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1 Introduction

In a series of papers [9-16], the late Mollie Horadam, wife of Alwyn F. Horadam and mother of
Kathie Horadam (another Professor of Mathematics in Australia), extended the classic
arithmetic functions of number theory to generalizations of the integers. We shall further extend
some of these function and consider Fermatian and Fibonacci numbers as examples of
divisibility sequences {u,} with, for instance, O(un), @(un, um), W(n), (Un, um) as analogues of
ordinary arithmetical functions.

The approach of Mollie Horadam [16] and others, particularly David Daykin [6], was to
start with generalized primes as a foundation for generalized integers. Here, though the
approach is to start with divisibility sequences, the elements of which we consider as
generalized integers, and to define some of their elements as generalized primes. That is, up is a
generalized prime (modulo a divisibility sequence) if its only divisors are itself and unity
(within the system).

Our generalized integers cannot necessarily be represented as a product of distinct
generalized primes, as we shall see. Thus new analogues of the classical arithmetical functions
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are needed in order to study these divisibility sequences as generalizations of integers. This is
not to say that we cannot redefine our generalized primes to fit Mollie Horadam’s theory but it
leads to unnecessarily complicated questions about the distribution of these generalized primes
within a divisibility sequence.

2 Fermatian numbers

In a series of papers [9-16], the late Mollie Horadam, wife of Alwyn F. Horadam and mother of
Kathie Horadam (another Professor of Mathematics in Australia), extended the classic

-z"z, (n<0)
z,=31+z+2°+..2"" (n>0) 2.1)
1 (n=0)
so that
1, =n (2.2)
and
1,!'=n!, (2.3)
where
2,152,200, 2 (2.4

For example, if we consider the Fermatian numbers of index 2, we have 2, =3, 23 = 7,
24 = 15, 26 = 63, 23 = 255, so that 2, 23 and 24 are generalized Fermatian primes, and
26 = (22)*23, but 25 cannot be represented as a product of Fermatian numbers of index 2. Some
properties of these numbers may be found in [18] and Carlitz and Moser [4]. Carlitz has also
used Fermatian numbers in the development of g-Bernoulli numbers and polynomials [2]. The
first ten Fermatian numbers of the first ten indices are displayed in Table 1.

Index

U 12| 3 4 5 6 7 8 9 10

1 1] 2 3 4 5 6 7 8 9 10
2 1|3 7 15 31 63 127 255 511 1023
3 1| 4] 13 40 121 364 1093 3280 9841 29524
4 1] 5| 21 85 341 1365 5461 21845 87381 349525
5 1] 6| 31| 156 781 3906 19531 97656 488281 2441406
6 1] 7| 43| 259 | 1555 9331 55987 335923 2015539 12093235
7 1| 8] 57| 400 | 2801 | 19608 | 137257 960800 6725601 47079208
8 1| 9] 73| 585| 4681 | 37449 | 299593 2396745 | 19173961 | 153391689
9 110 91| 820 | 7381 | 66430 | 597871 5380840 | 48427561 | 435848050
10 1| 11| 111 | 1111 | 11111 | 111111 1111111 1111111 11111111 IRRRRRRENE!

Table 1. First 10 Fermatian numbers of the first 10 indices
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The corresponding row and column sequences,{gn}::l, {gn};, are obvious from their

z—1
construction, but the sequence, {z (z — n)n } = {1,3,6,1 1,21,45,105,315,105 8,...}, formed from

n=1

adding along the forward diagonals, does not seem to be well-known [20].

3 Some arithmetical functions

When dealing with ordinary integers we note that

Sim.s) I, mls, G3.1)
m,s) = , .
0, mls,
has different interpretations in Hardy and Wright [7] and Horadam [15], namely
o(m,s)=g(s,m)/m [15]
g(m)/m
= [7]
E (m+1).
With (3.1) we shall use
0, ifJj:jl(ns),l<j<n,
p(n,s)= ] , (3.2)
1, otherwise,
and x(n), the Mobius multiplicative function, defined for all positive integers n by
1 square — free & positive with anevennumberof prime factors,
H(n)=3—-1if nis < square— free & positive with anodd numberof prime factors,
0 not square — free,

and (1) = 1. Examples of p(n, s) are set out in Table 2 which illustrates that it can detect
primes for numbers in this range:

n— 1 2 3 4 5 6 7 8
sl
1 1 1 1 1 1 1 1 1
2 1 1 1 0 1 0 1 0
3 1 1 1 1 1 0 1 1
4 1 1 1 0 1 0 1 0
5 1 1 1 1 1 1 1 1
6 1 1 1 0 1 0 1 0
7 1 1 1 1 1 1 1 1
8 1 1 1 0 1 0 1 0
Table 2. p(n, s) forn,s=1,2,...,8
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We shall also use
¢ =exp(2ai/m).
We note that

D4 =g(s,m)

n<m

=mo(m,s)
and

z ¢ =c(s,m)

n<m
(n,m)=1

Ramanujan’s sum, which are proved in Hardy and Wright. Of marginal relevance to some of
Mollie Horadam’s work is the neat definition of generalized (order r) Lucas numbers by
Williams [21] and a modification of Carlitz [3]:

y 1Y -
L") = Ez(z;ﬁjg;“ " s=012,...,r-1,
j=1

in which d is some real number for r >2. Whenr=2,d = 02,1 — 022, and
2) _ n n
LO,n - aZ,l + aZ,Z

the primordial numbers of Lucas [17].

4 Some generalised integer divisors
For notational convenience with generalized integers {u.}, we let

§(um,u‘v)=§{m,s}={l o 11 4.1)

0 u,lu,

and

4.2)

p(um,us):p{m’s}:{o ileujiuj|ux,ul<uj<um,

otherwise.
For ua, uj, ux € {u,}, we call uq = (u;, ux) the greatest common divisor of u; and u, if

a) uqluj and uq | u,
b) every ue | uq if ucluj and ucluk, uc € {un}.

When u1 = (uj,ur), shall say that u; and ux are generalized co-primes. A formula for the greatest
common divisor is then given by

(u,,u,) = max{u, o{m, s}, 6{m,t}}, 1< m < min{s,}, for each u,, | min{s,z}. (4.3)

For example, for the Fibonacci numbers: (Fs, F3) = (3, 21) = max{1, 2, 4} = 3, and also for the
Fermatian numbers: (3,,3g) = (40, 3280) = max{1, 2, 4} = 40.
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Proof of (4.3). For each{(u, lu )A(u, u,)},1<m<min{s,t}, u, =u,d(m,s)5(m,s), and so

the maximum of all these will be the greatest common divisor of u; and u;. (]

We now assert that p{m, s}o{m, s} =1 iff u,, 1is unity or the smallest prime factor of u;.
Proof. If u, is the smallest prime factor of us, then O {m, s}= 1 because u,, lu,, and p{m,s}= 1
because Bu; lu :1<u; <u,.Also o, 51011, s)vs.

If p{m,s}o{m,s}#1, then p{m,s}é{m,s}=0,and either

(@)  p{m,s}=0, which implies that du;:1<u; <u

(b)  S{m,s}=0, which implies that u, | u_,

or both (a) and (b), all of which imply that u, is not unity or is not the smallest prime

u;lug, or

m?

divisor. O

For example, for the Fermatian numbers when g = 2,

pl2.6}= p{3.63}=1,
o{2.6}= 3,63} =1,

SO
pl2.6}=06{2.6}=1;

but p{3,6}= p{7,63}=0, since 1 <3 <7 and 3163, so

p13,6}0{3,6}=0.
Also

ol1.7.}= pl127127} =1,

sinced2, :1<n<7:2,1127,and so

p{1.7}6(7.71=1,
but

o13,7}=6{7,127} =0,

SO

p13,7}6§3,7} = 0.

5 Sums of generalized divisors

Let
o ()= uj (5.1

uglu,

so that oo(u,) represents the number of divisors ug of u,, where uq, u, € {u,}. We can also
define a generalization of the greatest integer function, [us / un], by the recurrence relation:

[us /um]— [us_1 /um]: 8{m, s}, [uo /um]z 0. (5.2)
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Thus, when {un }=1{n}, [us lu, ] = [s / m], the ordinary greatest integer function.

Then, analogous to the well-known

Zn:[n/m]zznlao(s),

m=1

we have
S, 1, 1= Y 00w, if i, 1, |= 0. (5.3)
m=1 s=1
Proof.
0, (”s ) = Z 5{’”’ S}
m=1
= ‘ ([us /um]_ [us—l /um])‘
m=1
Zo-()(us): Z[ux/um]_[us—l/um]J
s=1 m=1 \_s=m
n n ux B n—1 ux
- m=1 X—Zm|:um :| x;z—l|:um :|j
SN | M
- m=1 um um
S| } 0
m=1 _um
Note that
{”S } = 5{m, j} (5.4)
U, =
Proof.

um um
On adding the corresponding sides of these equations we get the result we seek, since

“ =0 0
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A corollary of this is that [us ] = 25{1, 7}, which is the number of the elements of the sequence

j=1
which are less than or equal to u;. We can then obtain that

{us H_} =" ol Lk

u

m

Proof.
m+1
'[ dy, u,lu,

[ 6l Ly = { "
" 0, u, lu,,

B L u,lu,
0, u,lu,

= 8{m, s}

For ordinary integers this becomes

H_[s_—lJ =[5y Jshay.

m

Thus,

oy, )= [ [ L b v

Proof.

Go(”n): ZI

= 25{1' n}
_ iZ;:J-im 5{]_yJ,n}
= [ 60y L« Dayax.

(5.5)

(5.6)

O

For example, for the sequence of Fibonacci numbers, since the divisors of F4= 3, are F, F> and

F4, 0,(F,) =3, and

=3J.45dx
=3.
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For ordinary integers, the result (5.6) becomes similar to a result of Graeme Cohen, formerly

Editor of the Bulletin of the Australian Mathematical Society, namely

o,(n) = J.:H IM 5(LyJ, \_xj)dya’x.

Cohen [5] has also considered aspects of Gaussian integers as generalized integers.

6 Prime divisors

Let w{u,} denote the number of prime divisors of u, as in [9]. For notational convenience, let

w{l}=1. Then
wink= > pli,i}8i,n}.
I<u;<u,
Proof. Let
> agN
u, =\ 14,
j=1
in which(N =1)v (N ¢ {u, }). Then
n—1
Y pli.i}dli,n} =Y p(p, p)S{j.n}
I<u;<u, j=1
=w{n}

6.1

a4 B o . a a
where p=u  because p{p,p}=0 except when g; = I, since u, Iupj_, uy <u, <u, for

a> 1.

Examples follow:
(1) For the ordinary integers when n = 12:

w(l2) = ip{i,i}é’{i,lZ}
i=2
= 0(2,2)0(2,12) + p(3,3)0(3,12) +
p(4,4)5(4,12) + p(6,6)0(6,12)
=2
Since in Table 1, p(2,2) = p(3,3) =1, p(4,4) = p(6,6) = 0.

(i1) For the Fibonacci numbers, where Fs =21 = 7F4, and

wis}= Y pti,i}51i.8}

1<F <Fg
= p{4.4}6{4.8}
=1.

We note that we can express w{n} similarly to (5.6) as

winy =" [ ptj, 36y JLx Dyt

We now define an analogue of the Mobius function
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0 u’lu
w)=1 p e 6.3)
# {(—1) v otherwise. (

For example, for the Fibonacci numbers:
pFy)=p2) =" =1, u(F)=ul)= (=" =1.

Then

wlu, )= (—I)W{”’(I—5(u§,un )) (6.4)
Proof: Whenn=1,u,=1, and

wu) = (D" (1= 8} u, )
When n =p> 1, us = up, and

)= D" (1= 602 u,))

u, =u,N,a >1,5(u12,,un):1

and
ﬂ(un ) = O‘ D
If (um, un) = 1, then w(u,) is multiplicative, that is,
ﬂ(un )ll’l(um): ﬂ(unum ); (6‘5)

Proof: If un, and u, have no common divisors in the sequence {u,}, then
wimn}= wim}+ win}

Analogous to the MObius function theorem we have

L, n=l,
> palu, )= {0 Z B } = e(n). (6.6)

Proof: If n =1, then

If n > 1, then

=T alut)
i=1
Zﬂ(ud ) = ;u(”1 )+ ZIU(MZ )
(ul,,(ut):l
=1+ (-1’
=0 O]



In the same spirit we now define ¢(u,) to be the number of elements of the set {u1, uz, ..., un-1}
which are co-prime with u,. For instance, if {u,} = {1, 2, 3, 1, 2, 3, ...}, then the co-primes of us

are u1 = 1, u3 =3, u3 =3, us = 1, and so @(us) = 3. We are then able to assert the following

theorem:
olu,)=n-1-y(u,)
in which
n—1 n-1
)= 8lm,s}8(m,n}p{m,s). 6.7)
m=2 s=2
u, #1

Proof. Let A = {u1,un,...,un}. Then for each m

S
|
—_
S
LN

S{m, s}6{m,n} represents the number of elements u_, u, <u, <u, :(u u,)=u, >1;

iM

m=1
n—1 n-1
o 8{m, s}0{m,n}represents the number of elements u, u, <u, <u, :(u,,u,)=u, >1;
m=2 s=2
u, #1
n=1 n-1
. S{m, s}6{m,n}p{m, s} : number of distinct elements u_, u, <u, <u,: (u,u )=u, >1.

Thus n — 1 represents the number of distinct elements of A which are co-prime with u,, and this

is @(ux); that is,
¢(un):n_]‘_l//(un)’ D

Observe that y(up) = 0 only when u, is a generalized prime. More generally, we note that the
problem of Lehmer, discussed by Alter [1], of whether there exists a composite integer n and
integer k > 1 so that the equation
ko(n)=n-1
has a solution can be made equivalent to finding whether there is a solution to
jon) =y (n)
for a composite integer n and a positive integer j.
Examples of the use of (6.7) now follow in (1), (i1) and (iii) below.
@) For {u,} ={1,2,3,1,2,3, ...}, mpi=1l,u2=2, u3=3, ua=1,us=2,and 1, 1, 3, 1

are co-prime with 2, so that
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u5 = iip{m,s}ﬁ{m,s}ﬁ{mﬁ}

2 §=2
#1

= Zp{z,s}5{2,s}
s=2
= p{2.2}
that is,
Qlus)=n—1- w( 5)
=5-1-
(i1) For {F.}, Fi=1,F2=1, F4=3, F5 =15 are co-prime with F¢ =8, so that
¢(F6):4
5 5
w(F,)= ZZp{m,S}5{m,s}5{m,6}
m=2 s=2
#1
= Zp{S,s}é{S,s}
s=2
= p{3.3}
=1;
so that
q’(F()):”_l_‘//(Fa)
=6—-1-1

(iii))  For Z, 1,5,7,11 are co-prime with 12, so that
p(12)=4

11 11

w(2)=Y> p(m,s)8(m,s)S(m.12)

m=2 s=2

= p(2,2)8(2.2) + p(2,)8(2,4) + p(2,6)5(2,6) +
P(2.8)5(2,8) + p(2,10)8(2,10) +
0£(33)5(3,3) + p(3,9)5(3,9)

=17,

9(12) =12 -1-p(12)
=4,

A consequence of this is that for u, # 1 if p> 2:

¢(up ): p— 1,
Since

m, p}=0, m>1.

Furthermore, if up, # 1 if p > 2, then u, is a generalized prime iff p is an ordinary prime
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Proof: unluyiff nlpifftn=1, p (up # 1 if p > 2), and thus u, | u, iff u, = u1 = 1 or u, = up, which

is a result used in a proof of a generalized Staudt—Clausen theorem [8]. ]

7 Concluding comments

Analogues of other functions can be similarly defined; for example, the Nagell totient function
for elements of a divisibility sequence. We define 6(u,, u;) as the number of elements u; of the

set {u1, uz, ..., us}, t < n, such that

We then have

O, 10,) = 8t e 5l 0, ), ) .

Proof. The two delta functions in the summation are both unity only when (unj, us) | u1 and
when (uj, us) | uy; that is, only when
(un—j’ut)z(uj’ut)zl‘
When we sum over all j up to and including ¢ we have the number of elements which

satisfy the conditions of Nagell’s function for divisibility sequences. [

As a corollary we have

olu,)=06u,.u,) (7.2)

n

= 5((un—j’un)’ulb‘((uf’u”’ul))

j=1
since this yields the number of elements of the set {u1, u2, ..., u,—1} which are coprime with u,.
We can also define 7(u») to represent the number of generalized primes < u,. Then

xlu,) =Y plm.m} (13)

m=2

Proof. Form > 2,

0, ifu, hasa factorbetween u, andu,,;
pim.m}= X

if u, is a generalized prime.

For example,

#(F,)= z plm.m}

=5
# 7(8). ]
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Of course there are still unsolved problems with some of the classical functions in terms of
the ordinary integers [22]. A further development of a calculus of convolutions is unnecessary
as this has been achieved by Dr Mollie Horadam; what has been done here is to outline some
properties of the p,d functions which are pertinent to the study of divisibility sequences.
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