Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 25, 2019, No. 2, 68–75 DOI: 10.7546/nntdm.2019.25.2.68-75

The 3 × 3 × ... × 3 Points Problem solution

Marco Ripà

sPIqr Society, World Intelligence Network Rome, Italy e-mail: marcokrt1984@yahoo.it

Received: 6 August 2018 Revised: 16 February 2019 Accepted: 18 February 2019

Abstract: We offer the first proof of Ripà's $3 \times 3 \times 3 \times 3$ Dots Problem, providing a general solution of the 3^k case (3^k points arranged in a $3 \times 3 \times ... \times 3$ grid), for any $k \in \mathbb{N} - \{0\}$. We give also new bounds for the $n \times n \times n$ problem, improving many of the previous results. **Keywords:** Graph theory, Topology, Combinatorics, Four-dimensional, Nine dots, Creative thinking, Segment, Connectivity, Outside the box, Upper bound, Lower bound, Point, Game. **2010 Mathematics Subject Classification:** 91A43, 05C40.

1 Introduction

As stated by the classic *nine dots problem* appeared in Samuel Loyd's *Cyclopedia of Puzzles* [2], we have to "[...] draw a continuous line through the center of all the eggs so as to mark them off in the fewest number of strokes" (see [1, 3]). However, this time we are considering n^k points located in a *k*-dimensional space, for any $k \ge 1$.

Despite the fact that we already know the minimum number of straight lines connected to their endpoints to join n^k other points, for each $n \in \mathbb{N} - \{0\}$ and $k \in \{1, 2\}$, there are still many unanswered questions to account for:

- How many straight lines connected at their endpoints we need to join $n \times n \times n$ points arranged in *n* equidistant grids, formed by *n* rows and *n* columns each?
- How many straight lines connected at their endpoints we need to join

$$3^k \coloneqq 3 \times 3 \times ... \times 3$$

dots, arranged in the same way as above, in a k-dimensional space?

2 The new bounds

In [5], Ripà extended the trite $n \times n$ dots game to a three-dimensional space [7] providing non-trivial bounds for this problem.

For n > 3, the $n \times n \times n$ lower bound is given by [8] as:

$$h_l(n) = n^2 + \left[\frac{3 \cdot n^2 - 4 \cdot n + 2}{2 \cdot (n - 1)}\right] \tag{1}$$

and the upper bound

$$h_u(n) = \left\lfloor \frac{3}{2} \cdot n^2 \right\rfloor + n - 1 \tag{2}$$

In this section, we aim to further reduce the aforementioned upper bound.

2.1 A new $n \times n \times n$ upper bound

A slightly improved upper bound (for many $n \ge 6$) has been proved by Ripà and Bencini in [6], switching between two different standard patterns:

$$h_u(n) = \left\lfloor \frac{3}{2} \cdot n^2 \right\rfloor - \left\lfloor \frac{n-1}{4} \right\rfloor + \left\lfloor \frac{n+1}{4} \right\rfloor - \left\lfloor \frac{n+2}{4} \right\rfloor + \left\lfloor \frac{n}{4} \right\rfloor + n - 2.$$
(3)

Although it is a thinking outside the box approach, the new result only saves 0 to 2 lines (for any $n \ge 6$), and the current upper bounds are shown in Table 1.

п	Best Upper Bound Currently Discovered	n	Best Upper Bound Currently Discovered	n	Best Upper Bound Currently Discovered
1	<u>1</u>	11	190	21	680
2	<u>7</u>	12	227	22	745
3	<u>14</u>	13	264	23	814
4	<u>23</u>	14	305	24	887
5	<u>37</u>	15	350	25	960
6	57	16	399	26	1037
7	78	17	448	27	1118
8	103	18	501	28	1203
9	128	19	558	29	1288
10	157	20	619	30	1377

Table 1: $n \times n \times n$ points puzzle upper bounds, following the *two basic paths* described in [6]. The upper bounds for $n \in \{1, 2, 3\}$ are equal to the lower bounds, definitely solving the $n \times n \times n$ problem for these trivial cases.

Nota Bene. The upper bounds for $n \ge 3$ represent outside of the box solutions, including the covering paths shown in Figure 1.

Figure 1. The outside the box solutions for n = 4 and n = 5 (23 and 37 lines respectively).

2.2 The $n \times n \times ... \times n$ current bounds

Let $n \ge 6$, we can improve the upper limit for the k-dimensions $n \times n \times ... \times n$ dots problem $(k \ge 4)$ by simply defining

$$t := \left\lfloor \frac{3}{2} \cdot n^2 \right\rfloor - \left\lfloor \frac{n-1}{4} \right\rfloor + \left\lfloor \frac{n+1}{4} \right\rfloor - \left\lfloor \frac{n+2}{4} \right\rfloor + \left\lfloor \frac{n}{4} \right\rfloor + n - 2.$$

Therefore [5, 6], the current bounds are given by:

$$\left[\frac{n^{k} + \left(\frac{k}{2} - 1\right) \cdot n^{2} + (3 - 2 \cdot k) \cdot n + 2 \cdot k - 4}{n - 1}\right] + 1$$

$$\leq h(n, k) \leq (t + 1) \cdot n^{k - 3} - 1.$$
(4)

For any $n \ge 3$, it follows that:

$$\left[\frac{n^{k} + \frac{k}{2} \cdot (n-2)^{2} - n^{2} + 3 \cdot n - 4}{n-1}\right] + 1 \le h(n,k)$$
$$\le \left(\left\lfloor\frac{3}{2} \cdot n^{2}\right\rfloor - \left\lfloor\frac{n-1}{4}\right\rfloor + \left\lfloor\frac{n+1}{4}\right\rfloor - \left\lfloor\frac{n+2}{4}\right\rfloor + \left\lfloor\frac{n}{4}\right\rfloor + n - 1\right) \cdot n^{k-3} - 1.$$
(5)

3 The $3 \times 3 \times ... \times 3$ problem finally solved

In this section, we present the solution for the $3 \times 3 \times 3 \times 3$ dots problem (k = 4) with the minimum number of straight lines connected at their endpoints. Later, we extend this result to the 3^k points problem for any $k \in \mathbb{N}$.

3.1 The perfect $3 \times 3 \times 3 \times 3$ points problem solution with 41 lines

Given n = 3 and k = 4, from (5) it follows that $h_l(3, 4) = 41$, even though a solution involving 42 lines is known [4]. In order to solve the $3 \times 3 \times 3 \times 3$ dots problem, we need to show how to join the 81 dots using only 41 lines.

Figures 2 to 5 show that a covering path consisting of 41 stright line segments exists.

Figure 2. Solving the $3 \times 3 \times 3 \times 3$ dots puzzle: lines 1 to 23.

Figure 3. Solving the $3 \times 3 \times 3 \times 3$ dots puzzle: moves 1 to 23 (a few lines are hidden).

Figure 4. The $3 \times 3 \times 3 \times 3$ solution with 41 moves (a few lines are hidden).

Figure 5. The final path with 41 lines $(k = 4, n = 3; h_l = 41 = h_u)$.

3.2 Solving the general 3^k problem

For any $k \ge 4$, from (4), we express the current upper bound for the general 3^k points problem as

$$h_{\mu}(3,k) = 42 \cdot 3^{k-4} - 1. \tag{6}$$

Some values of $h_u(3, k)$ are shown in Table 2.

k	Best Upper Bound Currently Discovered	k	Best Upper Bound Currently Discovered
0	<u>1</u>	10	30617
1	<u>1</u>	11	91853
2	<u>4</u>	12	275561
3	<u>14</u>	13	826685
4	<u>41</u>	14	2480057
5	125	15	7440173
6	377	16	22320521
7	1133	17	66961565
8	3401	18	200884697
9	10205	19	602654093

Table 2: The current 3^k points puzzle upper bounds. If k = 0, we have a singularity and the whole space collapses in a single point, thus $h_u(3,k) = 1$.

The lower bound (4), for many $3 \times 3 \times ... \times 3$ configurations, can be also improved. From (5), we have that:

$$h_l(3,k) \ge \left[\frac{1}{2} \cdot \left(3^k + \frac{k}{2}\right)\right] - 1 \tag{7}$$

Let n = 3, for any $k \ge 2$, we can assume, without loss of generality, that we need (at least) k - 2 lines that join a single point each (as shown in Figure 5, for k = 4, by the segments #24 and #33).

In the $3 \times 3 \times 3$ case, we need one segment to reach the central grid, and this segment joins only one new dot (instead of two), while in the $3 \times 3 \times ... \times 3$ scenario, we have to reach a grid on the edge, in order to join its 9 dots plus all the dots on the opposite side of the hypercube.

Similarly, we have to repeat the same process for the other edges, spending one more line to join a single dot for any additional dimension beyond the second one.

Hence, in the *worst-case scenario*, we can assume that the new lower bound for the 3^k dots problem ($\forall k \ge 2$) becomes:

$$h_l(3,k) = \left[\frac{3^k - k - 1}{2}\right] + k - 1 \tag{8}$$

Thus, we have got an improvement for any $h_l(n = 3, k \ge 5)$, such as $h_l(3, 5) = 123$ (instead of 122) and $h_l(3, 22) = 15690529814$ (instead of 15690529809).

4 Conclusion

Even if the most interesting open problem belonging to the family of the classic *nine dots puzzle* by Samuel Loyd [2], the $3 \times 3 \times 3 \times 3$ case, has finally been solved, the research for the best solution to the $n \times n \times n$ dots problem (particularly for n > 4) and to the $3 \times 3 \times ... \times 3$ dots puzzle (for any $k \ge 4$), is not over yet (see [7, 8]).

We conjecture that, for any $k \ge 2$, $h(3, k) = h_l(3, k) = \left[\frac{3^{k+k-3}}{2}\right]$ (8), but this inference still needs a proof.

References

- [1] Kihn, M. (1995). *Outside the Box: The Inside Story*. FastCompany.
- [2] Loyd, S. (1914). Cyclopedia of Puzzles. The Lamb Publishing Company, p. 301.
- [3] Lung, C. T., & Dominowski, R. L. (1985). Effects of strategy instructions and practice on nine-dot problem solving. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 11 (4), 804–811.
- [4] Ripà, M. (2016). The $n \times n \times n$ Dots Problem optimal solution. *Notes on Number Theory and Discrete Mathematics*, 22 (2), 36–43.
- [5] Ripà, M. (2014). The Rectangular Spiral or the $n_1 \times n_2 \times ... \times n_k$ Points Problem. *Notes on Number Theory and Discrete Mathematics*, 20 (1), 59–71.

- [6] Ripà, M., & Bencini, V. (2018). n × n × n Dots Puzzle: An Improved "Outside The Box" Upper Bound, viXra, 25 Jul. 2018, Available online: http://vixra.org/pdf/ 1807.0384v2.pdf.
- Sloane, N. J. A. (2013). A225227. The Online Encyclopedia of Integer Sequences, Inc. 2 May. 2013. Web. 25 Aug. 2015, Available online: http://oeis.org/A225227.
- [8] Sloane, N. J. A. (2015). A261547. *The Online Encyclopedia of Integer Sequences* Inc. 24 Aug. 2015. Web. 22 Sep. 2015, Available online: http://oeis.org/A261547.