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1 Introduction

Throughout the paper, we make use of the following notations:

N := {1, 2, 3, ...} and No = N ∪ {0}.

Generalized and multivariable forms of the special functions of mathematical physics have
witnessed a significant evolution during the recent years. In particular, the special polynomials of
more than one variable provided new means of analysis for the solution of large classes of partial
differential equations often encountered in physical problems. Most of the special function of
mathematical physics and their generalization have been suggested by physical problems.

We recall that the 2-variable Legendre polynomials Sn(x, y) andRn(x, y) are given by Dattoli
et al. [2]

Sn(x, y) = n!

[n
2
]∑

k=0

xkyn−2k

[(n− 2k)!(k!)2]
, (1)

and

Rn(x, y) = (n!)2
∞∑
k=0

(−1)n−kxn−kyk

[(n− 2k)!]2(k!)2
(2)

respectively, and are related with the ordinary Legendre polynomials Pn(x) [24] as

Pn(x) = Sn

(
−1− x2

4
, x

)
= Rn

(
1− x
2

,
1 + x

2

)
. (3)

From equation (1) and (2), we have

Sn(x, 0) = n!
x[

n
2
]

[(n
2
)!]2

, Sn(0, y) = yn, (4)

Rn(x, 0) = (−x)n, Rn(0, y) = yn. (5)

The generating functions for two variable Legendre polynomials Sn(x, y) and Rn(x, y) are given
by [2]

eytC0(−xt2) =
∞∑
n=0

Sn(x, y)
tn

n!
(6)

C0(xt)C0(−yt) =
∞∑
n=0

Rn(x, y)
tn

(n!)2
(7)

where C0(x) is the 0-th order Tricomi function [24]

C0(x) =
∞∑
r=0

(−1)rxr

(r!)2
. (8)

The classical Bernoulli polynomials Bn(x), the classical Euler polynomials En(x), and the
classical Genocchi polynomials Gn(x) each of degree n are defined respectively by the following
generating functions (see [2]–[27]):

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
, (|t| < 2π) (9)
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2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
, (|t| < π) (10)

2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
. (|t| < π) (11)

Note that
Bn(0) = Bn, En(0) = En and Gn(0) = Gn (n ∈ N).

The Daehee poynomials are defined by Kim and Kim [14], as follows

log(1 + t)

t
(1 + t)x =

∞∑
n=0

Dn(x)
tn

n!
. (12)

The case when x = 0 in (12), Dn(0) := Dn are called Daehee numbers.

Jang et al. [3] considered the partially degenarate Genocchi polynomials which are given by
means of the generating function

2log(1 + tλ)
1
λ

et + 1
ext =

∞∑
n=0

Gn,λ(x)
tn

n!
. (13)

The case when x = 0, Gn,λ(0) := Gn are called the partially degenerate Genocchi numbers.

Pathan and Khan [22] introduced the generalized Hermite–Bernoulli polynomials for two
variables HB

(α)
n (x, y) given by(

t

et − 1

)α
ext+yt

2

=
∞∑
n=0

HB
(α)
n (x, y)

tn

n!
. (14)

On taking α = 1, (14) reduces to known result of Dattoli et al. [1, p. 386 (1.6)], as follows(
t

et − 1

)
ext+yt

2

=
∞∑
n=0

HBn(x, y)
tn

n!
. (15)

where, for the case x = y = 0 in (15), we haveBn = HBn(0, 0) are called the Bernoulli numbers.

For each k ∈ No, Tk(n) [19] defined by

Tk(n) =
n∑
j=0

(−1)jjk (16)

is called the alternating sum. The exponential generating function for Tk(n) is

∞∑
k=0

Tk(n)
tk

k!
=

1− (−et)(n+1)

et + 1
. (17)
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The concept of degenerate numbers and polynomials was introduced with the study related
to Bernoulli and Euler numbers and polynomials. Many researchers have studied the degenerate
polynomials associated with special polynomials in various areas. (see [2]–[27] for a systematic
work). Influenced by their works, we introduce partially degenerate Legendre–Genocchi poly-
nomials and also a new generalization of partially degenerate Legendre–Genocchi polynomials
and then give some of their applications. We also derive some implicit summation formula and
general symmetry identities. For obtaining implicit summation formula and general symmetry
identities, we use the proof techniques of Khan et al. ([4]–[13]), Dattoli et al. [1] and Pathan and
Khan [22].

2 Partially degenerate Legendre–Genocchi polynomials

In this section, we assume that λ, t ∈ C with |λt| ≤ 1 and λt 6= 1. Then we consider partially
degenerate Legendre–Genocchi polynomials as follows:

2 log(1 + λt)
1
λ

et + 1
eytC0(−xt2) =

∞∑
n=0

SGn,λ(x, y)
tn

n!
, (18)

so that

SGn,λ(x, y) =
n∑

m=0

(
n
m

)
Gm,λ Sn−m(x, y).

The case when x = y = 0 in (18), we have SGn,λ(0, 0) := Gn,λ are called the partially degenerate
Genocchi numbers introduced by Jang et al. [3].

Theorem 2.1. For n ∈ N0, we have

SGn,λ(x, y) =
n∑

m=0

(n)m m!(−λ)mSGn−m(x, y). (19)

Proof. It follows from (18) that

∞∑
n=0

SGn,λ(x, y)
tn

n!
=

2 log(1 + λt)
1
λ

et + 1
eytC0(−xt2)

=

{
∞∑
m=0

(−1)m

m+ 1
(λt)m

}{
∞∑
n=0

SGn(x, y)
tn

n!

}

=
∞∑
n=0

{
n∑

m=0

(
n
m

)
(−λ)m

m+ 1
m! SGn−m(x, y)

}
tn

n!
.

Matching the coefficients
tn

n!
gives the desired result.

Remark 2.1. In the case when x = 0 in Theorem 2.1, our result reduces to the result of Jang et
al. [3, p. 3(13)].
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Theorem 2.2. For n ∈ No, we have

SGn+1,λ(x, y) =
n+1∑
m=0

(
n+1
m

)
(−λ)mSGn−m+1(x, y)Dm. (20)

Proof. We first consider

I1 =
1

t

2 log(1 + λt)
1
λ

et + 1
eytC0(−xt2) =

{
∞∑
m=0

Dm
(λt)m

m!

}{
∞∑
n=0

SGn(x, y)
tn

n!

}

=
∞∑
n=1

{
n∑

m=0

(
n
m

)
(λ)m

Dm
SGn−m(x, y)

}
tn

n!

= t
∞∑
n=0

{
n+1∑
m=0

(
n+1
m

)
(λ)m

Dm

SGn−m(x, y)

n+ 1

}
tn

n!
.

Secondly,

I2 =
1

t

2 log(1 + λt)
1
λ

et + 1
eytCo(−xt2) =

1

t

∞∑
n=0

SGn,λ(x, y)
tn

n!

=
∞∑
n=0

SGn+1,λ(x, y)

n+ 1

tn

n!
.

Since I1 = I2, we conclude the proof of Theorem 2.2.

Remark 2.2. Taking x = 0 in Theorm 2.2 gives the result of Jang et al. [3, p.5(19)].

Theorem 2.3. For n ∈ N0, we have

SGn,λ(x, y) = n

n−1∑
m=0

(
n-1
m

)
(λ)mSEn−m−1(x, y)Dm. (21)

Proof. From (18), we can write

∞∑
n=0

SGn,λ(x, y)
tn

n!
=
t log(1 + λt)

λt

2

et + 1
eytC0(−xt2)

= t

{
∞∑
m=0

Dm
(λt)m

m!

}{
∞∑
n=0

SEn(x, y)
tn

n!

}

=
∞∑
n=0

{
n∑

m=0

(
n
m

)
(λ)mDm SEn−m(x, y)

}
tn+1

n!
.

Thus, comparing the coefficients of tn in both sides on the above, we conclude the proof.

Remark 2.3. On putting x = 0 in Theorem 2.3 yields the known result of Jang et al. [3, p.5(21)].
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Theorem 2.4. For n ∈ No, we obtain

SGn,λ(x, y + 1) =
n∑

m=0

(
n
m

)
{SGn−m,λ(x, y)} . (22)

Proof. By making use of (18), we see that

∞∑
n=0

{SGn,λ(x, y + 1)− SGn,λ(x, y)}

=
2 log(1 + λt)

1
λ

et + 1
e(y+1)tC0(−xt2)−

2 log(1 + λt)
1
λ

et + 1
eytC0(−xt2)

=
∞∑
n=0

SGn,λ(x, y)
tn

n!

∞∑
m=0

tm

m!
−
∞∑
n=0

SGn,λ(x, y)
tn

n!

=
∞∑
n=0

{
n∑

m=0

(
n
m

)
SGn−m,λ(x, y)− SGn,λ(x, y)

}
tn

n!
.

Comparing the coefficients
tn

n!
in both sides of the above equation, we get the result (22).

Corollary 2.4.1. In the case when x = 0 in Theorem 2.4, one can see

Gn,λ(y + 1) =
n∑

m=0

(
n
m

)
Gn−m,λ(y).

Theorem 2.5. For n ∈ No, we have

SGn,λ(x, y) =
n∑

m=0

m∑
k=0

(
n
m

)(
m
k

)
Gn−mDm−k λ

m−kSk(x, y). (23)

Proof. Since,

∞∑
n=0

SGn,λ(x, y)
tn

n!
=
2 log(1 + λt)

1
λ

et + 1
eytC0(−xt2)

=

{
2t

et + 1

}{
2 log(1 + λt)

λt

}
eytC0(−xt2)

=

{
∞∑
n=0

Gn
tn

n!

}{
∞∑
m=0

Dm
(λt)m

m!

}{
∞∑
k=0

Sk(x, y)
tk

k!

}

we have

=
∞∑
n=0

{
n∑

m=0

m∑
k=0

(
n
m

)(
m
k

)
Gn−mDm−kλ

m−kSk(x, y)

}
tn

n!
.

We thus complete the proof of Theorem 2.5.
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We now give a multiplication formula for partially degenerate Laguerre–Genocchi polynomi-
als.

Theorem 2.6. For n ∈ No, we have

SGn,λ(x, y) = dn−1
d−1∑
a=0

SGn,λ
d

(
x,
y + a

d

)
(24)

Proof. From (18), we have

∞∑
n=0

SGn,λ(x, y)
tn

n!
=

2 log(1 + λt)
1
λ

et + 1
eytC0(−xt2)

=
2 log(1 + λt)

1
λ

et + 1
C0(−xt2)

d−1∑
a=0

e(a+y)t

=
∞∑
n=0

{
dn−1

d−1∑
a=0

SGn,λ
d

(
x,
y + a

d

)}
tn

n!

Equating the coefficients
tn

n!
of both the sides of above equation, we arrive at (24).

Corollary 2.6.1. The case when x = 0, we get

Gn,λ(y) = dn−1
d−1∑
a=0

Gn,λ
d

(
y + a

d

)
.

3 Generalized partially degenerate
Legendre–Genocchi polynomials

Let d ∈ N with d ≡ 1 (mod 2) and χ be a Dirichlet character with conducter d. We consider the
generalized partially degenerate Legendre–Genocchi polynomials attached to χ by means of the
following generating function:

∞∑
n=0

SGn,χ,λ(x, y)
tn

n!
=

2 log(1 + λt)
1
λ

edt + 1

d−1∑
a=0

(−1)aχ(a)e(y+a)tC0(−xt2) (25)

When x = y = 0 in (25), we have Gn,χ,λ = SGn,χ,λ(0, 0) that stands for the generalized
partially degenerate Genocchi numbers attached to χ. Also we observe that

lim
λ→ 0

y → 0

SGn,χ,λ(x, y) = Gn,χ(x)

is a generalized Genocchi polynomial (see [25]).
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Theorem 3.1. For n ∈ N0, we have

SGn,χ,λ(x, y) =
n∑

m=0

(
n
m

)
λmDm SGn−m,χ(x, y). (26)

Proof. It follows from (25) that
∞∑
n=0

SGn,χ,λ(x, y)
tn

n!
=

2 log(1 + λt)
1
λ

edt + 1

d−1∑
a=0

(−1)aχ(a)e(y+a)tC0(−xt2)

=

{
log(1 + λt)

λt

}{
2t

edt + 1

d−1∑
a=0

(−1)aχ(a)e(y+a)tC0(−xt2)

}

=

{
∞∑
m=0

Dm
λmtm

m!

}{
∞∑
n=0

SGn,χ(x, y)
tn

n!

}

Comparing the coefficients of
tn

n!
on both sides of the above equation, we compute the proof of

Theorem 3.1.

Theorem 3.2. The following equality holds true:

SGn,χ,λ(x, y) = dn−1
d−1∑
a=0

(−1)aχ(a) SGn,λ
d

(
x,
a+ y

d

)
(27)

Proof. We consider
∞∑
n=0

SGn,χ,λ(x, y)
tn

n!
=

2 log(1 + λt)
1
λ

edt + 1

d−1∑
a=0

(−1)aχ(a) e(y+a)t C0(−xt2)

=
1

d

d−1∑
a=0

(−1)aχ(a)2 log(1 + λt)
d
λ

edt + 1
e(

a+y
d )dt C0(−xt2)

=
∞∑
n=0

{
dn−1

d−1∑
a=0

(−1)aχ(a)SGn,λ
d

(
x,
a+ y

d

)}
tn

n!

Equating the coefficients
tn

n!
on both sides of the above equation, we compute the proof of Theo-

rem 3.2.

By using (25), the undermentioned theorems can be proved easily. So we omit the proofs.

Theorem 3.3. The following equality holds true:

SGn,χ,λ(x, y) =

[n
2
]∑

m=0

Gn−m,χ,λ(y) (−x)m n!

(n− 2m)! (m!)2
. (28)

Theorem 3.4. The following equality holds true:

SGn,χ,λ(x, y) =
n∑

m=0

[n
2
]∑

k=0

Gn−m−2k,χ,λ (y)
m (−x)k n!

(n−m− 2k)! (m)! (k!)2
. (29)
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4 Implicit summation formulae invoving partially degenerate
Legendre–Genocchi polynomials

Theorem 4.1. The following implicit summation formulae for partially degenerate Legendre–
Genocchi polynomials SGn,λ(x, y) hold true:

SGk+l,λ(x, v) =

k,l∑
n,p=0

(
k
n

)(
l
p

)
(v − y)n+pSGk+l−p−n,λ(x, y) (30)

Proof. We first replace t by t+ u and rewrite the generating function (18) as

2 log(1 + λ(t+ u))
1
λ

et+u + 1
Co(−x(t+ u)2) = e−y(t+u)

∞∑
k,l=0

SGk+l,λ(x, y)
tkul

k!l!

Replacing y by v in the above equation and equating the resulting equation to the above equation,
we have indeed

e(v−y)(t+u)
∞∑

k,l=0

SGk+l,λ(x, y)
tkul

k!l!
=

∞∑
k,l=0

SGk+l,λ(x, v)
tkul

k!l!

and also
∞∑
N=0

(v − y)N(t+ u)N

N !

∞∑
k,l=0

SGk+l,λ(x, y)
tkul

k!l!
=

∞∑
k,l=0

SGk+l,λ(x, v)
tkul

k!l!
, (31)

where on using the following formula taken in [26, p.52(2)]

∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
n,m=0

f(n+m)
xn

n!

ym

m!
,

in the left hand side of (31), it becomes

∞∑
n,p=0

(v − y)n+ptnup

n!p!

∞∑
k,l=0

SGk+l,λ(x, y)
tkul

k!l!
=

∞∑
k,l=0

SGk+l,λ(x, v)
tkul

k!l!
. (32)

Now replacing k by k− n, l by l− p, and using the lemma [26, p.100 (1)] in the left hand side of
(32), we get

∞∑
n,p=0

∞∑
k,l=0

(v − y)n+p

n!p!
SGk+l−n−p,λ(x, y)

tkul

(k − n)!(l − p)!
=

∞∑
k,l=0

SGk+l,λ(x, v)
tkul

k!l!
.

Thus, on equating the coefficients of the like powers of tk and ul in the above equation, we arrive
at the desired result.

Corollary 4.1.1. In the case l = 0 in (30), we have

SGk,λ(x, v) =
k∑
j=0

(
k
j

)
SGk−j,λ(x, y).
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Note that for special values of the parameters x and v in Theorem 4.1, one can obtain some
identities of usual Genocchi polynomials. Now we give some theorems which, using (18), can
easily be proved. So we choose to omit the proofs.

Theorem 4.2. The following implicit summation formula for partially degenerate Legendre–
Genocchi polynomials SGn,λ(x, y) holds true:

SGn,λ(x, y + u) =
n∑

m=0

(
n
m

)
umSGn−m,λ(x, y).

Theorem 4.3. The following implicit summation formula for partially degenerate Legendre–
Genocchi polynomials SGn,λ(x, y) holds true:

∞∑
n=0

SGn,λ(x, y)
tn

n!
=

2 log(1 + λt)
1
λ

et + 1
eytCo(−xt2) =

n∑
m=0

(
n
m

)
Gn−m,λ Sn(x, y),

SGn,λ(x, y) =
n∑

m=0

(
n
m

)
Gn−m,λ(x, y) Sn(x, y).

Theorem 4.4. The following implicit summation formula for partially degenerate Legendre–
Genocchi polynomials SGn,λ(x, y) holds true:

SGn,λ(x, y + 1) + SGn,λ(x, y) = 2n
n−1∑
m=0

(
n-1
m

)
(−λ)mm!

m+ 1
Sn−m−1(x, y).

Theorem 4.5. The following implicit summation formula for partially degenerate Legendre–
Genocchi polynomials SGn,λ(x, y) holds true:

SGn,λ(x, y + 1) =
n∑

m=0

SGn−m,λ(x, y).

5 Symmetry identities for partially degenerate
Legendre–Genocchi polynomials

In this section, we give general symmetry identities for the partially degenerate Legendre–Genocchi
polynomials SGn,λ(x, y) by making use of the generating functions (13) and (18).

Theorem 5.1. For each pair of integers a and b with n ≥ 0, the following symmetry identity holds
true:

n∑
m=0

(
n
m

)
bman−m SGn−m,λ(bx, by) SGm,λ(ax, ay)

=
n∑

m=0

(
n
m

)
ambn−m SGn−m,λ(ax, ay) SGm,λ(bx, by)
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Proof. We first consider

g(t) =

{
2 log(1 + λ)

b
λ

}{
2 log(1 + λ)

a
λ

}
(eat + 1) (ebt + 1)

e(a+b)ytC0(−axt2)C0(−bxt2),

where g(t) is symmetric in a and b, and can be expressed into series in two ways.
On the other hand,

g(t) =
∞∑
n=0

SGn,λ(bx, by)
(at)n

n!

∞∑
m=0

SGm,λ(ax, ay)
(bt)m

m!

=
∞∑
n=0

{
n∑

m=0

(
n
m

)
bman−m SGn−m,λ(bx, by) SGm,λ(ax, ay)

}
tn

n!

(33)

and on the other hand,

g(t) =
∞∑
n=0

SGn,λ(ax, ay)
(bt)n

n!

∞∑
m=0

SGm,λ(bx, by)
(at)m

m!

=
∞∑
n=0

{
n∑

m=0

(
n
m

)
ambn−mSGn−m,λ(ax, ay) SGm,λ(bx, by)

}
tn

n!

(34)

By comparing the coefficients tn on the right hand sides of equations (33) and (34) we get the
proof of the Theorem.

Theorem 5.2. For each pair of integers a and b with n ≥ 1, the following symmetry identity holds
true:

n∑
m=0

(
n
m

)
bman−m

a−1∑
i=0

b−1∑
j=0

(−1)i+jSGn−m,λ

(
x, by +

b

a
i+ j

)
Gm,λ(az)

=
n∑

m=0

(
n
m

)
anbn−m

b−1∑
i=0

a−1∑
j=0

(−1)i+jSGn−m,λ

(
x, ay +

b

a
i+ j

)
Gm,λ(bz)

Proof. Let

g(t) =

{
2 log(1 + λ)

a
λ

}{
2 log(1 + λ)

b
λ

}
e(abt+1)2

(eat + 1)2 (ebt + 1)2
e(ab)(y+z)t

{
C0(−xt2)

}
.

We consider g(t) with two ways. Firstly,

g(t) =

{
2 log(1 + λ)

a
λ

}
eat + 1

eabytCo(−xt2)

×
(
eabt + 1

ebt + 1

) {2 log(1 + λ)
b
λ

}
ebt + 1

eabzt
(
eabt + 1

eat + 1

)

=

{
2 log(1 + λ)

a
λ

}
eat + 1

eabytC0(−xt2)

(
a−1∑
i=0

(−1)iebti
)

×

{
2 log(1 + λ)

b
λ

}
ebt + 1

eabztC0(−xt2)

(
b−1∑
j=0

(−1)jeatj
)
.
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From where we have

g(t) =
∞∑
n=0

{
n∑

m=0

(
n
m

)
bman−m

a−1∑
i=0

b−1∑
j=0

(−1)i+jSGn−m,λ

(
ax, by +

b

a
i+ j

)
Gm,λ(az)

}
tn

n!

=
∞∑
n=0

{
n∑

m=0

(
n
m

)
ambn−m

a−1∑
i=0

b−1∑
j=0

(−1)i+jSGn−m,λ

(
x, ay +

a

b
i+ j

)
Gm,λ(bz)

}
tn

n!
.

Our assertion follows from comparing the coefficients of
tn

n!
on the right hand sides of last two

equations, we arrive at desired result.

We now give the following two theorems. We omit their proofs since the same technique is
used as in the above theorems of the final section of this paper.

Theorem 5.3. For each pair of integers a and b with n ≥ 0, the following symmetry identity holds
true:

n∑
m=0

(
n
m

)
bman−m

a−1∑
i=0

b−1∑
j=0

(−1)i+jSGn−m,λ

(
x, by +

b

a
i

)
Gm,λ

(
az +

a

b
j
)

=
n∑

m=0

(
n
m

)
ambn−m

b−1∑
i=0

a−1∑
j=0

(−1)i+jSGn−m,λ

(
x, ay +

a

b
i+ j

)
Gm,λ

(
bz +

b

a
j

)
.

Theorem 5.4. For each pair of integers a and b with n ≥ 0, the following symmetry identity holds
true:

n∑
m=0

(
n
m

)
bman−mSGn−m,λ(bx, by)

m∑
i=0

(
m
i

)
Ti(a− 1) Gm−i,λ(ax)

=
n∑

m=0

(
n
m

)
bn−mamSGn−m,λ(ax, ay)

m∑
i=0

(
m
i

)
Ti(b− 1) Gm−i,λ(bx).

6 Concluding remarks

The paper aims at presenting the study of partially degenerate Legendre–Genocchi polynomials
which play an important role in several various field of physics, applied mathematics and engi-
neering. These special polynomials are important as they possess essential properties such as
recurrence and explicit relations and functional and differential equations, summation formulae,
symmetric and convolution identities, etc.

The results presented here are very useful and being very general, can be specialized to yield
a large number of identities involving known or new simpler numbers and polynomials. For
instance, just by letting x = 0 = y in the generating function (18), the polynomials defined here
reduce to partially degenerate Genocchi numbers and the corresponding results presented in [3]
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can directly be retrieved. Also the Genocchi polynomials in [25] can also be recovered from our
results.

The technique used here could be used to establish further quite a wide variety of formulas for
certain other special polynomials and can be extended to derive new relations for conventional and
generalized polynomials. For example, to give an application, we introduce here the Laguerre-
based partially degenerate Genocchi polynomials.

For λ, t ∈ C with |tλ| ≤ 1 and tλ 6= 1. We introduce

∞∑
p=0

LGp,λ(x, y)
tp

p!
=

2 log(1 + λt)
1
λ

et + 1
eytC0(xt). (35)

They will have the closed form as

LGp,λ(x, y) =

p∑
q=0

(
p
q

)
Gq,λLp−q(x, y).

We encourage other researchers to come up with other interesting properties of the polynomi-
als defined in (35) and to generate more new polynomials from them.
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