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Abstract: Recently, three new Bell number formulas were proven using algebraic methods, one
of which extended an earlier identity of Gould–Quaintance and another a previous identity of
Spivey. Here, making use of combinatorial arguments to establish our results, we find generaliza-
tions of these formulas in terms of the r-Dowling polynomials. In two cases, weights of the form
ai and bj may be replaced by arbitrary sequences of variables xi and yj which yields further gen-
eralizations. Finally, a second extension of one of the formulas is found that involves generalized
Stirling polynomials and leads to analogues of this formula for other counting sequences.
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1 Introduction

Given integers r ≥ 0 and m ≥ 1, let Wm,r(n, k) denote the r-Whitney numbers of the second
kind which are determined by the polynomial identities

(mx+ r)n =
n∑
k=0

Wm,r(n, k)m
kxk, n ≥ 0,

where xk = x(x − 1) · · · (x − k + 1). The Wm,r(n, k) were introduced in [8] and later consid-
ered in [2] in conjunction with a certain kind of finite geometric lattice known as the Dowling
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lattice [3]. The r-Whitney numbers satisfy the recurrence

Wm,r(n, k) = Wm,r(n− 1, k − 1) + (r +mk)Wm,r(n− 1, k), n, k ≥ 1, (1)

with Wm,r(n, 0) = rn and Wm,r(0, k) = δk,0 for all n, k ≥ 0. Note that W1,0(n, k) =
{
n
k

}
, where{

n
k

}
denotes the classical Stirling number of the second kind (see [13, Sequence A008277]).

The r-Dowling polynomials, which we will denote here by Dm,r(n; y), are defined as

Dm,r(n; y) =
n∑
k=0

Wm,r(n, k)y
k, n ≥ 0, (2)

where y is an indeterminate. In [2], some properties of Dm,r(n; y) were found using Riordan
matrices. See also [1, 11], where the case r = 1 is studied. Note that the Dm,r(n; y) reduce when
r = 0 and m = y = 1 to the classical Bell numbers B(n), see [13, A000110].

A partition of [n] = {1, 2, . . . , n} is a collection of non-empty, mutually disjoint subsets,
called blocks, whose union is [n]. Recall that

{
n
k

}
gives the number of partitions of [n] having

exactly k blocks, while B(n) is the total number of partitions of [n]. Let
[
n
k

]
denote the (signless)

Stirling number of the first kind which gives the number of permutations of [n] having k cy-
cles. The following Bell number formulas where n and k are non-negative integers were shown
recently by Komatsu and Pita-Ruiz [5] using algebraic methods:

n∑
j=0

(
n

j

)
B(k + j) =

k∑
j=0

(
k

j

)
(−1)k−jB(n+ j + 1), (3)

n∑
j=0

(
n

j

)
ajbn−jB(j) =

k∑
j=0

(−1)k−j
[
k

j

] n∑
`=0

(
n

`

)
a`(b− ak)n−`B(`+ j), (4)

and
n+k∑
j=0

(
n+ k

j

)
ajbn+k−jB(j) =

k∑
p=0

k∑
`=0

n∑
j=0

j∑
i=0

(
n

j

)(
k

`

)(
j

i

)
an+`+i−jbk+j−`−ipn−j

{
`

p

}
B(i). (5)

In (4) and (5), the a and b represent arbitrary complex numbers (or indeterminates). Identities
(3)–(5) may be rewritten in recurrent form by isolating the term containing B(q) with the greatest
q, a feature that will also be shared by the generalizations below.

Note that (4) reduces when a = 1 and b = 0 to

B(n) =
k∑
j=0

(−1)k−j
[
k

j

] n∑
`=0

(
n

`

)
(−k)n−`B(`+ j), n, k ≥ 0, (6)

which was originally shown by Gould and Quaintance [4, Theorem 2], while (5) for the same
values of a and b reduces to

B(n+ k) =
k∑
p=0

n∑
j=0

(
n

j

)
pn−j

{
k

p

}
B(j), n, k ≥ 0, (7)

which was shown by Spivey [14, Formula 3]. See also [9, 12, 15] for other extensions of (7).
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In this paper, we provide generalizations of (3)–(5) above in terms of the r-Dowling poly-
nomials Dm,r(n; y) which will reduce to these formulas when m = y = 1 and r = 0. See
Theorems 2.3, 2.4 and 2.5 below. We make use of combinatorial proofs to establish our results
which specialize to provide new proofs of (3)–(5). As a consequence of our arguments, we are
able to replace the factors of aj and bj appearing in formulas (4) and (5) with arbitrary sequences
xj and yj . We also consider a further extension of (5) in terms of generalized Stirling polynomials,
which will yield analogues of (5) for other types of counting sequences.

2 r-Dowling generalizations of identities (3)–(5)

In this section, we present generalizations of identities (3)–(5) involving the r-Dowling polyno-
mials. We first describe a combinatorial interpretation for Wm,r(n, k) and Dm,r(n; y) from [6]
which we will make use of in the subsequent proofs.

Definition 2.1. If 0 ≤ r ≤ s, then an r-partition of [s] is a partition of the elements of [s] in
which the elements of [r] belong to distinct blocks. If n, k, r ≥ 0, then let Br(n, k) denote the set
of r-partitions of [n+ r] having k + r blocks and let Br(n) = ∪nk=0Br(n, k).

Note that when r = 0, the set Br(n) is the same as the set of ordinary partitions of [n]. Within
a member of Br(n, k), a block containing an element of [r] will be referred to as special, while
the remaining k blocks composed exclusively of elements of [r + 1, r + n] = {r + 1, . . . , r + n}
are non-special. The members of [r] themselves will also at times be described as special.

Definition 2.2. Ifm is a positive integer, then let Bm,r(n, k) denote the set of r-partitions of [n+r]
having k + r blocks such that within each non-special block, every element except the smallest is
assigned one of m colors, and let Bm,r(n) = ∪nk=0Bm,r(n, k).

Upon making a comparison of the recurrences and initial values, one has |Bm,r(n, k)| =
Wm,r(n, k) for all relevant values of the parameters. Weighting members of Bm,r(n, k) by yk for
0 ≤ k ≤ n, it is seen then from the definition that Dm,r(n; y) gives the sum of the weights of
all members of Bm,r(n). (Alternatively, one may assume y is a positive integer and that each
non-special block within a member of Bm,r(n) is assigned one of y colors.)

We first extend formula (3) above to Dm,r(n; y) in two different ways.

Theorem 2.3. If n, k, r ≥ 0, then

y

n∑
j=0

(
n

j

)
mn−jDm,r(k+ j; y) =

k∑
j=0

(
k

j

)
(−m)k−j(Dm,r(n+ j+1; y)− rDm,r(n+ j; y)) (8)

and
n∑
j=0

(
n

j

)
Dm,r(k + j; y) =

k∑
j=0

(
k

j

)
(−1)k−jDm,r+1(n+ j; y). (9)
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Proof. Considering whether or not the element n+ j+ r+1 within λ ∈ Bm,r(n+ j+1) belongs
to a special block and, if not, the cardinality i+ 1 of the block within which it lies, implies

Dm,r(n+ j + 1; y) = rDm,r(n+ j; y) + y

n+j∑
i=0

(
n+ j

i

)
miDm,r(n− i+ j; y).

Thus, to establish (8), it suffices to show

n∑
t=0

(
n

t

)
mn−tDm,r(k + t; y) =

k∑
j=0

(
k

j

)
(−m)k−j

n+j∑
i=0

(
n+ j

i

)
miDm,r(n− i+ j; y). (10)

To do so, let P(j)
n,k,r denote the set of ordered pairs (α, β), where α ⊆ [r + 1, r + k] with |α| =

k − j and members of α are each colored in one of m ways and β is a partition of the set
[n + k + r + 1] − α where the elements of this set are arranged according to a member of
Bm,r(n+j+1) in which n+j+r+1 belongs to a non-special block. Considering the cardinality
i + 1 where 0 ≤ i ≤ n + j of the block containing the largest element in β then implies that
there are y

∑n+j
i=0

(
n+j
i

)
miDm,r(n − i + j; y) possible β for each α. Let Pn,k,r = ∪kj=0P

(j)
n,k,r and

members of P(j)
n,k,r have sign (−1)k−j . Then the right-hand side of (10) multiplied by y gives the

sum of the signs of all members of Pn,k,r.
If (α, β) ∈ Pn,k,r, then let `∗ be the smallest ` ∈ [r + 1, r + k] (if it exists) such that either (i)

` ∈ α or (ii) ` /∈ α, with ` belonging to the block of β containing n+k+r+1. Then the operation
of switching options (i) and (ii) by moving `∗ from α to β or vice versa (keeping its color the same
in either case) is a sign-changing involution where it is defined. This operation is not defined for
members of P∗n,k,r ⊆ Pn,k,r comprising those (α, β) where α = ∅ (i.e., j = k) and the block
of β containing n + k + r + 1 has no elements of [r + 1, r + k] in it. Then members (α, β) of
P∗n,k,r all have positive sign and have cardinality given by y

∑n
t=0

(
n
n−t

)
mn−tDm,r(k+ t; y), upon

considering the number n − t of additional elements in the block of β containing n + k + r + 1

(note that all of these elements must belong to [r + k + 1, r + k + n]). Equating this with the
previous expression for the sum of the signs of all members of Pn,k,r gives (10) and thus (8).

To show (9), first note that

Dm,r+1(n+ j; y) =

n+j∑
i=0

(
n+ j

i

)
Dm,r(n− i+ j; y), r ≥ 0,

upon considering the number i of additional elements in the special block containing 1 within a
member of Bm,r+1(n+ j). Thus, to complete the proof of (9), it suffices to show

n∑
t=0

(
n

t

)
Dm,r(k + t; y) =

k∑
j=0

(
k

j

)
(−1)k−j

n+j∑
i=0

(
n+ j

i

)
Dm,r(n− i+ j; y). (11)

For (11), we proceed in a similar manner as before and let Q(j)
n,k,r denote the set of ordered pairs

(γ, δ), where γ ⊆ [r + 2, r + k + 1] with |γ| = k − j and δ is a partition of the elements of
[n+ k+ r+2]− δ arranged according to a member of Bm,r+1(n+ j +1) in which n+ j + r+2

belongs to the block containing 1. Considering the number i of additional non-special elements
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in the block containing 1 implies that there are
∑n+j

i=0

(
n+j
i

)
Dm,r(n− i+ j; y) possible δ for each

γ. If the sign of (γ, δ) is defined as (−1)|γ|, then the right side of (11) gives the sum of the signs
of all members of Qn,k,r = ∪kj=0Q

(j)
n,k,r.

We define an involution on Qn,k,r by considering the smallest ` ∈ [r + 2, r + k + 1] that
either belongs to γ or to the block containing 1 within δ, and switching to the other option. This
operation reverses the sign and is not defined for those (γ, δ) such that γ = ∅ and the special
block of δ to which 1 belongs contains n+ k + r + 2 but no elements of [r + 2, r + k + 1]. The
cardinality of such (γ, δ) is given by the left side of (11), which completes the proof of (9).

If n ≥ 0, then let B(n; y) =
∑n

k=0

{
n
k

}
yk denote the n-th Bell polynomial (see, e.g., [10]).

Note B(n; y) = D1,0(n; y) and B(n + 1; y) = yD1,1(n; y). Taking m = 1 and r = 0 in both (8)
and (9) yields the following identity for B(n; y).

Corollary 2.3.1. We have

y

n∑
j=0

(
n

j

)
B(k + j; y) =

k∑
j=0

(
k

j

)
(−1)k−jB(n+ j + 1; y). (12)

Note that (3) above corresponds to the y = 1 case of (12). We now present a generalization
of formula (4).

Theorem 2.4. If n, k, r ≥ 0, then

n∑
j=0

(
n

j

)
xjyn−j

r∑
i=0

(
r

i

)(
k

i

)
i!yk−iD1,r−i(j; y) =

k∑
j=0

(−1)k−j
[
k

j

] n∑
`=0

∑̀
i=0

(
n

`

)(
`

i

)
(−k)`−i

× xn−iyiD1,r(n− `+ j; y). (13)

Proof. We will assume in the proof that n, k, r ≥ 1, as the adjustments required when one of the
parameters is zero will be apparent. We first describe a signed set of configurations for which the
right-hand side of (13) is the sum of the signs. Given n, k and r with 0 ≤ j ≤ k, 0 ≤ ` ≤ n

and 0 ≤ i ≤ `, let P(j,`,i)
n,k,r denote the set of 4-tuples (α, β, γ, δ) such that α is a permutation of [k]

containing j cycles, β is a subset of [r+1, r+ n] of size n− `, γ is a subset of [r+1, r+ n]− β
of size `− i wherein each element of γ is associated with an element contained within some cycle
of α, and δ is a partition of the cycles of α and the elements of [r]∪β arranged according to some
member of B1,r(n−`+j). It is assumed that cycles of α are written with the smallest element first
in each cycle. We will refer to the elements of β and γ as free and associated, respectively. Let
the sign of ρ = (α, β, γ, δ) ∈ P(j,`,i)

n,k,r be given by (−1)k−j+`−i and the weight by xn−iyiwght(δ),
where wght(δ) is the weight δ would receive if counted in D1,r(n − ` + j; y). Then the (signed)
weight of all members of P(j,`,i)

n,k,r equals

(−1)k−j
[
k

j

](
n

`

)(
`

i

)
(−k)`−ixn−iyiD1,r(n− `+ j; y).

Considering all possible j, ` and i gives the sum of the weights of all members of

Pn,k,r = ∪kj=0 ∪n`=0 ∪`i=0P
(j,`,i)
n,k,r .
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We now define an involution on Pn,k,r in two steps as follows. First suppose ρ ∈ Pn,k,r is
such that the cycles of α within at least one of the blocks B of δ contain two or more elements
of [k] altogether. We assume that the blocks of δ are arranged left-to-right in ascending order of
smallest items contained within, where all free elements are considered less than all cycles and
cycles are compared by comparing sizes of first elements. Suppose further that B is leftmost
when the blocks of δ are ordered as described. Within B, identify the smallest two elements of
[k] contained within cycles of α, which we will denote by u and v where u < v. If u and v occur
in the same cycle of α as (u . . . v . . .), then we break the cycle at v to obtain two cycles (u . . .),
(v . . .), and if u and v occur in different cycles, then we reverse this operation. In the process, we
keep the associations of any members of γ the same, whence the weight is preserved as m = 1.
On the other hand, since the number of cycles of α changes by one and |γ| = `− i stays the same,
the sign is reversed.

Thus, we may assume ρ ∈ Pn,k,r is such that each block of B contains either no cycles of α
at all or a single cycle of α of length one (which implies j = k and α is the identity permutation).
In this case, to define an involution, we first identify the smallest block C of δ (relative to the
ordering described above) containing a one cycle (x) of α such that (i) some element of γ is
associated with the element x, or (ii) some member of β belongs to C as a free element (possibly
both (i) and (ii) occur). Let w be the smallest element of γ ∪ β that either (I) is associated with
x or (II) lies in block C as a free element. We switch options (I) and (II) with respect to w. Note
that this operation preserves the x- and the y-weights since |β|+ |γ| = (n− `) + (`− i) = n− i
does not change. Moreover, since m = 1, possibly adding a free element to a non-special block
or removing it does not change the weight of δ either. Finally, the sign is reversed since α stays
the same but |γ| changes by one.

Combining the two mappings above then yields an involution of Pn,k,r whose set of survivors
P∗n,k,r all have positive sign since j = k and γ = ∅. Furthermore, within each survivor, the
cycles of α must all belong to distinct blocks of δ with no cycle sharing a block with a free
element. Thus, a cycle (z) of α either comprises its own block of δ or belongs to a block of the
form {r′, (z)}, where r′ ∈ [r]. So to enumerate members of P∗n,k,r, let i denote here the number of
elements of [r] containing a cycle of α within its block in δ. There are

(
r
i

)(
k
i

)
i! ways in which to

select the elements of [r] and cycles of α and then to combine them in i doubleton blocks. Each of
the remaining k − i cycles goes in its own block and thus they contribute weight yk−i altogether,
while the elements of β and the remaining r − i special elements are combined according to a
partition enumerated by D1,r−i(j; y) where j here denotes |β|. Considering all possible i and j
then implies that |P∗n,k,r| is given by the left-hand side of (13), which completes the proof.

Corollary 2.4.1. We have

n∑
j=0

(
n

j

)
ajbn−j

r∑
i=0

(
r

i

)(
k

i

)
i!yk−iD1,r−i(j; y) =

k∑
j=0

(−1)k−j
[
k

j

] n∑
`=0

(
n

`

)
a`(b− ak)n−`

×D1,r(`+ j; y). (14)
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In particular,

yk
n∑
j=0

(
n

j

)
ajbn−jB(j; y) =

k∑
j=0

(−1)k−j
[
k

j

] n∑
`=0

(
n

`

)
a`(b− ak)n−`B(`+ j; y). (15)

Proof. Taking xj = aj and yj = bj for all j ≥ 0 in (13) gives

n∑
j=0

(
n

j

)
ajbn−j

r∑
i=0

(
r

i

)(
k

i

)
i!yk−iD1,r−i(j; y)

=
k∑
j=0

(−1)k−j
[
k

j

] n∑
`=0

∑̀
i=0

(
n

`

)(
`

i

)
(−k)`−ian−ibiD1,r(n− `+ j; y)

=
k∑
j=0

(−1)k−j
[
k

j

] n∑
`=0

(
n

`

)
an−`(b− ak)`D1,r(n− `+ j; y),

by the binomial theorem. Replacing ` by n − ` in the last equality yields (14). Letting r = 0 in
(14) gives (15).

Letting y = 1 and r = 0 in (13) yields the following Bell number formula.

Corollary 2.4.2. We have

n∑
j=0

(
n

j

)
xjyn−jB(j) =

k∑
j=0

(−1)k−j
[
k

j

] n∑
`=0

∑̀
i=0

(
n

`

)(
`

i

)
(−k)`−ixn−iyiB(n− `+ j). (16)

Remark: Either setting y = 1 in (15) or xj = aj and yj = bj for all j in (16) gives (4). In [5], it was
shown algebraically that (16) holds in the particular cases when xj , yj assume (independently)
the values of one of the following five sequences of numbers: constant 1, Fibonacci Fj , Lucas
Lj , Bernoulli Bj or Euler Ej . Formula (16) was also shown to hold when xj = (−1)jF2j or
(−1)jL2j and yj = 1 for all j.

We conclude this section with the following generalization of (5).

Theorem 2.5. If n, k, r ≥ 0, then

n+k∑
j=0

(
n+ k

j

)
xjyn+k−jDm,r(j; y) =

k∑
p=0

k∑
`=0

n∑
j=0

j∑
i=0

(
n

j

)(
k

`

)(
j

i

)
xn+`+i−jyk+j−`−i

× (pm)n−jypWm,r(`, p)Dm,r(i; y). (17)

Proof. Let T (t)
n,k,r where 0 ≤ t ≤ n + k denote the set of ordered pairs (α, β), where β ⊆

[r+1, r+n+k] with |β| = n+k−t and α is a partition of the elements of ([r+1, r+n+k]−β)∪[r]
according to a member of Bm,r(t). Let the weight of (α, β) ∈ T (t)

n,k,r be given by xtyn+k−twght(α),
where wght(α) is the weight assigned to α when considered as a member of Bm,r(t) and counted
in the distribution polynomial Dm,r(t; y). Then the left side of (17) is seen to give the sum of the
weights of all members of Tn,k,r = ∪n+kt=0 T

(t)
n,k,r.
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We compute this sum of weights of the (α, β) ∈ Tn,k,r now in a different way. First suppose
that exactly p of the non-special blocks of the partition α contain at least one member of the set
I = [r+1, r+ k], where 0 ≤ p ≤ k. We then select ` elements of I and form a partition together
with the elements of [r] according to a member of Bm,r(`, p), which can be effected in Wm,r(`, p)

ways. The remaining k−`members of I then go in β. Now suppose exactly n−j elements of the
set J = [r+ k + 1, r+ k + n] belong to a non-special block of α containing at least one member
of I . Then there are

(
n
j

)
(pm)n−j ways in which to select and insert these elements into one of the

p non-special blocks already present (note that these added elements are each colored in one of
m ways since they are non-minimal). Then select i of the unchosen j members of J to go in new
non-special blocks of α or in the special blocks, which can be effected in

(
j
i

)
Dm,r(i; y) ways. The

remaining j − i members of J are understood to go in β. Thus, we have |α| = `+ n− j + i and
|β| = k − ` + j − i, which become the respective subscripts of the xj- and yj-sequence factors
appearing in the weight. Finally, one must multiply by yp to account for the p non-special blocks
of α above containing at least one member of I . Considering all possible p, `, j and i implies
that the sum of the weights of all members of Tn,k,r is also given by the right side of (17), which
completes the proof.

Remark. Allowing the subset of J enumerated by n − j in the preceding proof to include also
those members of J belonging to special blocks yields a variant of (17) wherein (pm)n−jDm,r(i; y)

is replaced by (r + pm)n−jDm,0(i; y) on the right side of (17), with all other factors the same as
before. Note that our argument for (17) is seen to extend the proof given by Spivey [14] of for-
mula (7) above, which corresponds to the case when xj = y = m = 1, yj = δj,0 and r = 0.

Setting m = y = 1 and r = 0 in (17) yields the following Bell number identity.

Corollary 2.5.1. We have

n+k∑
j=0

(
n+ k

j

)
xjyn+k−jB(j) =

k∑
p=0

k∑
`=0

n∑
j=0

j∑
i=0

(
n

j

)(
k

`

)(
j

i

)
xn+`+i−jyk+j−`−ip

n−j
{
`

p

}
B(i).

(18)

Remark: Formula (18) reduces to (5) when xj = aj and yj = bj . It was also shown in [5] that (18)
holds in particular when xj and yj coincide with one of the five number sequences mentioned in
the first remark above as well as when xj = (−1)jF2j or (−1)jL2j and yj = 1.

3 A further extension of (5)

Let L(n, k) denote the set of partitions of [n] into k blocks where elements within a block may
be written in any order. Then |L(n, k)| is given by the Lah number n!

k!

(
n−1
k−1

)
if n, k ≥ 1 (see, e.g.,

[13, A008297]), with L(n) = ∪nk=0L(n, k) having cardinality given by [13, A000262]. We now
recall the generalized Stirling polynomials Gs,t(n, k) that were studied in [7] which arise as the
joint distribution for a pair of statistics on L(n, k). They are defined recursively by

Gs,t(n, k) = Gs,t(n− 1, k − 1) + (s(n− 1) + tk)Gs,t(n− 1, k), n, k ≥ 1, (19)
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with Gs,t(n, 0) = δn,0 and Gs,t(0, k) = δk,0 for n, k ≥ 0. Note that G1,0(n, k) =
[
n
k

]
and

G0,1(n, k) =
{
n
k

}
.

We now describe a combinatorial interpretation for Gs,t(n, k). Within a block B of λ ∈ L(n)
and i ∈ B, we will say that i is a record low of λ if there are no elements j < i to the left of i
within B. If λ ∈ L(n), then let rec∗(λ) denote the total number of record lows of λ (within all
of its blocks) which do not correspond to a minimal element of some block. Let nrec(λ) denote
the number of elements of [n] which are not record lows of λ. Comparing recurrences and initial
values, one can show that Gs,t(n, k) is the joint distribution for the nrec and rec∗ statistics on
L(n, k), i.e.,

Gs,t(n, k) =
∑

λ∈L(n,k)

snrec(λ)trec∗(λ), n, k ≥ 1, (20)

see [7, Theorem 5.1].
Let Gs,t(n) =

∑n
k=0 Gs,t(n, k) for n ≥ 0. If a and b are variables and i is a positive integer,

then let [a : b]i = a(a+ b) · · · (a+ (i− 1)b), with [a : b]0 = 1. We have the following extension
of (5) involving generalized Stirling polynomials.

Theorem 3.1. If n, k ≥ 0, then

n+k∑
j=0

(
n+ k

j

)
xjyn+k−jGs,t(j) =

k∑
p=0

k∑
`=0

n∑
j=0

j∑
i=0

(
n

j

)(
k

`

)(
j

i

)
xn+`+i−jyk+j−`−i

× [pt+ `s : s]n−jGs,t(`, p)Gs,t(i). (21)

Proof. We proceed in a manner similar to the proof of Theorem 2.5 above. Consider ordered
pairs (α, β), where β ⊆ [n + k] with |β| = n + k −m for some 0 ≤ m ≤ n + k and α is a Lah
distribution on the elements of [n+k]−β. We define the weight of (α, β) as xmyn+k−mwght(α),
where wght(α) = snrec(α)trec∗(α). Then, by (20), the left side of (21) gives the sum of the weights
of all possible ordered pairs (α, β). The right side of (21) also achieves this upon proceeding as
in the proof of (17) above (in the case r = 0) and making the appropriate modifications. Note
that there are now [pt + `s : s]n−j ways in which to add the n − j elements chosen from J that
are to go in blocks containing at least one member of I , as there are pt + `s possibilities for the
position of the smallest chosen element, pt+ (`+ 1)s possibilities for the position of the second
smallest and so on. Equating the two expressions for the sum of the weights of the (α, β) implies
(21).

Note that (21) reduces to (5) when xj = aj , yj = bj , s = 0 and t = 1. Taking s = 1 and t = 0

instead gives

n+k∑
j=0

(
n+ k

j

)
ajbn+k−jj! =

k∑
p=0

k∑
`=0

n∑
j=0

j∑
i=0

(
n

j

)(
k

`

)(
j

i

)
an+`+i−jbk+j−`−i`n−j

[
`

p

]
i!,

where `j = `(` + 1) · · · (` + j − 1), which is an analogue of (5) for permutations. A similar
formula involving the Lah numbers is obtained if one sets s = t = 1. Taking s = 1, t = 0, xj = 1

and yj = δj,0 in (21) gives
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(n+ k)! =
k∑
p=0

n∑
j=0

(
n

j

)
kn−j

[
k

p

]
j!,

which is an analogue of (7) for permutations, see [9, Theorem 1]. Taking s = t = 1 instead yields
a comparable formula for the Lah numbers.
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