. As a consequence,
finding chains of minimal length is critical. The main objective of this paper is to extend results
known for addition chains to addition-subtraction chains with Lucas addition-subraction as a tool
to construct such minimal chains. Specifically, if we let `−(n) stand for the minimal length of
all the Lucas addition-subtraction chains for n, we prove |`−(2n)− `−(n)| ≤ 1 for all integers n
of Hamming weight ≤ 4. Thus, to find a minimal addition-subtraction chains for low Hamming
weight integers, it suffices to only consider odd integers.
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1 Introduction

Addition chains are an important tool to perform fast exponentiation in groups [4, 5, 7, 10, 11,
12, 16]. In particular, in groups where computing −P is as easy as computing P (where P is an
element of the group), then addition-subtraction chains become more interesting than the general
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addition chains [1, 3, 7, 8, 10, 11, 12]. We begin by defining the various types of addition chains
and their generalizations. Let n be an integer.

1.1 Definitions

Definition 1 ([6]). A sequence of positive integers C = {1 = a0, a1, · · · , al = n} is called an
addition chain for n if and only if for every ai ∈ C (with i > 0), there exists aj, ak ∈ C with
j, k < i such that

ai = aj + ak.

As an example, the following is an addition chain for 42:

{1, 2, 4, 5, 10, 11, 21, 42}.

Definition 2 ([14]). A sequence of positive integers C = {1 = a0, a1, . . . , al = n} is called
an addition-subtraction chain for n if and only if for every ai ∈ C , there exists aj, ak ∈ C with
j, k < i such that

ai = aj + ak or ai = aj − ak.

We now give an addition-subtraction chain for 42:

{1, 2, 3, 4, 8, 11, 22, 44, 42}.

Definition 3 ([9]). A sequence of positive integers C = {1 = a0, a1, . . . , al = n} is called a
Lucas addition chain if and only if for every ai ∈ C ( with i > 0), there exists aj, ak ∈ C with
j, k < i such that

ai = aj + ak where either aj = ak or |aj − ak| ∈ C.

The addition chain we gave above for 42 is not a Lucas addition chain, since 5 = 4 + 1, but
4− 1 is not in the chain. An example of a Lucas addition chain for 42 is

{1, 2, 3, 4, 7, 14, 28, 42}.

Definition 4 ([13]). A sequence of positive integers C = {1 = a0, a1, . . . , al = n} is called a
Lucas addition-subtraction chain if and only if for any ai ∈ C (with i > 0), there exists aj, ak ∈ C
with j, k < i such that

ai =



aj + ak and |aj − ak| ∈ C ∪ {0},
or

aj + 1,

or

aj − ak.
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The addition-subtraction chain we gave above is not a Lucas addition-subtraction chain for
42, because 11 = 3 + 8, but 8− 3 is not in the chain. An example of a Lucas addition-subtraction
chain is given by

{1, 2, 3, 6, 12, 24, 48, 42}.

In this work, we will focus on Lucas addition-subtraction chains [13]. These chains have
a weaker restriction than Lucas addition chains. This allows these chains to have shorter chains
than Lucas addition chains for infinitely many integers. Lucas addition-subtraction chains are one
of the simpler known methods for computing addition-subtraction chains [15, 13]. It is therefore
important to see what properties of addition chains (and Lucas addition chains and addition-
subtraction chains) are true for the Lucas addition-subtraction chains.

Formally, the length of a chain is the number of elements in the chain, except we do not count
a0 = 1. That is, the length of the chain {a0 = 1, a1, ..., al} is l. We are usually interested in
chains with as few elements as possible. Let `(n) and `−(n) denote the minimal lengths of an
addition chain and addition-subtraction chain for n respectively. Similarly, we define `L(n) and
`−L(n) for the Lucas version of the same type of chains.

Recall that the Hamming weight h(n) of a positive integer n is the number of 1’s in the
binary expansion of n. Concretely, if n =

∑
ei2

i, with ei ∈ {0, 1}, then the Hamming weight
of n is h(n) =

∑
ei. We also recall the definition of the non-adjacent form of any integer n,

which gives a signed representation of n with minimal weight. The non-adjacent form of n is the
unique signed-digit representation n =

∑
ki2

i, with ki ∈ {−1, 0, 1} and kiki+1 = 0. We define
s̄2(n) =

∑
|ki| as the weight of the non-adjacent form of n.

1.2 Motivation

We note that because an addition chain is also an addition-subtraction chain, then `−(n) ≤ `(n)

for any n. We similarly have that

`−(n) ≤ `−L(n) ≤ `L(n), `(n) ≤ `L(n),

for any n. However, the relationship between the values of `(n) and `−L(n) is not so simple. For
example, there are infinitely many integers such that `−L(n) ≤ `(n) but at the same time, we have
infinitely many integers such that `−L(n) ≥ `(n) (see [13, 14]).

This paper investigates the minimal length of Lucas addition-subtraction chains for integers
with low Hamming weight h(n). Our main result will be to prove that if h(n) ≤ 4, then

`−L(n) + 1 = `−L(2n). (1)

Equation (1) is known to hold for addition chains [6], as well as for addition-subtraction chains
(when h(n) ≤ 4) [14]. We thus show that in order to find the minimal length of a Lucas addition-
subtraction chain, it suffices to only consider odd integers (at least for integers with h(n) ≤ 4).
As a consequence, we establish that Lucas addition-subtraction chains give minimal addition-
subtraction chains for integers n, with h(n) ≤ 4. Our proof will also be constructive, providing
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a method to construct these minimal Lucas addition-subtraction chains (and addition-subtraction
chains), for all integers of Hamming weight ≤ 4.

For several of our proofs, we will need an important theorem due to Volger [14]. For integers
of low Hamming weight, Volger’s results give the length of a minimal addition-subtraction chain.

Theorem 1.1 (Volger [14]). Let `−(n) be the minimal length of all addition-subtraction chains
for n, then:

1. `−(2a) = a,

2. `−(2a + 2b) = a+ 1, for all a > b,

3. `−(2a − 2b) = a+ 1, for all b ≤ a− 3,

4. `−(2a + 2b + 2c) = a+ 2, for all a, b, c such that c < b ≤ a− 2,

5. `−(2a + 2a−1 + 2b) = a+ 2, for all b ≤ a− 4,

6. `−(n) ≥ blog(n)c+ 2, if s̄2(n) ≥ 3.

We note there are two cases for integers of Hamming weight 3 not covered by Volger. The
first is when n = 2a + 2a−1 + 2a−2. However, in this case we observe n = 2a+1 − 2a−2, and
so by Volger’s third result, `−(n) = a + 2. The remaining case is when n = 2a + 2a−1 + 2a−3.
The non-adjacent form is n = 2a+1 − 2a−1 + 2a−3, and so by part 6 of Volger’s results we know
`−(n) ≥ a+ 2 and since it is easy to construct an addition-subtraction chain for n of length a+ 2,
then `−(n) = a+2. Combining these two cases with 4) and 5) above, we’ve shown `−(n) = a+2,
for any n = 2a + 2b + 2c, where a > b > c.

2 Minimal lengths for low Hamming weight numbers

We will start by quantifying `−L(n) for all integers of Hamming weight less than four. Similar
results are known for addition chains and addition-subtraction chains [6, 14]. The minimal lengths
we prove for Lucas addition-subtraction chains are equal to the minimal lengths for addition-
subtraction chains (for integers with h(n) ≤ 4).

Theorem 2.1. Let n be a positive integer. Depending on the Hamming weight of n, we have the
following:

• For h(n)=1, n = 2a, we have `−L(n) = a.

• For h(n)=2, n = 2a + 2b, we have `−L(n) = a+ 1.

• For h(n)=3, n = 2a + 2b + 2c, we have `−L(n) = a+ 2.

• For h(n)=4, n = 2a + 2b + 2c + 2d, we have `−L(n) = a+ 2 or a+ 3.

The proof will be given by the next three propositions. The first covers integers which are
either a power of 2, or a sum or difference of powers of 2.
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Proposition 2.1.1. Let n be a positive integer.

1. If n = 2a, then `−L(n) = a.

2. If n = 2a − 2a−1, then `−L(n) = a− 1.

3. If n = 2a − 2a−2, then `−L(n) = a.

4. If n = 2a − 2b with b ≤ a− 3, then `−L(n) = a+ 1.

5. If n = 2a + 2b with b < a, then `−L(n) = a+ 1.

Proof. 1. If n = 2a, then an obvious chain is given by {1, 2, 4, ..., 2a−1, 2a}. Any chain of
length a− 1 can have no element greater than 2a−1, hence the given chain is minimal.

2. If n = 2a − 2a−1, then n = 2a−1, and so `−L(n) = a− 1 by the first case.

3. If instead n = 2a − 2a−2, then we can write n = 2a−1 + 2a−2 and the result now follows
from the proof for integers of the form 2a + 2b, which we give in case 5.

4. If n = 2a− 2b and b ≤ a− 3, then a Lucas addition-subtraction chain with length a+ 1 for
n is

{1, 2, 22, ..., 2a−b, 2a−b − 1, 2a−b+1 − 21, ..., 2a − 2b}.

From Volger’s results, we know any chain for n must have length at least a+ 1, and so the
given chain is minimal.

5. If n = 2a + 2b, Volger’s results give us that `−(n) = a+ 1. So we need only note that there
is a Lucas addition-subtraction chain of length a+ 1 for n:

{1, 2, 22, ..., 2a−b, 2a−b + 1, 2a−b+1 + 21, ..., 2a + 2b}.

That is, the chain consists of a− b doublings, followed by a +1 step, and then b doublings.

For integers with Hamming weight 3, we can also determine their minimal length exactly.

Proposition 2.1.2. If n = 2a + 2b + 2c, then `−L(n) = a+ 2.

Proof. As noted previously, it follows from Volger’s results that `−(n) = a + 2 and so `−L(n) ≥
a+ 2. We can easily construct a chain of length a+ 2 for n. We first do a− b doublings, followed
by a +1 step. Then we do b− c more doublings, followed by a +1 step and then c doublings:

{1, 2, 22, ..., 2a−b, 2a−b + 1, 2a−b+1 + 21, ...,

2b−c(2a−b + 1) = 2a−c + 2b−c, 2a−c + 2b−c + 1, ..., 2a + 2b + 2c}.

This proves the desired result.

Proposition 2.1.3. If n = 2a + 2b + 2c + 2d, then `−L(n) = a+ 2 or a+ 3.
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Proof. If s̄2(n) < 3 then n is of the form 2a or 2a ± 2b, and `−L(n) = a+ 2 by Proposition 2.1.1.
For the rest of the proof, we can therefore assume s̄2(n) ≥ 3 and so we have `−L(n) ≥ a + 2 by
Volger’s part 6). Just as we did in the proof of the previous proposition, we can easily create a
chain of length a + 3 for n. We first do a − b doublings, followed by a +1 step, then b − c more
doublings, followed by a +1 step and then c − d doublings. Finally, we do one last +1 step, and
d doublings.

{1, 2, 22, ..., 2a−b, 2a−b + 1, 2a−b+1 + 21, ..., 2b−c(2a−b + 1)

= 2a−c + 2b−c, 2a−c + 2b−c + 1, ..., 2c−d(2a−c + 2b−c + 1), 2c−d(2a−c + 2b−c + 1)

= 2a−d + 2b−d + 2c−d, 2a−d + 2b−d + 2c−d, ..., 2a + 2b + 2c + 2d}.

This shows that `−L(n) ≤ a+ 3.

To show we can have both `−L(n) = a + 2 and a + 3 for an integer n with h(n) = 4, we give
some infinite families with these different minimal lengths.

Proposition 2.1.4. If n = 2a + 2b + 2c + 2d, with a − b = c − d = j (meaning that n =

2a + 2a−j + 2c + 2c−j), then `−L(n) = a+ 2.

Proof. Note that we can write n as

n = 2c−j(2a−c + 1)(2j + 1).

From Proposition 2.1.1, we know `−L(2a−c + 1) = a− c+ 1 and `−L(2j + 1) = j+ 1. By the factor
method (Corollary 11 of [13]), we have

`−L((2a−c + 1)(2j + 1)) ≤ `−L((2a−c + 1) + `−L((2j + 1) = a− c+ j + 2.

That is, we can construct a Lucas addition-subtraction chain for (2a−c + 1)(2j + 1) of length
a − c + j + 2. If we augment that chain by c − j doublings, then we will get a chain for n of
length a− c+ j + 2 + c− j = a+ 2.

Proposition 2.1.5. If n = 2a + 2a−1 + 2a−2 + 2b with 0 < b < a− 3, then `−L(n) = a+ 3.

Proof. We know that

n = 2a + 2a−1 + 2a−2 + 2b = 2a+1 − 2a−2 + 2b

and from Volger’s results
`−(2a+1 − 2a−2 + 2b) ≥ a+ 3,

so likewise `−L(n) ≥ a+3. However, from Proposition 9 we see that a+3 is also an upper bound,
and hence we have equality.

We conclude this section with two results we will need in the proof of our main theorem. The
first gives another infinite family with h(n) = 4, and `−(n) = a + 2. The second shows that any
minimal chain for integers of Hamming weight 2 contains only elements of a certain form.

Proposition 2.1.6. If n = 2a + 7 · 2d with a ≥ d+ 3, then `−L(n) = a+ 2.
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Proof. The proof will be done in two cases. We first investigate the case where d = 0 or 1, and
then after treat the case d > 1.

If d ≤ 1, then

n = 2a + 7 · 2d = 2a + (23 − 1) · 2d = 2a + 2d+3 − 2d = 2d+3(2a−d−3 + 1)− 2d

and a chain can be constructed easily as follows:

c = {1, · · · , 2a−d−3, 2a−d−3 + 1, 2 · (2a−d−3 + 1), · · · ,

2d+3 · (2a−d−3 + 1), 2d+3(2a−d−3 + 1)− 2d}.

If instead d > 1 then we prove `−L(n) = a + 2 by induction on (a, d). When (a, d) = (5, 2),
then n = 25 + 7 · 22 = 60, and a corresponding minimal chain is {1, 2, 4, 8, 7, 15, 30, 60} and
`−(n) = a+ 2. Let us now suppose now that the result holds for (k, d) (with 2 ≤ d ≤ k− 3), and
we will prove that it also holds for all (k + 1, d) with 2 ≤ d ≤ k − 2. We have

n = 2k+1 + 7 · 2d = 2(2k + 7 · 2d−1).

We know that `−L(2k + 7 · 2d−1) = k + 2 by the induction hypothesis (as well as the case where
d− 1 ≤ 1 which we treated previously). We simply add one doubling step to the chain for
2k + 7 · 2d−1 to get a chain for n = 2k+1 + 7 · 2d of length k + 3, and the theorem holds.

We conclude this section with an important lemma we will need in the proof of our main
result.

Lemma 2.2. The only elements in a minimal chain for 2a + 2b are of the form 2i with i ≤ a− b,
or 2a−b−1 + 1, or 2k(2a−b + 1) where k ≤ b.

Proof. Let us consider the chains

c1 = {1, 2, , · · · , 2a−b, 2a−b + 1, 2(2a−b + 1), · · · , 2b(2a−b + 1) = n}

and

c2 = {1, 2, , · · · , 2a−b−1, 2a−b−1 + 1, 2a−b + 1, 2(2a−b + 1), · · · , 2b(2a−b + 1) = n}

which are minimal Lucas addition-subtraction chains for n. We will prove that they are the only
possible such chains for n. For that, we assume we have some other minimal chain for n and
examine the first non-doubling step:

c′ = {1, 2, , · · · , 2α, c′α+1, · · · , n}.

We note the possible values for c′α+1 are 2α + 1 or 2α − 2β or 2α + 2β and the total number of
steps left (after c′α+1) to reach n is

r = a+ 1− (α + 1) = a− α.

We will investigate the three cases and show they lead to the desired result.
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Case I: c′α+1 = 2α − 2β and thus the maximal value that we can reach from cα+1 is 2r(cα+1) =

2a−α(2α − 2β) = 2a − 2a−α+β < n, which shows that this case is not possible.

Case II: c′α+1 = 2α + 2β , with β ≥ 1. This means that 2α − 2β belongs to the chain, and is
consequently a power of 2. The only possibility is β = α− 1.
So the chain c′ is of the form

c′ = {1, 2, , · · · , 2α, 2α + 2α−1, · · · , n}

Let us assume that there is a second non-doubling step. The chain c′ will now look like:

c = {1, 2, , · · · , 2α, 2α + 2α−1︸ ︷︷ ︸
non−doubling1

, · · · , 2β(2α + 2α−1), c′α+β+2︸ ︷︷ ︸
non−doubling2

,

a−α−β−1 steps︷ ︸︸ ︷
· · · , n }

and

c′α+β+2 =



2β(2α + 2α−1) + 1,

2β(2α + 2α−1) + 2γ, with 2β(2α + 2α−1)− 2γ ∈ c′ and γ ≤ α

2β(2α + 2α−1)− 2γ, and γ ≤ α

2β(2α + 2α−1) + 2γ(2α + 2α−1), with (2α + 2α−1)(2β − 2γ) ∈ c′ and γ ≤ β

2β(2α + 2α−1)− 2γ(2α + 2α−1), and γ ≤ β.

Examining each of these 5 cases shows they are not possible because even if the remaining
steps are all doublings, then the maximum value in the chain that will be reached is of the
form

2a−α−β−1(cα+β+2) = 2a−1 + · · · < 2a < n.

So all the remaining steps must be doublings, and we have

n = 2r(cα+1) = 2a−α(2α + 2α−1) = 2a + 2a−1.

This is impossible if a > b + 1, and so we must have b = a − 1. We conclude that every
element of the chain is one of the desired forms.

Case III: c′α+1 = 2α + 1. If α = a − b then the remaining steps must all be doublings, else the
chain’s maximum value will be less than n. If α = a−b−1, then c′α+1 = 2a−b−1+1, c′α+2 =

c′α + c′α+1 = 2a−b + 1, followed by b doublings.
If α > a−b, then the maximum value that the chain can reach is 2a−α(2α+1) = 2a+2a−α <

n.
If α < a − b − 1, then the maximum value that the chain can reach is 2a−α(2α + 1) =

2a + 2a−α > n. However, this means that the minimal chain for n must contain a back step
(a step involving subtraction). Using a result from [14], we have that

n ≤ 2d−1Ff+3,

with d and f being respectively the number of doubling and the number of back steps, and
(Fn) is the n-th Fibonacci number. Having f ≥ 1 implies that n ≤ 2a which leads to a
contradiction.
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3 The main result

Our main result compares `−L(n/2) and `−L(n), for even integers with low Hamming weight.

Theorem 3.1. If the Hamming weight of an even integer n is ≤ 4, then

`−L(n/2) + 1 = `−L(n). (2)

Proof. Let n be an even integer. When the Hamming weight of n is three or less, the results easily
follow from Theorem 6 and the fact that s2(n) = s2(n/2). For example, if n = 2a + 2b, then
`−L(n) = a + 1 = `−L(2a−1 + 2b−1) + 1 = `−L(n/2) + 1. Similarly, if the minimal weight is three
or less it is easy to see the result holds. If s2(n) = 2, we use Proposition 2.1.1. When s2(n) = 3,
then n = 2x±2y±2z and `−L(2x±2y±2z) = x+ 2, except when y = x−3, z = {x−4, x−5}
and then `−L(2x − 2x−3 − 2z) = x+ 1 (see [13, 14]). In either case, `−L(n) = `−L(n/2) + 1.

We now turn to the more difficult case when s2(n) = 4, i.e., n = 2a + 2b + 2c + 2d. From
above, we can also take the minimal weight s2(n) to be at least 4. By Proposition 2.1.3, we know
that `−L(n) = a + 2 or a + 3. Assume first that the minimal chain is of length a + 3. Then
n/2 = 2a−1 +2b−1 +2c−1 +2d−1, and so `−L(n/2) = a+1 or a+2. If it were a+1, then we could
obviously create a chain for n of length a + 2, by simply appending n. This is a contradiction,
and so `−L(n/2) = a+ 2 and equation (2) holds.

For the remainder of the proof we therefore assume `−L(n) = a+ 2. Let

C = {c0, c1, c2, · · · , ca+1, ca+2}

be a minimal Lucas addition-subtraction chain for n. We have four possible relations between
ca+1 and ca+2 (see Definition 4). If ca+2 = ca+1 + 1, then ca+1 also has Hamming weight at least
4, and so `−L(ca+1) ≥ a + 2, a contradiction. If ca+2 = 2ca+1, then {c0, c1, c2, · · · , ca+1} is a
chain for n/2 and clearly `−L(n/2) + 1 = `−L(n).

The remaining two cases are when ca+2 = ca+1 ± cf , for some cf in the chain. For the first
case, ca+2 = ca+1 − cf , then ca+1 > n. It must be that ca+1 has Hamming weight less than three,
since otherwise `−L(ca+1) ≥ a + 2, which contradicts that we already have a chain for ca+1 of
length a + 1. If the Hamming weight of ca+1 were 1, then it follows ca+1 = 2a+1 and cl = 2l for
all l = 1, · · · , a+ 1. This means that n is of the form 2a+1 − 2k, for some k, and so s2(n) = 2,
a case we already dealt with. The remaining possibility in this case is that the Hamming weight
of ca+1 is 2, so ca+1 = 2a + 2j , for some j > b. Note that we know ca+1 6= 2a+1 + 2j , as with
a + 1 steps, the maximum value in a chain is 2a+1. By Lemma 2.2, the only steps in a chain for
integers of the form 2a + 2j are of the form 2i, 2i(2a−j + 1), or 2a−j−1 + 1. We get that n must be
of the form:

n = 2a + 2j − 2i or n = 2a + 2j − 2i(2a−j + 1) or n = 2a + 2j − 2a−j−1 − 1.

Since ca+1 ≥ 2a, we know that any minimal chain for it must have length at least a + 1. But it
is easy to see that no matter which of the first two forms n has, there are chains of length a + 1

for n/2, showing that `−L(n/2) = a + 1. More concretely, for n = 2a + 2j − 2i, perform a − j
doublings, do one +1 step, then j−1 more doublings, followed by a back step of subtracting 2i−1.
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Similarly, for n = 2a+2j−2i(2a−j +1), begin with a−j doublings, then do a +1 step, then j−1

doublings and finally a back step of subtracting 2i−1(2a−j +1). The case n = 2a+2j−2a−j−1−1

is not possible since n is even.
The final case left to consider is ca+2 = ca+1 + cf , which implies that `−L(ca+1) ≤ a + 1. We

examine several subcases depending on whether `−L(ca+1) < a, `−L(ca+1) = a, or `−L(ca+1) = a+1.

1. `−L(ca+1) < a, meaning that ca+1 ≤ 2a−1. From this we can deduce that cf = 2a, or
2a−1 + 2η, since cf ≥ 2a−1 + 2b + 2c + 2d and `−L(cf ) ≤ a. If cf = 2a−1 + 2η, then
ca+1 = n − cf = 2a−1 + 2b + 2c + 2d − 2η ≤ 2a−1. In fact, the inequality must be strict
as we cannot have 2b + 2c + 2d = 2η. However, then we can conclude that `−L(ca+1) ≥
`-(ca+1) ≥ blog(ca+1)c+ 2 = a which contradicts `−L(ca+1) < a.

If instead cf = 2a, then ca+1 = 2b + 2c + 2d. The only possible chain is

C = {1, 2, 4, · · · , cf = ca = 2a, ca+1, ca+2}.

Then (for some i and j) we have ca+1 = 2i ± 2j = 2b + 2c + 2d which is only possible
when i − j = 3 and b = c + 1 = d + 2. We can then write n, as well as n/2, in the form
2a + 7 · 2d. By Lemma 2.1.6, the desired result holds.

2. If ca+1 ≤ n/2 and `−L(ca+1) = {a, a + 1}, then necessarily cf ≥ n/2 which means that
a ≥ `−L(cf ) ≥ `−(cf ) ≥ dlog(cf )e ≥ a. But then cf is either 2a or 2a−1+2α with α > b−1.

If cf = 2a, then ca+1 = 2i±2j with a ≥ i > j ≥ 0 since ca+1 is obtained from the minimal
chain for cf . However, this implies 2b + 2c + 2d = 2i± 2j , which leads to the desired result
as shown above in the last case.

If cf = 2a−1 + 2α, then the only possibilities for cs = cf − ca+1 are 2i or 2i(2a−1−α + 1) or
2a−1−α + 1 and so n = ca+1 + cf = 2cf − cs has the following possibilities 2a + 2α+1− 2k

or 2a + 2α+1 + 2k(2a−α−1 + 1) or 2a + 2α+1 − 2a−1−α − 1. If n = 2a + 2α+1 − 2k, then
as seen above it must be that n = 2a + 7 · 2d. If n = 2a + 2α+1 − 2k(2a−α−1 + 1) =

2α+1(2a−α−1 + 1)− 2k(2a−α−1 + 1), then

c = {1, 2, · · · , 2a−α−1, 2a−α−1 + 1, 2(2a−α−1 + 1, · · · , 2k(2a−α−1 + 1), · · · ,

2α+1(2a−α−1 + 1), n = 2α+1(2a−α−1 + 1)− 2k(2a−α−1 + 1)},

which is a chain for n of length a+ 2. We can similarly construct a chain for n/2 of length
a + 1 (we just replace α by α − 1 and k by k − 1 in the expression of n to get n/2). The
case n = 2a + 2α+1 − 2a−1−α − 1 is not possible since n is even.

3. `−L(ca+1) = a and ca+1 > n/2.

As ca+1 > n/2, then it follows that ca+1 = 2a or 2a−1 + 2α, with α < a − 1; otherwise
ca+1 > n which contradicts our assumption that n isn’t obtained from a subtraction step.
Note also that α ≥ b, otherwise ca+1 < n/2. We suppose first ca+1 = 2a, and so cf =

2b + 2c + 2d and the chain for n must be

C = {c0, c1, c2, · · · , 2b + 2c + 2d︸ ︷︷ ︸
cf

, · · · , 2a︸︷︷︸
ca+1

, n︸︷︷︸
ca+2

}.
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We note that 2a has been reached with a + 1 steps, meaning the only non doubling step
involves cf . But then cf = 2b+ 2c+ 2d can only be obtained from the sum or the difference
of two powers of 2. We have already observed this is only possible if b = c + 1 = d + 2,
meaning n = 2a + 2d+2 + 2d+1 + 2d = 2a + 7 · 2d. The result now follows from an appeal
to Lemma 2.1.6.

The remaining possibility in this subcase is if ca+1 = 2a−1 + 2α, which makes cf = 2a−1 +

2b + 2c + 2d − 2α. If α is equal to one of b, c, or d, then cf has Hamming weight 3. By
Theorem 2.1, `−L(cf ) = (a − 1) + 2 = a + 1. This is a contradiction, since cf appeared in
the chain C before a + 1 steps. On the other hand, if α 6= b and α 6= c and α 6= d then it’s
not to hard to check that s−(cf ) ≥ 3 (the assumption 2a−1 + 2b + 2c − 2α = 2i ± 2j leads
to a contradiction). Then using Volger’s inequality

`−L(cf ) ≥ `−(cf ) ≥ blog(cf )c+ 2 = (a− 1) + 2 = a+ 1.

This is again a contradiction.

4. `−L(ca+1) = a + 1, and ca+1 > n/2. Since ca+1 > n/2, we must have that either ca+1 =

2a−1 + 2α + 2β or ca+1 = 2a + 2α (with α, β < a). Here, we have omitted the cases
ca+1 = 2a − 2α and ca+1 = 2a−1 + 2α − 2β with α > b to keep the condition ca+1 > n/2.
If ca+1 = 2a − 2α, then n = 2a − 2α + 2i or n = 2a − 2α + 2i(2a−α − 1) = 2i(2α−i +

1)(2a−α − 1). The case n = 2a − 2α + 2i is not possible since s2(n) = 4. The case
n = 2i(2α−i + 1)(2a−α − 1) is possible and we obtain the appropriate chain using the
factor method. If ca+1 = 2a−1 + 2α − 2β , then cf = 2a−1 + 2b + 2c + 2d − 2α + 2β .
This case will be simultaneously studied with ca+1 = 2a−1 + 2α + 2β leading to cf =

2a−1 + 2b + 2c + 2d − 2α − 2β .

Supposing first that ca+1 = 2a + 2α, we know by Lemma 2.2 that cf is of the form 2i or
2j(2a−α + 1)or 2a−α−1 + 1, for some i or j. If cf = 2i, then n = ca+1 + cf = 2a + 2α + 2i,
which would contradict n having Hamming weight 4. If cf = 2a−α−1 + 1 then n =

2a + 2α + 2a−α−1 + 1, which contradicts n being even. Alternatively, if cf = 2j(2a−α + 1)

then
n = 2a + 2b + 2c + 2d = 2a + 2α + 2a−α+j + 2j.

Checking the possible combinations, we must either have (b = α and c = a − α + j and
d = j), or alternatively (b = a − α + j, c = α, and d = j). In both situations, we see that
this implies a− b = c−d. By Proposition 2.1.4, `−L(n) = a+ 2. But then Proposition 2.1.4
also applies to n/2, which proves the result we want.

The final subcase to investigate is when ca+1 = 2a−1+2α±2β . It follows that {c0, c1, c2, · · · ,
ca+1} is a minimal Lucas addition-subtraction chain for ca+1. Since ca+2 = ca+1 + cf , then

cf = 2a−1 + 2b + 2c + 2d − 2α ± 2β.

We investigate cf depending on the possibilities for α and β. First, one can notice that
cf > 2a−2 and `−L(cf ) ≤ a, and so therefore `−L(cf ) is either a, a − 1 or a − 2, implying
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s2(cf ) ≤ 3. On the other hand, it is easy to check that:

s2(cf ) =



2 when α = b and β = c or β = d,

2 when α = b+ 1 and 2c + 2d + 2β = 2b − 2I ,

3 when α = b and β = {c± 1, d± 1},
3 when α = b and 2c + 2d + 2β = 2I − 2J ,

3 when α = b+ 1 and 2c + 2d + 2β = 2b−1 − 2I ,

3 when α = b+ 1 and β = c or β = d,

3 when α > b+ 1 and 2b + 2c + 2d + 2β = 2I − 2J and I = α− 1,

≥ 4 in all others general cases and they aren’t of interest here.

when cf = 2a−1 + 2b + 2c + 2d − 2α ± 2β .

We conclude by examining each of the possibilities for cf . The possibilities for s2(cf ) = 2

are:

• cf = 2a−1 + 2c,

• cf = 2a−1 + 2d,

• cf = 2a−1 − 2I with 2c + 2d + 2β = 2b − 2I (I = b− 3).

• cf = 2a−1 − 2J with 2b + 2c + 2d + 2β = 2I − 2J and I = α = a− 2.

The case when cf = 2a−1 +2d, meaning that ca+1 = 2a−1 +2b+2c, is not possible since we
cannot obtain ca+1 from a minimal Lucas addition -subtraction chain for cf due to the fact
that b > c > d. Similar logic holds for when cf = 2a−1+2c. If cf = 2a−1−2I , then I = b−3

and α = a−2, β = {b+1, b−1, b−2, b−3}. Then nwill be 2a+2a−1+2b+1−2b−3−2β

and it leads to contradictions with the fact that n = 2a + 2b + 2c + 2d for all the values
of β except β = b + 1 which leads to n = 2a + 7 · 2a−4 for which the proof holds. If
cf = 2a−1− 2J then I = a− 2, J = a− 6, β = {b+ 1, b− 1, b− 2, b− 3} and it leads to
n ∈ {71 · 2k+6, 39 · 2k+5, 75.2k+6, 77 · 2k+6} and the proof holds for all these possibilities
of n. For example, one can easily see that `−L(71 · 2k+6) = `−L(71) + k + 6, and the main
result clearly holds for numbers of this form.

The possibilities for s2(cf ) = 3 are:

• cf = 2a−1 − 2c + 2d, cf = 2a−1 + 2c − 2d,

• cf = 2a−1 + 2c−1 + 2d, cf = 2a−1 + 2c + 2d−1,

• cf = 2a−1 + 2I − 2J when 2c + 2d + 2β = 2I − 2J ,

• cf = 2a−1 − 2b + 2c, cf = 2a−1 − 2b + 2d,

• cf = 2a−1 − 2b−1 − 2I when 2c + 2d + 2β = 2I − 2J with I = b− 1,

• cf = 2a−1 − 2I − 2J when 2b + 2c + 2d + 2β = 2I − 2J with I = α− 1,

• cf = 2a−2 + 2I − 2J when 2b + 2c + 2d + 2β = 2I − 2J with I 6= a− 2.
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All these cases lead to `−L(cf ) = a + 1 > a which is impossible, except for cf = 2a−1 −
2b−1 − 2I or cf = 2a−1 − 2I − 2J or cf = 2a−2 + 2I − 2J for which `−L(cf ) = a. If
cf = 2a−1−2b−1−2I or cf = 2a−1−2I−2J , then b−1 = a−1−3, I = {a−1−4, a−1−5}
or I = a − 1 − 3, J = {a − 1 − 4, a − 1 − 5}. One can easily see that these two
cases are also impossible since I = b − 1 in the first case and I − J > 3 in the second
case. If cf = 2a−2 + 2I − 2J , then ca+1 = 2a−1 + 2a−2 − 2β since α = a − 2 and
I = max b, β + 1 > β ≥ J . If β = J , then n = 2a + 2I − 2I−3 = 2a + 7 · 2I−3 and
the proof holds. If β > J , then n = {2a + 2I−1 + 2J , 2a + 2I−2 + 2J} and both cases are
impossible.

Having exhausted all possibilities, we see that in every case we have demonstrated that if
h(n) ≤ 4, then `−L(2n) = `−L(n) + 1.

As an immediate corollary, we have the following:

Corollary 3.1.1. If s2(n) ≤ 4, then `−L(2kn) = `−L(n) + k.

4 Conclusion

We can ask a question related to Hansen numbers [6]: Is there any integer n such that `−L(2n) <

`−L(n) ? This conjecture is known to be true for addition chains. Namely, for n = 375404703,
`(n) = 35 > 34 = `(2n), see [2]. The analogous question remains open for addition-subtraction
chains, and Lucas addition chains. Our paper has proven that there is no number verifying the
conjecture with Hamming weight ≤ 4. In fact, we also proved that |`−(2n)− `−(n)| ≤ 1 for all
Hamming weight ≤ 4. One can investigate if `−(2n) = `−(n) = a + 2 for some integers n of
Hamming weight 4.

The techniques used in the proofs of this paper could also be investigated further in order to
design a polynomial-time algorithm for computing fast exponentiations. We leave this for future
work.
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