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Abstract: In this article we consider the equation
∞∑
k=0

Uk(P1, Q1)

xk+1
=
∞∑
k=0

Uk(P2, Q2)

yk+1
,

in integers (x, y), where Un(P,Q) is a Lucas sequence defined by U0 = 0, U1 = 1, Un = PUn−1−
QUn−2 for n > 1. We also deal with a similar equation related to the generalized Tribonacci
sequence.
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1 Introduction

Let P and Q be non-zero integers. The Lucas sequence Un(P,Q) is defined by U0 = 0, U1 =

1, Un = PUn−1 −QUn−2 for n > 1.

Stancliff [7] noted an interesting property of the Fibonacci sequence Fn = Un(1,−1), namely

1

F11

=
1

89
= 0.0112358 . . . =

∞∑
k=0

Fk

10k+1
.

49



De Weger [10] determined all x ≥ 2 in case of (P,Q) = (1,−1) of the equation

1

Un(P,Q)
=
∞∑
k=0

Uk(P,Q)

xk+1
.

The solutions are as follows

1

F1

=
1

F2

=
1

1
=
∞∑
k=0

Fk

2k+1
,

1

F5

=
1

5
=
∞∑
k=0

Fk

3k+1
,

1

F10

=
1

55
=
∞∑
k=0

Fk

8k+1
,

1

F11

=
1

89
=
∞∑
k=0

Fk

10k+1
.

Tengely [9] provided methods to determine similar identities in case of Lucas sequences. As
an example he proved that

1

U10

=
1

416020
=
∞∑
k=0

Uk

647k+1
,

where U0 = 0, U1 = 1 and Un = 4Un−1 + Un−2, n ≥ 2.

Hashim and Tengely [3] obtained results related to the equation

1

Un(P2, Q2)
=
∞∑
k=0

Uk(P1, Q1)

xk+1
,

for certain pairs (P1, Q1) 6= (P2, Q2).

There are many other nice results in the literature dealing with Diophantine equations related
to base b representations and binary linear recurrence sequences. Bravo and Luca [1] completely
solved the equation Fm + Fn = 2a. Chim and Ziegler [2] generalized their result, they solved the
equation Fn1 + Fn2 = 2m1 + 2m2 + 2m3 in non-negative integers (n1, n2,m1,m2,m3). Luca [5]
proved that 55 is the largest Fibonacci number whose decimal expansion uses only one distinct
digit.

In this article we study the integral solutions (x, y) of the equation
∞∑
k=0

Uk(P1, Q1)

xk+1
=
∞∑
k=0

Uk(P2, Q2)

yk+1
. (1)

Using elementary number theory we have the following results. For a given polynomial f(x)
over the integers let m(f) = max{|x| : f(x) = 0}.

Theorem 1. Let P1, Q1, P2, Q2 be non-zero integers such that (P1, Q1) 6= (P2, Q2). If
(P 2

2 −P 2
1 ) + 4(Q1−Q2) = d1d2 6= 0 and d1− d2 ≡ −2P1 (mod 4), d1 + d2 ≡ −2P2 (mod 4),

then the positive integral solutions x, y of
∞∑
k=0

Uk(P1, Q1)

xk+1
=
∞∑
k=0

Uk(P2, Q2)

yk+1

satisfy

x =
d1 − d2 + 2P1

4
> m(x2 − P1x+Q1), y =

d1 + d2 + 2P2

4
> m(x2 − P2x+Q2).
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If (P 2
2 − P 2

1 ) + 4(Q1 − Q2) = 0 and P1 ≡ P2 (mod 2), then the positive integral solutions x, y
of

∞∑
k=0

Uk(P1, Q1)

xk+1
=
∞∑
k=0

Uk(P2, Q2)

yk+1

satisfy

x > m(x2 − P1x+Q1), y = ±x+
P2 ∓ P1

2
> m(x2 − P2x+Q2),

where Q2 = Q1 +
P 2
2−P 2

1

4
.

Consider the equation
∞∑
k=0

Tk(a2, a1, a0)

xk+1
=
∞∑
k=0

Tk(b2, b1, b0)

yk+1
, (2)

where Tn denotes the generalized Tribonacci sequence defined by T0(p, q, r) = T1(p, q, r) =

0, T2(p, q, r) = 1 and

Tn(p, q, r) = pTn−1(p, q, r) + qTn−2(p, q, r) + rTn−3(p, q, r) if n ≥ 3.

Theorem 2. If (x, y) is an integral solution of (2) for given (a2, a1, a0) 6= (b2, b1, b0), then either

9
(
a22 − b22 + 3 a1 − 3 b1

)
y + 2 a32 − 3 a22b2 + b32 + 9 a1a2 − 9 a1b2 + 27 a0 − 27 b0 = 0

or in case of |y| > B we have
|3x− 3y − a2 + b2| < C,

where B,C are constants depending only on ai, bi, i = 0, 1, 2.

2 Auxiliary results

In the proofs we will use the following two results of Köhler [4].

Theorem A. Let A0, A1, a0, a1 be arbitrary complex numbers. Define the sequence {an} by the
recursion an+1 = A0an + A1an−1. Then the formula

∞∑
k=0

ak
zk+1

=
a0z − A0a0 + a1
z2 − A0z − A1

holds for all complex z such that |z| is larger than the absolute values of the zeros of z2−A0z−A1.

Theorem B. Let arbitrary complex numbers A0, A1, . . . , Am, a0, a1, . . . , am be given. Define the
sequence {an} by the recursion

an+1 = A0an + A1an−1 + . . .+ Aman−m

Then for all complex z such that |z| is larger than the absolute values of all zeros of q(z) =

zm+1 − A0z
m − A1z

m−1 − . . .− Am, the formula
∞∑
k=1

ak−1
zk

=
p(z)

q(z)

holds with p(z) = a0z
m + b1z

m−1 + . . .+ bm, where bk = ak −
∑k−1

i=0 Aiak−1−i for 1 ≤ k ≤ m.
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3 Proofs of the results

Proof of Theorem 1. By applying Theorem A to equation (1) we get that

1

x2 − P1x+Q1

=
1

y2 − P2y +Q2

.

By algebraic manipulations we obtain the equation

(2y + 2x− P1 − P2)(2y − 2x+ P1 − P2) = P 2
2 − P 2

1 + 4(Q1 −Q2). (3)

If P 2
2 − P 2

1 + 4(Q1 −Q2) 6= 0, then for all d1|P 2
2 − P 2

1 + 4(Q1 −Q2) we consider the following
system of equations

2y + 2x− P1 − P2 = d1,

2y − 2x+ P1 − P2 = d2 =
P 2
2 − P 2

1 + 4(Q1 −Q2)

d1
.

We obtain integral solutions if d1 − d2 ≡ −2P1 (mod 4) and d1 + d2 ≡ −2P2 (mod 4). In this
case the solutions are given by

x =
d1 − d2 + 2P1

4
and y =

d1 + d2 + 2P2

4
.

If P 2
2 − P 2

1 + 4(Q1 −Q2) = 0, then

Q2 = Q1 +
P 2
2 − P 2

1

4
,

and Q2 is an integer if P1 ≡ P2 (mod 2). There are two possible cases, either 2y+2x−P1−P2 =

0 or 2y− 2x+P1−P2 = 0. In the former case we have y = −x+ P1+P2

2
and in the latter one we

get y = x+ P2−P1

2
.

Proof of Theorem 2. Using Köhler’s results given in Theorem B, equation (2) yields that

1

x3 − a2x2 − a1x− a0
=

1

y3 − b2y2 − b1y − b0
.

Hence
H(x, y) = x3 − a2x

2 − a1x− a0 − y3 + b2y
2 + b1y + b0 = 0.

This equation satisfies Runge’s condition [6] therefore in case when H(x, y) is irreducible over
the rationals there exist only finitely many integral solutions (x, y). We obtain that

0 = 27H(x, y) = (3x− 3y − a2 + b2)G(x, y)− I(y),

where G(x, y) = 9x2 + 9xy + 9 y2 − 3 (2 a2 + b2)x− 3 (a2 + 2 b2)y − 2 a22 + a2b2 + b22 − 9 a1
and I(y) = 9 (a22 − b22 + 3 a1 − 3 b1)y+2 a32− 3 a22b2+ b32+9 a1a2− 9 a1b2+27 a0− 27 b0. Here
we may have that I(y) is identically equal to 0, then H(x, y) is reducible over the rationals. In
this case solutions can be obtained from 3x− 3y− a2 + b2 = 0 or G(x, y) = 0. Now assume that
I(y) 6= 0. We obtain that

3x− 3y − a2 + b2 =
I(y)

G(x, y)
=

4I(y)

27 y2 − 18 b2y − 12 a22 + 3 b22 − 36 a1 + (6x+ 3y − (2a2 + b2))2
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Here one can determine a bound B for |y| such that if |y| > B, then

27 y2 − 18 b2y − 12 a22 + 3 b22 − 36 a1 + (6x+ 3y − (2a2 + b2))
2 > 26y2.

Thus

|3x− 3y − a2 + b2| <
4I(y)

26y2
.

Since I(y) is linear we get that
4|I(y)|
26y2

< C

for some positive constant C and the statement follows.

4 Applications of the results

Example 1. As an application of Theorem 1 consider the following example. Let (P1, Q1) =

(1,−1) and (P2, Q2) = (18, 1). We have that (P 2
2 −P 2

1 )+4(Q1−Q2) = (182−1)+4(−1−1) =

315. We obtain a system of equations given by

2y + 2x− 19 = d1,

2y − 2x− 17 =
315

d1
,

where
d1 ∈ {±1,±3,±5,±7,±9,±15,±21,±35,±45,±63,±105,±315}.

The solutions are as follows

(x, y) ∈ {(79,−70) , (26,−18) , (15,−8) , (10,−4) , (7,−2) , (2, 0) , (−1, 0) , (−6,−2) ,
(−9,−4) , (−14,−8) , (−25,−18) , (−78,−70) , (−78, 88) , (−25, 36) , (−14, 26) ,
(−9, 22) , (−6, 20) , (−1, 18) , (2, 18) , (7, 20) , (10, 22) , (15, 26) , (26, 36) , (79, 88)}.

Here we have m(x2 − x − 1) ≈ 1.618 so x ≥ 2 and m(x2 − 18x + 1) ≈ 17.944 hence y ≥ 18.

Thus the solutions are as follows
∞∑
k=0

Uk(1,−1)
2k+1

=
∞∑
k=0

Uk(18, 1)

18k+1
= 1,

∞∑
k=0

Uk(1,−1)
7k+1

=
∞∑
k=0

Uk(18, 1)

20k+1
=

1

41
,

∞∑
k=0

Uk(1,−1)
10k+1

=
∞∑
k=0

Uk(18, 1)

22k+1
=

1

89
,

∞∑
k=0

Uk(1,−1)
15k+1

=
∞∑
k=0

Uk(18, 1)

26k+1
=

1

209
,

∞∑
k=0

Uk(1,−1)
26k+1

=
∞∑
k=0

Uk(18, 1)

36k+1
=

1

649
,

∞∑
k=0

Uk(1,−1)
79k+1

=
∞∑
k=0

Uk(18, 1)

88k+1
=

1

6161
.
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Example 2. As a next example consider the case with (P1, Q1) = (1,−1) and (P2, Q2)

= (2t+ 1, t2 + t− 1). We get that

∞∑
k=0

Uk(1,−1)
xk+1

=
∞∑
k=0

Uk(2t+ 1, t2 + t− 1)

(x+ t)k+1
=

1

x2 − x− 1

for x ≥ 2.

Example 3. Consider the positive integral solutions x, y of the equation

∞∑
k=0

Tk(−1, 7, 3)
xk+1

=
∞∑
k=0

Tk(5,−5,−3)
yk+1

.

Theorem B implies that

1

x3 + x2 − 7x− 3
=

1

y3 − 5y2 + 5y + 3
,

therefore we get
x3 + x2 − 7x− 3 = y3 − 5y2 + 5y + 3.

Following the proof of Theorem 2 we have

H(x, y) = x3 + x2 − 7x− y3 + 5y2 − 5y − 6 = 0.

We determine G(x, y) and I(y), these are given by

G(x, y) = 9x2 + 9xy + 9y2 − 9x− 27y − 45, I(y) = 108y − 108.

If I(y) = 0, then y = 1 and it follows that x3 + x2 − 7x − 3 = 4, that is x = −1. Hence we do
not get positive integral solutions in this case. Assume that I(y) 6= 0. We get that

3x− 3y + 6 =
4(108y − 108)

9x2 + 9xy + 9y2 − 9x− 27y − 45
.

It can be written as

3x− 3y + 6 =
4(108y − 108)

27y2 − 90y − 189 + (6x+ 3y − 3)2
.

We have that 26y2 < 27y2−90y−189+(6x+3y−3)2 for positive integers if y ≥ 93. It follows that
|3x− 3y+6| < 1 if y ≥ 93. That is 3x− 3y+6 = 0, so we obtain that I(y) = 0, a contradiction.
It remains to deal with the values of y for which 3 = m(x3 − 5x2 + 5x + 3) ≤ y ≤ 93. Using
SageMath [8] we obtain that the only integral solutions in this range are given by x = −3, y = 3

and x = −2, y = 4, so we do not get positive integral solutions.

Example 4. As a second application of Theorem 2 let us consider the equation

∞∑
k=0

Tk(−4,−5,−6)
xk+1

=
∞∑
k=0

Tk(1, 8, 18)

yk+1
.
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Here we obtain that

H(x, y) = x3 − y3 + 4x2 + y2 + 5x+ 8y + 24,

G(x, y) = 9x2 + 9xy + 9y2 + 21x+ 6y + 10,

I(y) = −216y − 598.

The equation I(y) = 0 does not have integral solutions. We obtain that 4G(x, y) > 26y2 if
y > 18 and |3x − 3y + 5| < 1 if y > 30. Hence we have that if y > 30, then 3x − 3y + 5 = 0,

therefore I(y) = 0, a contradiction. It remains to deal with the cases y ∈ [5, 6, . . . , 30]. It follows
that the only positive solution is given by (x, y) = (9, 11), that is we have

∞∑
k=0

Tk(−4,−5,−6)
9k+1

=
∞∑
k=0

Tk(1, 8, 18)

11k+1
=

1

1104
.

Example 5. Finally let us describe an example with identically zero I(y), in which case we obtain
infinitely many solutions. Let (a2, a1, a0) = (1, 6, 5) and (b2, b1, b0) = (4, 1, 1). It follows that

H(x, y) = x3 − y3 − x2 + 4y2 − 6x+ y − 4,

G(x, y) = 9x2 + 9xy + 9y2 − 18x− 27y − 36,

I(y) = 0.

We obtain that either 3x− 3y + 3 = 0 or G(x, y) = 0. In the former case y = x+ 1 and

∞∑
k=0

Tk(1, 6, 5)

xk+1
=
∞∑
k=0

Tk(4, 1, 1)

(x+ 1)k+1
=

1

x3 − x2 − 6x− 5
, x ≥ 4.

In the latter case we have that

0 = 12G(x, y) = 3(6x+ 3y − 6)2 + (9y − 12)2 − 684.

We do not get new integral solutions since the equation (9y − 12)2 + 3(6x+ 3y − 6)2 = 684 has
no solutions in Z.
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