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Abstract: In this paper, we deal with two families of third-order Jacobsthal sequences. The first
family consists of generalizations of the Jacobsthal sequence. We show that the Gelin–Cesàro
identity is satisfied. Also, we define a family of generalized third-order Jacobsthal sequences
{J(3)n }n≥0 by the recurrence relation

J(3)n+3 = J(3)n+2 + J(3)n+1 + 2J(3)n , n ≥ 0,

with initials conditions J(3)0 = a, J(3)1 = b and J(3)2 = c, where a, b and c are non-zero real num-
bers. Many sequences in the literature are special cases of this sequence. We find the generating
function and Binet’s formula of the sequence. Then we show that the Cassini and Gelin–Cesàro
identities are satisfied by the indices of this generalized sequence.
Keywords: Third-order Jacobsthal sequence, Generating function, Jacobsthal sequence, Gener-
alized third-order Jacobsthal sequence.
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1 Introduction and Preliminaries

The Jacobsthal numbers have many interesting properties and applications in many fields of
science (see, e.g., [1, 7, 8]). The Jacobsthal numbers Jn are defined by the recurrence relation

J0 = 0, J1 = 1, Jn+2 = Jn+1 + 2Jn, n ≥ 0. (1)
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Another important sequence is the Jacobsthal–Lucas sequence. This sequence is defined by the
recurrence relation jn+2 = jn+1 + 2jn, where j0 = 2 and j1 = 1 (see, [8]).

In [5] the Jacobsthal recurrence relation is extended to higher order recurrence relations and
the basic list of identities provided by A. F. Horadam [8] is expanded and extended to several
identities for some of the higher order cases. For example, the third-order Jacobsthal numbers,
{J (3)

n }n≥0, and third-order Jacobsthal–Lucas numbers, {j(3)n }n≥0, are defined by

J
(3)
n+3 = J

(3)
n+2 + J

(3)
n+1 + 2J (3)

n , J
(3)
0 = 0, J

(3)
1 = J

(3)
2 = 1, n ≥ 0, (2)

and
j
(3)
n+3 = j

(3)
n+2 + j

(3)
n+1 + 2j(3)n , j

(3)
0 = 2, j

(3)
1 = 1, j

(3)
2 = 5, n ≥ 0, (3)

respectively.
Some of the following properties given for third-order Jacobsthal numbers and third-order

Jacobsthal–Lucas numbers are used in this paper (for more details, see [2–5]). Note that Eqs. (8)
and (12) have been corrected in this paper, since they have been wrongly described in [5].

3J (3)
n + j(3)n = 2n+1, (4)

j(3)n − 3J (3)
n = 2j

(3)
n−3, n ≥ 3, (5)

J
(3)
n+2 − 4J (3)

n =

{
−2 if n ≡ 1 (mod 3)

1 if n 6≡ 1 (mod 3)
, (6)

j(3)n − 4J (3)
n =


2 if n ≡ 0 (mod 3)

−3 if n ≡ 1 (mod 3)

1 if n ≡ 2 (mod 3)

, (7)

j
(3)
n+1 + j(3)n = 3J

(3)
n+2, (8)

j(3)n − J
(3)
n+2 =


1 if n ≡ 0 (mod 3)

−1 if n ≡ 1 (mod 3)

0 if n ≡ 2 (mod 3)

, (9)

(
j
(3)
n−3

)2
+ 3J (3)

n j(3)n = 4n, (10)

n∑
k=0

J
(3)
k =

{
J
(3)
n+1 if n 6≡ 0 (mod 3)

J
(3)
n+1 − 1 if n ≡ 0 (mod 3)

(11)

and (
j(3)n

)2 − 9
(
J (3)
n

)2
= 2n+2j

(3)
n−3, n ≥ 3. (12)

Using standard techniques for solving recurrence relations, the auxiliary equation, and its
roots are given by

x3 − x2 − x− 2 = 0; x = 2, and x =
−1± i

√
3

2
.
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Note that the latter two are the complex conjugate cube roots of unity. Call them ω1 and ω2,
respectively. Thus the Binet formulas can be written as

J (3)
n =

2

7
2n − 3 + 2i

√
3

21
ωn
1 −

3− 2i
√
3

21
ωn
2 (13)

and

j(3)n =
8

7
2n +

3 + 2i
√
3

7
ωn
1 +

3− 2i
√
3

7
ωn
2 , (14)

respectively. Now, we use the notation

V (2)
n =

Aωn
1 −Bωn

2

ω1 − ω2

=


2 if n ≡ 0 (mod 3)

−3 if n ≡ 1 (mod 3)

1 if n ≡ 2 (mod 3)

, (15)

where A = −3− 2ω2 and B = −3− 2ω1. Furthermore, note that for all n ≥ 0 we have

V
(2)
n+2 = −V

(2)
n+1 − V (2)

n , V
(2)
0 = 2 and V (2)

1 = −3. (16)

From the Binet formulas (13), (14) and Eq. (15), we have

J (3)
n =

1

7

(
2n+1 − V (2)

n

)
and j(3)n =

1

7

(
2n+3 + 3V (2)

n

)
. (17)

On the other hand, the Gelin–Cesàro identity [6, p. 401] states that

F 4
n − Fn−2Fn−1Fn+1Fn+2 = 1, (18)

where Fn is the classic n-th Fibonacci number. Furthermore, Melham and Shannon [9] obtained
generalizations of the Gelin–Cesàro identity. Recently, Sahin [10] showed that the Gelin–Cesàro
identity is satisfied for two families of conditional sequences.

Motivated by [9, 10], in this paper, we deal with two families of third-order Jacobsthal
sequences. The first family consists of the sequences denoted by {J (3)

n } and studied in [2, 5].
We show that the Gelin–Cesàro identity is satisfied by the sequence {J (3)

n }. Also, we define a
family of generalized third-order Jacobsthal sequences {J(3)n } by the recurrence relation J(3)n+3 =

J(3)n+2+J(3)n+1+2J(3)n (n ≥ 0) with initials conditions J(3)0 = a, J(3)1 = b and J(3)2 = c, where a, b and
c are non-zero real numbers. Many sequences in the literature are special cases of this generalized
sequence. We find the generating function and Binet formula for the sequence {J(3)n }n≥0. Then,
we show that Catalan and Gelin–Cesàro identities are satisfied by this generalized sequence.

2 The first family of third-order Jacobsthal sequences

Recently, the authors introduced in [5] a further generalization of the Jacobsthal sequence, namely
the third-order Jacobsthal sequence defined by Eq. (2). Then,

Lemma 2.1 (Catalan Identity for J (3)
n ). For any nonnegative integers n and r, we have(

J (3)
n

)2 − J (3)
n−rJ

(3)
n+r =

1

49

{
2n+1

(
2rV

(2)
n−r − 2V (2)

n + 2−rV
(2)
n+r

)}
+

1

7

(
U (2)
r

)2
, (19)

where U (2)
r = j

(3)
r−1 − J

(3)
r+1.
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Proof. From Eqs. (15) and (17), we obtain(
J (3)
n

)2 − J (3)
n−rJ

(3)
n+r

=
1

49

{ (
2n+1 − V (2)

n

)2
−
(
2n−r+1 − V (2)

n−r

)(
2n+r+1 − V (2)

n+r

) }
=

1

49

 22(n+1) − 2n+2V
(2)
n +

(
V

(2)
n

)2
−22(n+1) + 2n−r+1V

(2)
n+r + 2n+r+1V

(2)
n−r − V

(2)
n−rV

(2)
n+r


=

1

49

 2n+1
(
2rV

(2)
n−r − 2V

(2)
n + 2−rV

(2)
n+r

)
+
(
V

(2)
n

)2
− V (2)

n−rV
(2)
n+r


=

1

49

{
2n+1

(
2rV

(2)
n−r − 2V

(2)
n + 2−rV

(2)
n+r

)
+ 7

(
U

(2)
r

)2 }
,

where U (2)
r = j

(3)
r−1 − J

(3)
r+1 using Eq. (9). The proof is completed.

Theorem 2.2 (Gelin–Cesàro Identity). For any non-negative integers n ≥ 2, we have(
J (3)
n

)4 − J (3)
n−2J

(3)
n−1J

(3)
n+1J

(3)
n+2 =

1

7

{ (
J
(3)
n

)2 (
2 + 2n−1

(
3R

(2)
n+2 − 2R

(2)
n+1

)) }
− 1

49

(
1 + 2n−1

(
3R

(2)
n+2 − 2R

(2)
n+1

)
− 3 · 22n−1R(2)

n+1R
(2)
n+2

)
,

(20)
where W (2)

n+2 =
1
7

(
5Vn+1 − 3V

(2)
n

)
and V (2)

n as in Eq. (15).

Proof. For r = 1 and r = 2 and Eq. (16), we get respectively(
J (3)
n

)2 − J (3)
n−1J

(3)
n+1 =

1

49

(
2n+1

(
2V

(2)
n−1 − 2V

(2)
n + 2−1V

(2)
n+1

)
+ 7

(
U

(2)
1

)2 )
=

1

49

(
2n
(
4V

(2)
n−1 − 4V

(2)
n + V

(2)
n+1

)
+ 7

)
=

1

49

(
7− 2n

(
5V

(2)
n − 3V

(2)
n−1

) )
=

1

7

(
1− 2nW

(2)
n+1

)
and (

J (3)
n

)2 − J (3)
n−2J

(3)
n+2 =

1

49

(
2n+1

(
4V

(2)
n−2 − 2V

(2)
n + 2−2V

(2)
n+2

)
+ 7

(
U

(2)
2

)2 )
=

1

49

(
2n−1

(
16V

(2)
n−2 − 8V

(2)
n + V

(2)
n+2

)
+ 7

)
=

1

49

(
7 + 3 · 2n−1

(
5V

(2)
n+1 − 3V

(2)
n

) )
=

1

7

(
1 + 3 · 2n−1W (2)

n+2

)
by using Lemma 2.1 and the property V (2)

n = V
(2)
n+3 for all n ≥ 0. Note that the sequence W (2)

n
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satisfies relation 5V
(2)
n+1 − 3V

(2)
n = 7W

(2)
n+2. So, we obtain

J
(3)
n−2J

(3)
n−1J

(3)
n+1J

(3)
n+2

=

((
J (3)
n

)2 − 1

7

(
1− 2nW

(2)
n+1

))((
J (3)
n

)2 − 1

7

(
1 + 3 · 2n−1W (2)

n+2

))
=
(
J (3)
n

)4 − 1

7

(
J (3)
n

)2 · (1 + 3 · 2n−1W (2)
n+2 + 1− 2nW

(2)
n+1

)
+

1

49

(
1− 2nW

(2)
n+1

)(
1 + 3 · 2n−1W (2)

n+2

)
.

Then, we have(
J (3)
n

)4 − J (3)
n−2J

(3)
n−1J

(3)
n+1J

(3)
n+2

=
1

7


(
J
(3)
n

)2 (
2 + 2n−1

(
3W

(2)
n+2 − 2W

(2)
n+1

))
−1

7

(
1 + 2n−1

(
3W

(2)
n+2 − 2W

(2)
n+1

)
− 3 · 22n−1W (2)

n+1W
(2)
n+2

)


=
1

7




(
J
(3)
n

)2
(2− 11 · 2n−1)

−1
7
(1− 11 · 2n−1 + 9 · 22n−1)

 , if n ≡ 0 (mod 3)
(
J
(3)
n

)2
(2 + 12 · 2n−1)

−1
7
(1 + 12 · 2n−1 + 18 · 22n−1)

 , if n ≡ 1 (mod 3)
(
J
(3)
n

)2
(2− 2n−1)

−1
7
(1− 2n−1 − 6 · 22n−1)

 , if n ≡ 2 (mod 3)

.

The proof is completed.

3 The second family of generalized third-order
Jacobsthal sequences

Here, we define a new generalization of the third-order Jacobsthal sequence {J (3)
n }n≥0. Let us

denote this sequence by {J(3)n }n≥0 which is defined recursively by{
J(3)n+3 = J(3)n+2 + J(3)n+1 + 2J(3)n , n ≥ 0,

J(3)0 = a, J(3)1 = b, J(3)2 = c,
(21)

where a, b and c are real numbers. For example, the first seven terms of the sequence are

{a, b, c, 2a+ b+ c, 2a+ 3b+ 2c, 4a+ 4b+ 5c, 10a+ 9b+ 9c}.

For a = 0 and b = c = 1, we get the ordinary third-order Jacobsthal sequence. Also, when a = 2,
b = 1 and c = 5, we get the third-order Jacobsthal–Lucas sequence which is defined in [5].

In this study, first we obtain the generating function and then Binet’s formula for the sequence
{J(3)n }n≥0. Finally, we show some properties, for example, the Catalan and Gelin–Cesàro identity
are satisfied by this sequence.

Now, we can give the generating function of the sequence.
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Theorem 3.1 (Generating function). The generating function for the sequence {J(3)n }n≥0 is

FJ(t) =
a+ (b− a)t+ (c− b− a)t2

1− t− t2 − 2t3
. (22)

Proof. Let FJ(t) = J(3)0 + J(3)1 t+ J(3)2 t2 + · · · =
∑∞

n=0 J
(3)
n tn, which is the formal power series of

the generating function for {J(3)n }. We obtain that

(1− t− t2 − 2t3)FJ(t) = J(3)0 + J(3)1 t+ J(3)2 t2 + · · ·

− J(3)0 t− J(3)1 t2 − J(3)2 t3 − · · ·

− J(3)0 t2 − J(3)1 t3 − J(3)2 t4 − · · ·

− 2J(3)0 t3 − 2J(3)1 t4 − 2J(3)2 t5 − · · ·

= J(3)0 + (J(3)1 − J(3)0 )t+ (J(3)2 − J(3)1 − J(3)0 )t2,

since J(3)n+3 = J(3)n+2 + J(3)n+1 + 2J(3)n , n ≥ 0 and the coefficients of tn for n ≥ 3 are equal with zero.
Then, the theorem is proved.

In fact, we can give Binet’s formula for the sequence as follows.

Theorem 3.2. For n ≥ 0, we have

J(3)n =

(
c+ b+ a

(2− ω1)(2− ω2)

)
2n −

(
c− (2 + ω2)b+ 2ω2a

(2− ω1)(ω1 − ω2)

)
ωn
1

+

(
c− (2 + ω1)b+ 2ω1a

(2− ω2)(ω1 − ω2)

)
ωn
2 .

(23)

Proof. The solution of Eq. (21) is

J(3)n = AJ2
n +BJω

n
1 + CJω

n
2 . (24)

Then, let J(3)0 = AJ+BJ+CJ, J(3)1 = 2AJ+BJω1+CJω2 and J(3)2 = 4AJ+BJω
2
1+CJω

2
2 . Therefore,

we have (2−ω1)(2−ω2)AJ = c−(ω1+ω2)b+ω1ω2a, (2−ω1)(ω1−ω2)BJ = c−(2+ω2)b+2ω2a,
(2− ω2)(ω1 − ω2)CJ = c− (2 + ω1)b+ 2ω1a. Using AJ, BJ and CJ in Eq. (24), we obtain

J(3)n =

(
c+ b+ a

(2− ω1)(2− ω2)

)
2n −

(
c− (2 + ω2)b+ 2ω2a

(2− ω1)(ω1 − ω2)

)
ωn
1

+

(
c− (2 + ω1)b+ 2ω1a

(2− ω2)(ω1 − ω2)

)
ωn
2 .

The proof is completed.

Theorem 3.3. Assume that x 6= 0. We obtain,

n∑
k=0

J(3)k

xk
=

1

xnν(x)

{
2J(3)n +

(
J(3)n+2 − J(3)n+1

)
x+ J(3)n+1x

2
}

− x

ν(x)

{
c− b− a− (a− b)x+ ax2

} (25)

where ν(x) = x3 − x2 − x− 2.
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Proof. From Theorem 3.2, we have
n∑

k=0

J(3)k

xk
=

(
c+ b+ a

(2− ω1)(2− ω2)

) n∑
k=0

(
2

x

)k

−
(
c− (2 + ω2)b+ 2ω2a

(2− ω1)(ω1 − ω2)

) n∑
k=0

(ω1

x

)k
+

(
c− (2 + ω1)b+ 2ω1a

(2− ω2)(ω1 − ω2)

) n∑
k=0

(ω2

x

)k
.

By considering the definition of a geometric sequence, we get
n∑

k=0

J(3)k

xk
=

(
c+ b+ a

(2− ω1)(2− ω2)

)
2n+1 − xn+1

xn(2− x)

−
(
c− (2 + ω2)b+ 2ω2a

(2− ω1)(ω1 − ω2)

)
ωn+1
1 − xn+1

xn(ω1 − x)

+

(
c− (2 + ω1)b+ 2ω1a

(2− ω2)(ω1 − ω2)

)
ωn+1
2 − xn+1

xn(ω2 − x)

=
1

xnν(x)


AJ(2

n+1 − xn+1)(ω1 − x)(ω2 − x)
−BJ(ω

n+1
1 − xn+1)(2− x)(ω2 − x)

+CJ(ω
n+1
2 − xn+1)(2− x)(ω1 − x)

 ,

where {
AJ =

c+b+a
(2−ω1)(2−ω2)

, BJ =
c−(2+ω2)b+2ω2a
(2−ω1)(ω1−ω2)

, CJ =
c−(2+ω1)b+2ω1a
(2−ω2)(ω1−ω2)

(26)

and ν(x) = x3−x2−x−2. Using ω1+ω2 = −1 and ω1ω2 = 1, if we rearrange the last equality,
then we obtain

n∑
k=0

J(3)k

xk
=

1

xnν(x)


AJ(2

n+1 − xn+1)(1 + x+ x2)

−BJ(ω
n+1
1 − xn+1)(2ω2 − (2 + ω2)x+ x2)

+CJ(ω
n+1
2 − xn+1)(2ω1 − (2 + ω1)x+ x2)



=
1

xnν(x)



AJ2
n+1(1 + x+ x2)

−BJω
n+1
1 (2ω2 − (2 + ω2)x+ x2)

+CJω
n+1
2 (2ω1 − (2 + ω1)x+ x2)

−xn+1


AJ(1 + x+ x2)

−BJ(2ω2 − (2 + ω2)x+ x2)

+CJ(2ω1 − (2 + ω1)x+ x2)




.

So, the proof is completed.

In the following theorem, we give the sum of generalized third-order Jacobsthal sequence
corresponding to different indices.

Theorem 3.4. For r ≥ m, we have

n∑
k=0

J(3)mk+r =
1

σn


J(3)m(n+1)+r − J(3)r + 2mJ(3)mn+r − 2mJ(3)r−m

−J(3)m(n+1)+rµ(m) + J(3)r µ(m)

+J(3)m(n+2)+r − J(3)r+m

 , (27)
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where σn = 2m+1 + (1− 2m)(ωm
1 + ωm

2 )− 2 and µ(m) = 2m + ωm
1 + ωm

2 .

Proof. Let us take AJ, BJ and CJ in Eq. (26). Then, we write
n∑

k=0

J(3)mk+r = AJ2
r

n∑
k=0

2mk −BJω
r
1

n∑
k=0

ωmk
1 + CJω

r
2

n∑
k=0

ωmk
2

= AJ2
r

(
2m(n+1) − 1

2m − 1

)
−BJω

r
1

(
ω
m(n+1)
1 − 1

ωm
1 − 1

)

+ CJω
r
2

(
ω
m(n+1)
2 − 1

ωm
2 − 1

)

=
1

σn


AJ
(
2m(n+1)+r − 2r

)
(ωm

1 ω
m
2 − (ωm

1 + ωm
2 ) + 1)

−BJ

(
ω
m(n+1)+r
1 − ωr

1

)
(2mωm

2 − (2m + ωm
2 ) + 1)

+CJ

(
ω
m(n+1)+r
2 − ωr

2

)
(2mωm

1 − (2m + ωm
1 ) + 1)

 ,

where σn = 2m+1 + (1− 2m)(ωm
1 + ωm

2 )− 2. After some algebra, we obtain

n∑
k=0

J(3)mk+r =
1

σn


J(3)m(n+1)+r − J(3)r + 2mJ(3)mn+r − 2mJ(3)r−m

−J(3)m(n+1)+rµ(m) + J(3)r µ(m)

+J(3)m(n+2)+r − J(3)r+m

 ,

where µ(m) = 2m + ωm
1 + ωm

2 . The proof is completed.

4 Main results

We use the next notation for the Binet formula of generalized third-order Jacobsthal sequence
J(3)n . Let

V(2)
n =

Aωn
1 −Bωn

2

ω1 − ω2

=


c+ b− 6a if n ≡ 0 (mod 3)

2c− 5b+ 2a if n ≡ 1 (mod 3)

−3c+ 4b+ 4a if n ≡ 2 (mod 3)

, (28)

whereA = (2−ω2)(c−(2+ω2)b+2ω2a) andB = (2−ω1)(c−(2+ω1)b+2ω1a). Furthermore,
note that for all n ≥ 0 we have

V(2)
n+2 = −V

(2)
n+1 − V(2)

n , V(2)
0 = c+ b− 6a, V(2)

1 = 2c− 5b+ 2a. (29)

From the Binet formula (23) and Eq. (28), we have

J(3)n =
1

7

(
ρ2n − V(2)

n

)
, (30)

where ρ = a+ b+ c. In particular, if a = 0 and b = c = 1, we obtain J(3)n = J
(3)
n .

Theorem 4.1 (Catalan Identity for J(3)n ). For any nonnegative integers n and r, we have(
J(3)n

)2 − J(3)n−rJ
(3)
n+r =

1

49

{
2nρ

(
2rV(2)

n−r − 2V(2)
n + 2−rV(2)

n+r

)}
+

1

7
(4a2 + 3b2 + c2 − 2ac− 3bc)

(
U (2)
r

)2
,

(31)

where U (2)
r = j

(3)
r−1 − J

(3)
r+1 and ρ = a+ b+ c.
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Proof. From Eq. (30), we obtain(
J(3)n

)2 − J(3)n−rJ
(3)
n+r =

1

49

{ (
ρ2n − V(2)

n

)2
−
(
ρ2n−r − V(2)

n−r

)(
ρ2n+r − V(2)

n+r

) }
=

1

49

 ρ222n − 2n+1ρV(2)
n +

(
V(2)

n

)2
−ρ222n + 2n−rρV(2)

n+r + 2n+rρV(2)
n−r − V(2)

n−rV
(2)
n+r


=

1

49

 2nρ
(
2rV(2)

n−r − 2V(2)
n + 2−rV(2)

n+r

)
+
(
V(2)

n

)2
− V(2)

n−rV
(2)
n+r

 .

After some algebra, we obtain

(
J(3)n

)2 − J(3)n−rJ
(3)
n+r =

1

49

 2nρ
(
2rV(2)

n−r − 2V(2)
n + 2−rV(2)

n+r

)
+7(4a2 + 3b2 + c2 − 2ac− 3bc)

(
U

(2)
r

)2
 ,

where U (2)
r = j

(3)
r−1 − J

(3)
r+1 using Eq. (9). The proof is completed.

Theorem 4.2 (Gelin–Cesàro Identity). For any non-negative integers n ≥ 2, we have(
J(3)n

)4−J(3)n−2J
(3)
n−1J

(3)
n+1J

(3)
n+2

=
1

7

(
J(3)n

)2 (
2ω + 2n−2ρ

(
3W(2)

n+2 − 2W(2)
n+1

))
− 1

49

{
w2 + 2n−2ρω

(
3W(2)

n+2 − 2W(2)
n+1

)
− 3 · 22n−3ρ2W(2)

n+1W
(2)
n+2

}
,

(32)

where W(2)
n+2 =

1
7

(
5Vn+1 − 3V(2)

n

)
and V(2)

n as in Eq. (28).

Proof. From Eq. (31) in Theorem 4.1 and r = 1 and r = 2, we obtain

(
J(3)n

)2 − J(3)n−1J
(3)
n+1 =

1

49

{
2nρ

(
2V(2)

n−1 − 2V(2)
n + 2−1V(2)

n+1

)
+7(4a2 + 3b2 + c2 − 2ac− 3bc)

}

=
1

49

{
2n−1ρ

(
4V(2)

n−1 − 4V(2)
n + V(2)

n+1

)
+7(4a2 + 3b2 + c2 − 2ac− 3bc)

}

=
1

49

{
7(4a2 + 3b2 + c2 − 2ac− 3bc)

−2n−1ρ
(
5V(2)

n − 3V(2)
n−1

) }

=
1

7

(
ω − 2n−1ρW(2)

n+1

)
and (

J(3)n

)2 − J(3)n−2J
(3)
n+2 =

1

7

(
ω + 3 · 2n−2ρW(2)

n+2

)
,

where 5V(2)
n − 3V(2)

n−1 = 7W(2)
n+1 and ω = 4a2 + 3b2 + c2 − 2ac− 3bc.

So, we can write the next equality:
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J(3)n−2J
(3)
n−1J

(3)
n+1J

(3)
n+2

=

((
J(3)n

)2 − 1

7

(
ω − 2n−1ρW(2)

n+1

))((
J(3)n

)2 − 1

7

(
ω + 3 · 2n−2ρW(2)

n+2

))

=


(
J(3)n

)4
− 1

7

(
J(3)n

)2
·
(
2ω + 3 · 2n−2ρW(2)

n+2 − 2n−1ρW(2)
n+1

)
+ 1

49

(
ω − 2n−1ρW(2)

n+1

)(
ω + 3 · 2n−2ρW(2)

n+2

)
 .

Then, we have(
J(3)n

)4 − J(3)n−2J
(3)
n−1J

(3)
n+1J

(3)
n+2

=
1

7


(
J(3)n

)2 (
2ω + 2n−2ρ

(
3W(2)

n+2 − 2W(2)
n+1

))
−1

7

(
w2 + 2n−2ρω

(
3W(2)

n+2 − 2W(2)
n+1

)
− 3 · 22n−3ρ2W(2)

n+1W
(2)
n+2

)
 .

The proof is completed.

By the aid of the last theorem we have the following corollary.

Corollary 4.2.1. For any non-negative integers n ≥ 2, we have(
J(3)n

)4 − J(3)n−2J
(3)
n−1J

(3)
n+1J

(3)
n+2

=
1

7




(
J(3)n

)2
(2ω + 2n−2ρA)

−1
7

(
w2 + 2n−2ρωA− 3 · 22n−3ρ2T(2)

n

)
 , if n ≡ 0 (mod 3)

(
J(3)n

)2
(2ω + 2n−2ρB)

−1
7

(
w2 + 2n−2ρωB − 3 · 22n−3ρ2T(2)

n

)
 , if n ≡ 1 (mod 3)

(
J(3)n

)2
(2ω + 2n−2ρC)

−1
7

(
w2 + 2n−2ρωC − 3 · 22n−3ρ2T(2)

n

)
 , if n ≡ 2 (mod 3)

,

where A = −c− 10b+ 24a, B = −11c+ 23b− 2a, C = 12c− 13b− 22a and

T(2)
n =


(2c− b− 6a)(c− 4b+ 4a), if n ≡ 0 (mod 3)

(c− 4b+ 4a)(−3c+ 5b+ 2a), if n ≡ 1 (mod 3)

(−3c+ 5b+ 2a)(2c− b− 6a), if n ≡ 2 (mod 3)

.
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