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Abstract: In this paper, we deal with two families of third-order Jacobsthal sequences. The first
family consists of generalizations of the Jacobsthal sequence. We show that the Gelin—Cesaro
identity is satisfied. Also, we define a family of generalized third-order Jacobsthal sequences
{J @ }n>0 by the recurrence relation

Jg:& = 31(1312 + JS:)-I +21%, n >0,

3
g ) — ¢, where a, b and ¢ are non-zero real num-

with initials conditions Jég) =a,]J 53) =bandJ
bers. Many sequences in the literature are special cases of this sequence. We find the generating
function and Binet’s formula of the sequence. Then we show that the Cassini and Gelin—Cesaro
identities are satisfied by the indices of this generalized sequence.
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1 Introduction and Preliminaries

The Jacobsthal numbers have many interesting properties and applications in many fields of
science (see, e.g., [1,7,8]). The Jacobsthal numbers J,, are defined by the recurrence relation

J() == O, Jl == 1, Jn+2 == Jn+1 —+ 2Jn, n Z 0. (1)
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Another important sequence is the Jacobsthal-Lucas sequence. This sequence is defined by the
recurrence relation j, o = J,+1 + 275, Where jo = 2 and j; = 1 (see, [8]).

In [5] the Jacobsthal recurrence relation is extended to higher order recurrence relations and
the basic list of identities provided by A. F. Horadam [8] is expanded and extended to several
identities for some of the higher order cases. For example, the third-order Jacobsthal numbers,
{J,(LS)}HZO, and third-order Jacobsthal-Lucas numbers, { i) }n>0, are defined by

IO = g8 I8 42 g —0, g = P =1, n>0, )
and

iy =38+ + 29, 5 =2, 5 =1, i =5, n>0, 3)
respectively.

Some of the following properties given for third-order Jacobsthal numbers and third-order
Jacobsthal-Lucas numbers are used in this paper (for more details, see [2-5]). Note that Egs. (8)
and (12) have been corrected in this paper, since they have been wrongly described in [5].

3J(3 +j(3) 2n+17 (4)
Y370 =2j n >3, 5)
-2 if n=1 (mod 3)
J(3) _ 4J(3) — 6
+2 " 1 if n#1 (mod 3) ©)
2 if n=0 (mod 3)
§8 —4J® =< —3 if n=1 (mod3) , (7)
1 if n=2 (mod 3)
hﬂ+mz—3ﬁ%, ®)
if n=0 (mod 3)
JT(L?Q =¢ —1 if n=1 (mod3) , )
n =2 (mod 3)
2
339 —an, (10)
i J(g n?_’H if n#0 (mod 3) (11
— J,(Lle 1 if n=0 (mod 3)
and
(]7(13))2 _9 (J7(L3)) 2n+2]( )37 n > 3. (12)

Using standard techniques for solving recurrence relations, the auxiliary equation, and its

roots are given by

—1+iV3

=2’ —2r—2=0;2=2, andz = 5
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Note that the latter two are the complex conjugate cube roots of unity. Call them w; and w»,
respectively. Thus the Binet formulas can be written as

2. 34+2iV3 , 3-2iV3
T =52 g a3
and 3 /3
. 8. 3423 . 3-2iV/3
I = 22 e (14)

respectively. Now, we use the notation

2 if n=0 d3
A — Bup if n (mod 3)

A% =<{ =3 if n=1 (mod3) , (15)
w1 — W2 .
1 if n=2 (mod 3)
where A = —3 — 2wy and B = —3 — 2w, . Furthermore, note that for all n > 0 we have
Ve, =V —v® V® =2and v = -3 (16)
From the Binet formulas (13), (14) and Eq. (15), we have
1 1
J® = - (2" - V@) and ;¥ = - (2" +3V,2). (17)

On the other hand, the Gelin—Cesaro identity [6, p. 401] states that
Fs_Fn—QFn—an—i-an-l—Q =1, (18)

where I}, is the classic n-th Fibonacci number. Furthermore, Melham and Shannon [9] obtained
generalizations of the Gelin—Cesaro identity. Recently, Sahin [10] showed that the Gelin—Cesaro
identity is satisfied for two families of conditional sequences.

Motivated by [9, 10], in this paper, we deal with two families of third-order Jacobsthal
sequences. The first family consists of the sequences denoted by {JTSS)} and studied in [2, 5].
We show that the Gelin—Cesaro identity is satisfied by the sequence {JT(L?’)}. Also, we define a
family of generalized third-order Jacobsthal sequences {J %3)} by the recurrence relation J ﬂg =
J ﬂQ +J7(134)rl 427 (n > 0) with initials conditions Jég) =a,lJ §3) = band Jég) = ¢, where a, b and
c are non-zero real numbers. Many sequences in the literature are special cases of this generalized
sequence. We find the generating function and Binet formula for the sequence {J%B)}nzo. Then,
we show that Catalan and Gelin—Cesaro identities are satisfied by this generalized sequence.

2 The first family of third-order Jacobsthal sequences

Recently, the authors introduced in [5] a further generalization of the Jacobsthal sequence, namely
the third-order Jacobsthal sequence defined by Eq. (2). Then,

Lemma 2.1 (Catalan Identity for J7s3)). For any nonnegative integers n and r, we have

) 1 1
() = I 200, = o (2 —2v@ v f - (0), a9)

where US?) = jﬁ)l — Jﬁ)l.
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Proof. From Egs. (15) and (17), we obtain

(Jng))2 - Jﬁbg—)r']’r(zizr

1 2
- n+l _ (2)> _
49{ (2 Vo

1

- 49 —92(n+1) 4 on— 7’+1V 4 2n+r+1v 2)

49

1
n+1 r
SR R EANCACE

Jﬁ)l using Eq. (9). The proof is completed.

where U?) = j,@l —

Theorem 2.2 (Gelin—Cesaro Identity). For any non-negative integers n > 2, we have

(I = T2 I, =

n

where W,Ei)z =

1 2n+1 <27‘ V

22nt1) _ gni2y, () | (@)

— 2V 2
+ <VTL(2)> - Vn rvn(ir

n—r 2 n4r 2
<2 +1 _ Vn(,)r> (2 +r+l Vn(+)r> }

vy

—-r n+r

2V, 4 2- TvnH) +7(U )2 }

O
() (v o))
419 (1 4 on-l (3R ) — 2Rn+1) —3.92"1R® R® )
(20)

% <5Vn+1 - 3Vn(2)> and Vn(Q) as in Eq. (15).

Proof. Forr =1 and r = 2 and Eq. (16), we get respectively

(J3) _Jn Jn+1:

and

by using Lemma 2.1 and the property v

1
49
L (2 (v,
49 e
1

- (7-2 (5w —3v2)) )

< gn+1 <2Vn(3)1

— v+ V,fﬂ) +7 )
(1w, )

(20 (v

( gn-1 (mvﬁ)2 8V 4 V,fig) 7 )

9<7+3 9n- 1(5Vn+1—3V ) )

(1+3 =11y )
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satisfies relation 5Vn - 3V = 7w 2. S0, we obtain

3 3 3
AN B Bl

n—2Yn—1n

2 1 2 1
(=3 (—ew ) (0" -2 (e 2w, )

= (JO) 2 (O) (13 2 W, 1w )

1 n 2 n— 2
+os (12w (132 wilh).
Then, we have

4 3 3 3 3
(SO = 02,00, 08,0,

n

2

1 (JS”) (2 + 2n1 <3W(2 2Wn+l))

= . (2 n— 2)
—% (1 + 2n~1 <3Wn+2 - 2Wn+1> 3.2 1Wn+1WTL+2>

(
(3) n— 1
(J ) (2—-11-2 if n=0 (mod 3)
—;(1—11 2149 22" b
1 (3)> n— 1
== ( (2+12-2 if n=1 (mod 3)
7 ~l(1+12-271 418 22n1
©) (2 = 2n-1)
) <Jn ) (2-2 , if n=2 (mod 3)
_?(1_271—1_6.2271 1)
The proof is completed. U

3 The second family of generalized third-order
Jacobsthal sequences

Here, we define a new generalization of the third-order Jacobsthal sequence {Jr([g)}nzo. Let us
denote this sequence by {J ® }n>0 Which is defined recursively by

(3) (3) (3) (3)
{ I8 =19, 4+ 39 4219 n >0, o

I =a, J® =0p, 19 =,
where a, b and c are real numbers. For example, the first seven terms of the sequence are
{a, b, ¢, 2a+b+ ¢, 2a+ 3b+ 2¢, 4a + 4b + 5¢, 10a + 9b + 9c}.

For a = 0 and b = ¢ = 1, we get the ordinary third-order Jacobsthal sequence. Also, when a = 2,
b = 1and ¢ = 5, we get the third-order Jacobsthal-Lucas sequence which is defined in [5].

In this study, first we obtain the generating function and then Binet’s formula for the sequence
{J ® }n>0. Finally, we show some properties, for example, the Catalan and Gelin—Cesaro identity
are satisfied by this sequence.

Now, we can give the generating function of the sequence.
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Theorem 3.1 (Generating function). The generating function for the sequence {JS’)}@O is

b—a)t —b—a)t?
FJ(t):a+(1_ai_+t2(c_2t3 a) ‘ 22)

Proof. Let Fy(t) = Jé3) +IPt 43024 = Yoo J9n, which is the formal power series of
the generating function for {J'¥}. We obtain that
(1 —t— =2 Fy(t) = I + It + 394 + -
— It 3P -0 ...
3 3),: 3
/S | A [ A
3 3 3
— 208 — 20t — 20
=30+ @7 -3+ 30 -3 - 3,

since in)g = Jﬁ)g +J S’J)rl +2I%, n > 0 and the coefficients of t" for n > 3 are equal with zero.

Then, the theorem is proved. [
In fact, we can give Binet’s formula for the sequence as follows.

Theorem 3.2. For n > 0, we have

Jﬁf’)z(( c+b+a )2n_(c—(2—1—@)2)(74—2@&)wi1

2—0.)1)(2—0.12) (2—w1)(w1 —WQ) (23)
(C — (2 + wl)b + 20)1&) "
(2 = w2)(w1 — w2) 2
Proof. The solution of Eq. (21) is
J® = Ay2" + Byuw? + Cyuwy. (24)

Then, let J[()g) = Ay+Bj+Cy, JSS) = 2Aj+ Bjw,+Cjw, and Jgg) = 4 A+ Byw?+Cjw3. Therefore,
we have (2—w;)(2—wq) Ay = ¢— (w1 +wa)b+wiwaa, (2—wy) (w1 —w2) By = ¢—(24ws)b+2woa,
(2 —wso)(wy —w2)Cy = ¢ — (2 4 wy)b + 2wya. Using Ay, By and Cy in Eq. (24), we obtain

5= <<2 o w2>> - (Cé(—zzﬁiffiﬁ ) A

(c — (24 w)b+ 2w1a) "

(2 —wo) (w1 — wo) 2

The proof is completed. []

Theorem 3.3. Assume that © # 0. We obtain,

~5Y 1 ® _ ® ®
> = 200 + (s — Ity ) o + 5,2
k n n n+2 n+1 n+1
i x"v(x) { < ) } (25)
—%{c—b—a—(a—b)xjwm?}
where v(x) = 2® — 2% — x — 2.
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Proof. From Theorem 3.2, we have
i@_ ( c+b+ta )Z (g)’“
— zt 2-w)(2-wy) /) =\
c—(2+wgb+2w2a z”:( )
(2 — wl) w1 — CUQ —0

(Fie )

By considering the definition of a geometric sequence, we get

ﬁ_ c+b+a ontl _ gl
T \2-w)2-w)) (2-1)

<c— 2+ wo) b+2w2a> Wit — gntl

n

k=0

2 — wy) (w1 — we) " (wy — )
c— (2+w)b+2wia wytt — antt
2 WQ wl - WQ)

™ (we — T)

A2+ — 2™ ) (wr — 2) (w2 — )

1
= sy | B @ - e =) ¢
+Cy(wh "H 2" (2 — 2)(wy — )
where
_ ct+b+ta _ c—(24wa2)b+2waa —(24w1)b+2wia
{ Ay = (2—w1)(2—wz)’ By = (2— wﬂiwl—w; , Gy = (2 wg)l(wl w;) (26)
and v(x) = 23 — 2% — 1 —2. Using w; +wy = —1 and wyw, = 1, if we rearrange the last equality,
then we obtain
n J(3) 1 ( AJ(2”+1 an+1)(1 +x + $2)
D = | B =2 = (2w a?)
k=0 \ +Cy(wi™ — ") 2wy — (24 wi)T + 22)
( A2 (14 + 2?) )
— Byt 2wy — (2 + wy)x + 2?)
1 +Cywy ™ (2w — (2 4+ wy)w + 2?)
-~ amv(x) Ay(1 4z + 2?)
—z" ¢ —By(2wy — (2 + wo)x + 22)
\ +Cr(2w1 = 2+ w)z +2%) | |
So, the proof is completed. ]

In the following theorem, we give the sum of generalized third-order Jacobsthal sequence

corresponding to different indices.

Theorem 3.4. For r > m, we have

n ' I e ” I 4 2men+r —omJ®
3
> Tk = — Tty sebt(m) + I a(m) ,
k=0 " ( 3)
+“]]m (n4+2)+r JT’-‘rm
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where o, = 2™ 4 (1 — 2™) (W 4+ WY') — 2 and p(m) = 2™ + Wi + Wi
Proof. Let us take Ay, By and C in Eq. (26). Then, we write

S I8 = A2 2 Bl > w4 Crwp Y wit
k=0 k=0 k=0 k=0
2m(n+1) -1 m(n+l) 1
= AJQT B — — BJCUI ujl—
om — 1 Wit — 1

m(n+1)
w —1

Ay (2mOFDF —27) (wiwl — (Wi + wi') + 1)
_ 2 ) By (WM ) (2mw — (2 wi) 1)
+Cj w;ﬂ(nH)H —wh ) (2" — (2" 4 W) + 1)

)

where o, = 2" + (1 — 2™)(w" + wi*) — 2. After some algebra, we obtain
®) 3) | omy(®) m7(3)
1 “]]m(n-l—l)—l—r - +2 "]]mn—H" —2 Jr—m

3 3 3
E :Jgnzc—kr = O'_ _Jinszrl)Jrry’(m) + Jg" ):U“(m) )
k= n ®3) ®3)
0 +Jm(n+2)+r B "]]7‘-1—771

n

where p(m) = 2™ + w" + wj". The proof is completed.

4 Main results

We use the next notation for the Binet formula of generalized third-order Jacobsthal sequence

I, Let
Au? — Bun c+b—6a if n=0 (mod 3)
v =1 2 2¢c—5b+2a if n=1 (mod 3) ,
P —3c+4b+4a if n=2 (mod 3)

(28)

where A = (2—ws)(c— (2+wq)b+2wsa) and B = (2— w1 )(c— (24 w1 )b+ 2w a). Furthermore,

note that for all n > 0 we have

v, = —v@ —v® v — ¢4 b—6a, VP = 2c—5b+ 2a.

n

From the Binet formula (23) and Eq. (28), we have

I = % (p2" = VP),

where p = a + b + c. In particular, if a = 0 and b = ¢ = 1, we obtain 19 =g,

Theorem 4.1 (Catalan Identity for JS’)). For any nonnegative integers n and r, we have

1
()" =303, = 5 {20 (V2 —2vP 427V, )}
1

+ ?(élot2 + 3b? 4 ¢* — 2ac — 3bc) (UP))2 :
where US> = jf,i)l — Jﬁ)l andp =a+b+c
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Proof. From Eq. (30), we obtain

1 2
(Jf’))2 — 12,18, = 19 { <p2” - fo’) - (p2"‘r - Vﬁf_)r) <p2”+” - Vflr) }

1 2o _ ontl,y@ 4 ()
B —p22n g 2n VoD -V 8,

Ne}

L[ 2 <2TV£LQ_),, v 4 2—TV;2+>T)
= -~ 2
+ (VS)) V@ ve

n—r Y n+r

W
Ne)

After some algebra, we obtain

n, (ory® _ oy®@ 4 9-ry@
B2 _ 7@ g _ 1 2 p(? Vil =2V 42 Vw)
(Jn ) _JnfrJnJrr — A @ 9 ’
| +7(4a® + 302 + 2 — 2a¢ — 3be) < g >

where U7S2) = j,@l — J,Ei)l using Eq. (9). The proof is completed.

Theorem 4.2 (Gelin—Cesaro Identity). For any non-negative integers n > 2, we have

(I9)* =32, 32,380,320,
1 2 e 2 2
= = (%) (20 +272p (W), — 2w, ))
1
) {’LUZ +2" 2 pw <3W7(12ﬁ22 - 2W7(12-i)-1) -3 22n73P2W7(12421W51212} 3

where WﬁQ =1 (5Vn+1 - 3V7(12)> and V' as in Eq. (28).

Proof. From Eq. (31) in Theorem 4.1 and » = 1 and r = 2, we obtain

Ne}

(I9)? 19,38, = i{ 2p (202 — 20 4+ 27V ) }
49 | +7(4a® + 30% + ¢ — 2ac — 3bc)
9n-1, (4fo_’1 —4v? 4 fojl)
{ +7(4a? 4+ 3b* + ¢* — 2ac — 3bc) }
1 { 7(4a* + 3b* + ¢* — 2ac — 3bc)
9) -2 1p <5V§3) - 3V(2_)1> }

Gl =

N}

n

4
1 S1 @
(o)

and

2 1
(U9)* = 32,38 = = (w+3- 202w, ),

where 5V — 3V — 7W®) and w = 4a? + 32 + ¢ — 2ac — 3bc.
So, we can write the next equality:
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“U Jn lJn+1Jn+2

(o e ) (- oo, )
(@) -1 (39) (2w + 3 22w, - tow,)
+4—19( — 2 W) (w3202 W)
Then, we have
(1) - 32,320,303,

| (Jn ) (2w L2, <3Wn+2 . 2Wn+1>>

’ -% (w2 +2" % pw <3Wn+2 - 2Wn+1) -3 2%_302ngw§#>

The proof is completed. []
By the aid of the last theorem we have the following corollary.

Corollary 4.2.1. For any non-negative integers n > 2, we have
4 3) 1(3) 1(3) (3
(39)" = 39,32, 38,1,
( 3 2
(39 (2w +2-2p2)
<w2 _|_ 2n72pr . 3 . 22n73p2']r%2)>
(3) 2 n—2
(2w + 2" *pB)
(w 42 2B — 3. 9208 2 )>
( ,(13)) (2w + 2"72pC)
<w2 + 2n72pwc _ 3 . 22n73p2']1‘512)>

, if n=0 (mod 3)

1
7

, if n=1 (mod 3) ,

-1 =

ﬂl»ﬂ

, if n=2 (mod 3)

1
7

\

where A = —c — 10b+ 24a, B = —11c + 23b — 2a, C' = 12¢ — 13b — 22a and

(2¢c—b—6a)(c—4b+4a), if n=0 (mod 3)
T® =< (c—4b+4a)(=3c+5b+2a), if n=1 (mod 3) .
(—=3c+5b+2a)(2¢ —b—6a), if n=2 (mod 3)
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