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Abstract: Generalised Beatty sets, that is, sets of the form {bmα1 + nα2 + βc : m,n ∈ N}, are
studied, where bξc denotes the largest integer less than or equal to ξ. Such sets are shown to be
contained in a suitable ordinary Beatty set {bnα+βc : n ∈ N} and equal said set save for finitely
many exceptions. Moreover, bounds for the largest such exception are given.
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1 Introduction

Given a real number α ≥ 1 and a nonnegative real number β, the associated (inhomogeneous)
Beatty set (or Beatty sequence) is defined by

B(α, β) = {bnα + βc : n ∈ N},

where bξc denotes the largest integer less than or equal to ξ. Clearly, consecutive elements of a
Beatty sequence differ only by either bαc or bαc + 1 and rules for predicting which difference
occurs at what position in the sequence were first studied by Johann III Bernoulli [4] with the
intent of extrapolating the lunar position whilst—for saving effort—working with approximations
to the actually measured speed of revolution, yet still controlling the accumulative error.

Number theoretical interest in Beatty sequences appears to have arisen with the work of Elwin
Bruno Christoffel [5, 6], who used studied them as a means to coming to terms with the notion of
irrationality—a concept which was under scrutiny in these days.

Beatty sequences gained more widespread popularity due to Samuel Beatty [2, 3] proposing
the following problem for solution in The American Mathematical Monthly: for irrational α > 1,
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show that N is a disjoint union of B(α, 0) and B(1/(1−1/α), 0). Although this cute result appears
to be due to John William Strutt (3rd Baron Rayleigh) [11], the sequences in question now bear
Beatty’s name.

The interested reader is invited to trace the references in, e.g., [1] for a (still limited) panorama
of the many properties of Beatty sets that have been explored in the literature.

The motivation for the present investigation comes from the work of Steuding and the au-
thor [10], wherein, using a result of Vaughan [12], an upper bound for the least prime number in
Beatty sets B(α, β) with irrational slope α is obtained. The result may be compared with Linnik’s
theorem and the resulting bound depends on Diophantine properties of α, namely the size of the
convergents of its regular continued fraction expansion.

The intent of obtaining similar—yet stronger—results may lead one to replace the Beatty set
B(α1, α2 + β) under consideration by the larger set

B(α, β) = {bmα1 + nα2 + βc : m,n ∈ N},

where α = (α1, α2) is a real vector with coordinates ≥ 1.
For instance, a quick calculation gives

B((
√
2, π), 0) = {4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, . . .},

and one might eagerly note that lots of primes show up here. However, after calculating even
more elements, one cannot help but suspect that

B((
√
2, π), 0) = N \ {1, 2, 3, 6}. (1.1)

In fact, upon noting that N = B(1, 0) is a Beatty set, the above equation takes the form

B(α, β) = {some Beatty set} \ {finite set of exceptions}. (1.2)

Perhaps surprisingly, this is the true nature of things here and the findings of this article may be
described as follows:

1. We show that (1.2) always holds.

2. We exhibit a suitable choice for the Beatty set on the right hand side of (1.2).

3. We give bounds for the largest exception in (1.2).

None of the proofs are particularly difficult; they split in essentially two cases. First, when α1/α2

is irrational, basic distribution properties of the sequence nα1/α2 mod 1, n = 1, 2, . . ., are used.
Second, when α1/α2 is rational some quick calculations and an appeal to the finiteness of the
Frobenius number finish the argument.

The plan of the paper is as follows. First, we state our results in Section 2. The corresponding
proofs are divided—according to (ir)rationality of α1/α2—into Section 3 and Section 4 respec-
tively. Finally, in Section 5 we discuss further directions for future research.
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2 Statement of results

A set X ⊆ Z is said to be cofinite with respect to Y ⊆ Z if X ⊆ Y and the set X c = Y \X is
finite. In this case we write cosupY X for the supremum of X c. In particular, cosupY Y = −∞.
If we drop the reference to Y , then it is understood that Y = N.

Here and throughout, α always denotes a vector (α1, α2) with real coordinates ≥ 1.

2.1 Irrational α1/α2

Theorem 2.1. Let α1, α2 ≥ 1 and β ≥ 0 be real numbers and suppose that the quotient α2/α1 is
irrational. Then B(α, β) is cofinite.

To state a bound on cosupB(α, β), we need some vocabulary: for a real number α ≥ 1 write

α = [x0;x1, x2, . . .] = x0 +
1

x1 +
1

x2 +
1

. . .

(2.1)

for its (regular) continued fraction expansion. If α is irrational, then this expansion has infinitely
many terms and the so-called partial quotients xj ∈ N (j = 0, 1, 2, . . .) are uniquely determined.
Any finite cutoff

[x0;x1, x2, . . . , xr]

may be written as a reduced fraction a
q
, the r-th convergent to α. (Mind that we start with the 0-th

convergent.) For more background on continued fractions the reader is referred to [7, 9].

Proposition 2.2. Assume the hypotheses of Theorem 2.1, and let a
q

be the r-th convergent to
α2/α1, where

r = min{x ∈ Z : x ≥ 1 + log(2α1)/ logG} (2.2)

and G = 1
2
(1 +

√
5) is the Golden ratio. Then

cosupB(α, β) < α1 + qα2 + β. (2.3)

To illustrate this bound, we note that it can be used to prove (1.1) which was previously stated
in the introduction without proof. Indeed, a calculation reveals that r = 4 in (2.2) and

π/
√
2 = [2; 4, 1, 1, 15, . . .].

This leads to the fraction a
q
= [2; 4, 1, 1, 15] = 311

140
. Thus,

cosupB((
√
2, π), 0) <

√
2 + 140π ≈ 441.2,

and a calculation of all small elements in B((
√
2, π), 0) now establishes (1.1). We note that when

reversing the roles of π and
√
2 (which incidentally does not change the associated Beatty set)

one obtains the bound

cosupB((π,
√
2), 0) < π + 311

√
2 ≈ 442.962.
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2.2 Rational coordinates

If α has rational coordinates, then B(α, β) can be described quite concisely:

Theorem 2.3. Let α1 =
a1
q1

and α2 =
a2
q2

be reduced fractions with α1, α2 ≥ 1. Furthermore, let
β be a non-negative real number and put

α̃ =
c

q1q2
, β̃ = α1 + α2 − α̃ + β,

where c denotes the greatest common divisor of a1q2 and a2q1. Then B(α, β) is cofinite with
respect to B(α̃, β̃).

Note that Beatty sets B(α̃, β̃) with rational slope α̃ can be written as a union of arithmetic
progressions. Moreover, we have a simple analogue of Proposition 2.2:

Corollary 2.4. On the hypotheses of Theorem 2.3, the set B(α, β) is cofinite if and only if

c ≤ q1q2. (2.4)

Moreover, if (2.4) holds, then cosupB(α, β) ≤ ba1a2/c+ βc.

2.3 The residual case

For the sake of giving a complete treatment of all possible cases we also include the following
theorem, although it does not differ greatly from the previous one.

Theorem 2.5. Let α1 > 1 be irrational and α2 = a
q
α1 with some reduced fraction a

q
. Further-

more, let β be a non-negative real number and put

α̃ =
α1

q
=
α2

a
, β̃ = α̃ + β. (2.5)

Then B(α, β) is cofinite with respect to B(α̃, β̃).

A result corresponding to Corollary 2.4 is also immediate.

3 Proof of the results for irrational α1/α2

Before turning to the details, we sketch the underlying idea. We note that B(α, β) is a union of
ordinary Beatty sets, namely

B(α, β) =
⋃
n≥1

B(α1, nα2 + β). (3.1)

By Lemma 3.2 membership of x ∈ Z to each of these Beatty sets is determined by the fractional
part of x/αk (k = 1, 2) belonging to a certain interval modulo one and x not being too small. On
varying n, these ‘detector intervals’ can be shown to eventually cover R/Z (here the assumption
that α1/α2 be irrational enters the picture) and, consequently, there is a finite collection of Beatty
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Figure 1. Intervals In modulo one (identified with arcs on a circle and lifted up for the sake of
readability) ‘detecting’ elements of B(π, n

√
2) (n = 1, 2, 3, 4). When drawing the picture for

n = 1, 2, . . . , 7, the full circle is covered.

sets B(α1, nα2 + β) such that every sufficiently large integer x belongs to at least one element
of said collection. The reader is referred to Fig. 1, which illustrates this point for the generalised
Beatty set in (1.1).

Suppose that α has the continued fraction expansion (2.1) and let a
q

be the r-th convergent to
α. Then

|qα− a| ≤ q−1. (3.2)

The size of a and q depends, of course, on the values of x0, . . . , xr. However, via comparison
with the continued fraction expansion of the Golden ratio,

G = 1
2

(
1 +
√
5
)
= [1; 1, 1, . . .], (3.3)

and using Binet’s formula, a lower bound in terms of r can be given (see, e.g., [10] for the details).

Lemma 3.1. Let a
q

be the r-th convergent to some real number α > 0. Then q ≥ Gr−1, where G
is given by (3.3).

The following lemma is certainly well-known; it gives a convenient test for membership in a
Beatty set.

Lemma 3.2. An integer x is contained in the Beatty set B(α, β) if and only if x > α+ β − 1 and
xα−1 ∈

[
β−1
α
, β
α

)
mod 1.

We shall require some very basic distribution properties of the sequence (nα)n modulo one;
of course, much more is true (see, e.g., [8]), but the following simple lemma suffices for our
purpose.

Lemma 3.3. Let α be a real number and suppose that a
q

is a reduced fraction satisfying (3.2).
Then

sup
ξ∈ [0,1)

min
n≤q
{ξ − nα} ≤ 2q−1,

where {ξ} = ξ − bξc denotes the fractional part of ξ.
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Proof. This is immediate from the triangle inequality.

Proof of Theorem 2.1. Let x be large, x > x0 say, where the value of x0 is yet to be determined.
We intend to show that x ∈ B(α, β). By (3.1) it suffices to exhibit some n such that x ∈
B(α1, nα2 + β). In view of Lemma 3.2, this is equivalent to

xα−11 − nα−11 α2 ∈
[
β − 1

α1

,
β

α1

)
mod 1, (3.4)

n < (x+ 1− β − α1)α
−1
2 . (3.5)

Now let a
q

be the r-th convergent to α = α−11 α2. By taking r sufficiently large, we may assume
that

q > 2α1. (3.6)

Then Lemma 3.3 ensures the existence of some n ≤ q satisfying (3.4). The theorem now follows
by choosing x0 such that the right hand side of (3.5) is larger than q.

To give a proof of Proposition 2.2, a closer inspection of the above proof suffices: on applying
Lemma 3.1, we find that (3.6) is satisfied if

1 + log (2α1) / logG ≤ r.

Since cosupB(α, β) ≤ x0, we arrive at (2.3) after determining an admissible value for x0 in the
way outlined above.

Remark 3.1. Of course, given some α for which the growth of the denominators of its r-th con-
vergents as r →∞ is known, Proposition 2.2 may be replaced with some smaller quantity.

4 The case when α1/α2 is rational

As a motivation recall that given an integer vector x ∈ Zr (r ≥ 2) with positive coprime coordi-
nates, one has

Zx1 + . . .+ Zxr = Z.

When one replaces Z with N0, the set of non-negative integers, on the left hand side, then every
sufficiently large integer on the right hand side can still be represented. The largest integer that
cannot be thus represented is called the Frobenius number of x and shall be denoted by g(x), i.e.,

g(x) = cosupN0
(N0x1 + . . .+ N0xr) .

If r = 2, then one has the simple formula

g(x1, x2) = x1x2 − x1 − x2.

However, to fit our convention that Beatty sets are generated via multiplication by positive inte-
gers, we shall work with

g+(x1, x2) = cosup (Nx1 + Nx2) = x1x2. (4.1)
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Now looking at a Beatty set B(x, β), one finds that

B(x, β) ⊇ {n ∈ N : n > g+(x1, x2) + β}.

It is a straightforward matter to extend this argument:

Proof of Theorem 2.3. For positive integers m,n write

m
a1
q1

+ n
a2
q2

=
(
m
a1q2
c

+ n
a2q1
c

) c

q1q2
. (4.2)

This already proves the inclusion B(α, β) ⊆ B(α̃, β̃). Since the expression in the parentheses
in (4.2) can be made to equal any integer

> g+(a1q2c
−1, a2q1c

−1) = ` (say)

if the positive integers m and n are chosen appropriately, we have

cosupB(α̃,β̃) B(α, β) ≤
⌊
`c

q1q2
+ β

⌋
=
⌊a1a2

c
+ β

⌋
. (4.3)

This proves the theorem.

Proof of Corollary 2.4. This is a trivial consequence of Theorem 2.3, and the fact that B(α̃, β̃) is
cofinite if and only if α̃ ≤ 1; the stated bound is obtained from (4.3) upon noting that B(α̃, β̃) =
{x ∈ N : x > α+ β̃ − 1} if (2.4) holds.

In the setting of Corollary 2.4, one may naively suspect that the inequality given in (4.3) may
in fact be an equality. However, this is not generally the case. Indeed, when α̃ ≤ 1

2
, the problem

of determining cosupB(α, β) is related to the position of large gaps (with respect to α̃) in

Na1q2c−1 + Na2q1c−1. (4.4)

To illustrate this point, consider the generalised Beatty set

B = B((3
2
, 2), 0) = {3, 5, 6, 7, 8, . . .} = N \ {1, 2, 4}.

Here (4.4) takes the form

N3 + N4 = N \ {1, 2, 3, 4, 5, 6, 8, 9, 12}

and we have α̃ = 1
2
. Note that g+(4, 3) = 12, yet cosupB < 6 = b12α̃c, because b12α̃c = b13α̃c

and 13 is an element of N3 + N4. However,

cosupB = 4 = b8α̃c = b9α̃c .

Proof of Theorem 2.5. Simply write

mα1 + n
a

q
α1 = (mq + na)

α1

q

and argue as in the proof of Theorem 2.3.
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5 Open problems

We start by noting that Proposition 2.2 only gave cosupB((
√
2, π), 0) ≤ 441, whereas in actuality

cosupB((
√
2, π), 0) = 6 (see (1.1)). In general, we suspect that our bounds on the exceptional

set in (1.2) are quite poor. (Here it is understood that the shift in the Beatty set on the right hand
side of (1.2) is chosen as to have as few members in the exceptional set as possible.) In fact,
our understanding of the exceptional set is even far from optimal in the case when considering
generalised Beatty sets B(α, β) with rational quotient α1/α2, as showcased by our discussion of
small gaps in Section 4.

Therefore, for arbitrary generalised Beatty sets B(α, β), we list the following two problems:

Problem 5.1. Obtain better bounds for the largest member of the exceptional set in (1.2).

Problem 5.2. Investigate structural properties of the exceptional set in (1.2).

Here the last problem is intentionally vague in its formulation. A rather more specific but
related question was posed by one of the anonymous referees:

Problem 5.3. Obtain non-trivial bounds for the smallest member of the exceptional set in (1.2).

Acknowledgements

This work is part of the author’s doctoral dissertation at Würzburg University. The author grate-
fully acknowledges the encouragement of his advisor, Jörn Steuding. Financial support by both
Würzburg University and Graz Technical University is greatly appreciated.

References

[1] Banks, W. D., & Shparlinski, I. E. (2009) Prime numbers with Beatty sequences, Colloq.
Math., 115, 2, 147–157.

[2] Beatty, S. (1926) Problem 3173, Amer. Math. Monthly, 33, 159.

[3] Beatty, S., & Ostrowski, A., & Hyslop, J., & Aitken, A. C. (1927) Solutions to prob-
lem 3173, Amer. Math. Monthly, 34, 159–160.

[4] Bernoulli, J. III (1772) Sur une nouvelle espece de calcul, In Recueil pour les Astronomes,
volume I, 255–284, Berlin.

[5] Christoffel, E. B. (1873) Observatio arithmetica, Annali di Mat. (2), 6, 148–153.

[6] Christoffel, E. B. (1887) Lehrsätze über arithmetische Eigenschaften der Irrationalzahlen,
Annali di Mat. (2), 15, 253–276.

[7] Hardy, G. H., & Wright, E. M. (2008) An introduction to the theory of numbers, sixth
edition, Oxford University Press, Oxford.

134



[8] Kuipers, L., & Niederreiter, H. (1974) Uniform distribution of sequences, John Wiley &
Sons, New York.

[9] Perron, O. (1954) Die Lehre von den Kettenbrüchen. Band I, third edition, B.G. Teubner
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