Notes on Number Theory and Discrete Mathematics Print ISSN 1310-5132, Online ISSN 2367-8275

Vol. 25, 2019, No. 2, 40-48

DOI: 10.7546/nntdm.2019.25.2.40-48

Indispensable digits for digit sums

Ji Young Choi

Department of Mathematics, Shippensburg University of PA 1871 Old Main Dr., Shippensburg PA 17257, United States e-mail: jychoi@ship.edu

Received: 19 April 2018 Revised: 29 January 2019 Accepted: 1 February 2019

Abstract: Let b be an integer greater than 1 and g = b - 1. For any nonnegative integer n, we define *indispensable digits* in the base-b representation of n so that we can calculate the digit sum of the base-b representation of $g \cdot n$: Instead of adding every digit in it, we multiply g by the number of the indispensable digits in the base-b representation of n. Then, we find the formula to calculate the digit sum of $g \cdot n + r$ using the number of indispensable digits in n, for any nonnegative integers n and r with 0 < r < g.

Keywords: Digit sum, Indispensable digits, Digit sum congruence, Casting out nines, Divisibility test.

2010 Mathematics Subject Classification: 11A63, 11A07.

1 Introduction

Throughout this paper, let b be an integer greater than 1 and g = b - 1.

Definition 1.1. For any nonnegative integer m, the digit sum of the base-b representation of m, denoted by $s_b(m)$, is defined as

$$s_b(m) = \sum_{i=0}^k a_i,$$

where a_i 's $\in \{0, 1, 2, ..., g\}$ such that $m = \sum_{i=0}^k a_i b^i$.

It is well known that for any nonnegative integer m, $m \equiv s_b(m) \pmod{g}$ [5]. That is, for any nonnegative integers n and r with $0 \le r < g$,

$$s_b(q \cdot n + r) = q \cdot k + r,\tag{1.1}$$

for some integer k.

In this paper, we define *indispensable digits* in the base-b representation of any nonnegative integer as demonstrated in Definition 3.1. Then, we find k satisfying (1.1) using the number of indispensable digits in the base-b representation of n, instead of adding every digit in the base-b representation of $g \cdot n + r$.

In Section 2, we clarify notation for this paper. In Section 3, we define indispensable digits in the base-b representation of a nonnegative integer. In Section 4, we calculate the digit sum of the base-b representation of a multiple of g. Finally, in Section 5, we calculate the digit sum of the base b representation of an integer with a nonzero residue modulo g.

2 Notation

The set containing every finite string consisting of digits in $\{0, 1, 2, ..., g\}$, including the empty string ϵ , is denoted by $\{0, 1, 2, ..., g\}^*$. For any strings x and y in $\{0, 1, 2, ..., g\}^*$, the concatenation of x and y, denoted by xy, is the string obtained by joining x and y end-to-end. The concatenation of n x's is denoted by x^n , for any positive integer n [4]. That is, if $x = a_k \cdots a_1 a_0$ and $y = c_1 \cdots c_1 c_0$ for $a_i, c_i \in \{0, 1, 2, ..., g\}$,

$$xy = a_k \cdots a_1 a_0 c_l \cdots c_1 c_0$$
 and $x^n = xxx \cdots x(n \text{ times})$.

For example, the concatenation of 123 and 10 is 123 10 = 12310. The concatenation of n digit 1's is the string $1^n = \overbrace{11 \cdots 1}^{n \text{ times}}$.

Every nonempty string in $\{0, 1, 2, \dots, g\}^*$ represents a nonnegative integer. That is, for any $a_i \in \{0, 1, 2, \dots, g\}$, $a_k a_{k-1} \cdots a_1 a_0$ represents $\sum_{i=0}^k a_i b^i$, and we write

$$[a_k \cdots a_1 a_0]_b = \sum_{i=0}^k a_i b^i.$$

For example, $[011]_3 = 4 = [0011]_3$. If $a_k \neq 0$, we have a unique base-b representation of a nonnegative integer: for any nonnegative integer n, there exist unique a_i 's in $\{0, 1, 2, \ldots, g\}$ such that $n = \sum_{i=0}^{\lfloor \log_b n \rfloor} a_i b^i$. We write

$$(n)_b = a_{\lfloor \log_b n \rfloor} a_{\lfloor \log_b n \rfloor - 1} \cdots a_2 a_1 a_0,$$

and we call it the b-ary string of n. For example, $(4)_3 = 11$. Note that $[(n)_b]_b = n$ for any nonnegative integer n, but it is not always true that $([x])_b = x$ for its b-ary string x [4].

For any string x, |x| denotes the number of digits in x, and for any nonnegative integer n, $l_b(n)$ denotes the number of digits in $(n)_b$: if $(n)_b = x = a_k a_{k-1} \cdots a_1 a_0$ for some digit $a_i \in \{0, 1, 2, \dots, g\}$,

$$|x| = k + 1 = |\log_b n| + 1 = l_b(n).$$

For example, $l_3(4) = 2$.

3 Indispensable digits

Definition 3.1. For any digits a_i 's and a string $x = a_m a_{m-1} \cdots a_1 a_0$, a_i is called *indispensable* in x, if $a_i = a_{i-1} = a_{i-2} = \cdots = a_{i-k+1} > a_{i-k}$ for some positive integer $k \le i+1$, considering $a_{-1} = 0$; otherwise, *dispensable* in x. The number of indispensable digits in x is denoted by $\iota(x)$.

For example, consider x=288943771. Then, digits 9, 4, 7, 7, 1 are indispensable in x, because 9>4>3 and $7=7>1>0=a_{-1}$, and digits 2, 8, 8, 3, are dispensable in x, because 2<8=8<9 and 3<7. Hence, $\iota(2889\dot{4}37\dot{7}\dot{1})=5$

Note 3.2. *Digit 0 is always dispensable in any string.*

For a nonzero digit to be dispensable, we have the following:

Lemma 3.3. For any digit a_i 's and any string $x = a_m a_{m-1} \cdots a_1 a_0$, if $a_i \neq 0$ and a_i is dispensable in x, $a_i = a_{i-1} = a_{i-2} = \cdots = a_{i-k+1} < a_{i-k}$ for some positive integer $k \leq i$.

Proof. Suppose $a_i = a_{i-1} = \cdots = a_{i-k+1} \ge a_{i-k}$ for all $k \le i$. If $a_i = a_{i-1} = \cdots = a_{i-k+1} > a_{i-k}$ for some $k \le i$, a_i is indispensable. Otherwise, $a_i = a_{i-1} = \cdots = a_1 = a_0$. Since a_i is nonzero, $a_i = a_0 > 0 = a_{-1}$. Hence, a_i is indispensable.

Now we consider the number of indispensable digits in the b-ary string of a nonnegative integer:

Definition 3.4. For any nonnegative integer n, we denote the number of indispensable digits in $(n)_b$ by $\iota_b(n)$.

For example, $\iota_3(50) = \iota(\dot{1}\dot{2}\dot{1}\dot{2}) = 2$, since $(50)_3 = 1212$. Then, the following is obvious:

Note 3.5. For any nonnegative integer n,

- 1. If $n = [a_m \cdots a_1 a_0]_b$, $\iota_b(n) = \iota(a_m \cdots a_1 a_0)$;
- 2. $\iota_b(n) = 0$ if and only if n = 0;
- 3. $\iota_b(n) \leq l_b(n)$.

In general, n < m does not imply $\iota_b(n) \le \iota_b(m)$. However, $[1^k]_b = [111 \cdots 1]_b$ is the least positive integer with k indispensable digits in the base-b system.

Lemma 3.6. For any nonnegative integer n and a positive integer k,

if
$$n < [1^k]_b$$
, $\iota_b(n) < k$.

Proof. Since $n < [1^k]_b$, $l_b(n) \le |1^k| = k$. If $l_b(n) < k$, $\iota_b(n) \le l_b(n) < k$. If $l_b(n) = k$, $(n)_b = a_{k-1} \cdots a_1 a_0$ for some digits a_i 's in $\{0, 1, 2, \ldots, g\}$. Since $n < [1^k]_b$, $a_i < 1$ for some i, i.e., $a_i = 0$ for some i. Since digit 0 is dispensable, $\iota_b(n) \le k - 1$.

For example, for any positive integer n,

if
$$n < [11]_b = [1^2]_b$$
, $\iota_b(n) < 2$ so $\iota_b(n) = 1$. (3.1)

To simplify the further discussion in the following sections, we define a sequence as follows:

Definition 3.7. For any positive integer k, u_k is defined by $u_1 = [11]_b$; $u_k = [1^{u_{k-1}}]_b$.

That is,

By Definition 3.7 and Lemma 3.6, for any nonnegative integer n and a positive integer k,

if
$$n < u_k, \ \iota_b(n) < u_{k-1}$$
. (3.2)

Theorem 3.8. For any positive integers k and n,

if
$$n < u_k$$
, $\iota_b^k(n) = 1$ (3.3)

Proof. The proof is done by mathematical induction on k. The base case is shown in (3.1). Induction hypothesis: assume $\iota_b^{k-1}(n) = 1$ for any positive integer $n < u_{k-1}$. Suppose $n < u_k$. Then, $\iota_b(n) < u_{k-1}$ by (3.2). Hence, by the induction hypothesis, $\iota_b^k(n) = \iota_b^{k-1}(\iota_b(n)) = 1$.

4 Digit sums for multiples of g

In the base-b system, the product of q by a single digit is as follows:

Lemma 4.1. For any digit $a \in \{0, 1, 2, ..., g\}$,

$$g \cdot a = [a - \delta, b \cdot \delta - a]_b$$
, where $\delta = \begin{cases} 0, & \text{if } a = 0; \\ 1, & \text{if } a \neq 0. \end{cases}$

Proof. If a = 0, $g \cdot 0 = 0 = [00]_b$. Otherwise, $1 \le a \le g$, so a - 1 and b - a are digits in $\{0, 1, 2, \dots, g\}$, and $[a - 1, b - a]_b = (a - 1)b + (b - a) = g \cdot a$.

Hence, the digit sum, $s_b(g \cdot n)$, for any nonnegative integer n with $l_b(n) = 1$, is as follows:

Corollary 4.2. For any integer n in $\{0, 1, 2, \dots, g\}$,

$$s_b(g \cdot n) = \begin{cases} g \cdot 0, & \text{if } n = 0; \\ g \cdot 1, & \text{if } n > 0. \end{cases}$$

Proof. It is obtained by Lemma 4.1.

To help the further discussion on the digit sum, we define the following:

Definition 4.3. For any nonnegative integer n and any digit a_i in $\{0, 1, 2, ..., g\}$, if $(n)_b = a_m a_{m-1} ... a_1 a_0$, we define the b^i -th place sum in $g \cdot n$, denoted by σ_i , as follows:

$$\sigma_0 = b \cdot \delta_0 - a_0$$
; $\sigma_i = b \cdot \delta_{i+1} - a_{i+1} + a_i - \delta_i (k = 1, 2, ..., m)$; $\sigma_{m+1} = a_m - \delta_m$,

where $\delta_i = 0$ if $a_i = 0$; 1 otherwise, for all i.

If $0 < a_k = a_{k-1} = \cdots = a_{k-j+1} \neq a_{k-j}$, $\sigma_i = b - a_k + a_k - 1 = g$ for all $i = k, k-1, \ldots, k-j+2$. That is,

If $a_k > a_{k-j} > 0$, $\sigma_{k-j+1} < g-1$. Even if the b^{k-j} -th place sum exceeds b so there is an increase in σ_{k-j+1} by 1, $\sigma_{k-j+1}+1 \le g$. If $a_k > a_{k-j} = 0$, $\sigma_{k-j+1} \le g$ but there is an increase in σ_{k-j+1} , so $\sigma_{k-j+1}+1 \le g$. Hence, the b^i -th place digit in $(g \cdot n)_b$ becomes g for all $i=k,k-1,\ldots,k-j+2$. Since we gain another g by canceling a_k 's in the b^{k+1} -th place digit and the b^{k-j+1} -th place digit, every digit a_i for $i=k,k-1,\ldots,k-j+1$ affects the digit sum $s_b(g \cdot n)$.

If $a_k < a_{k-j}$, $\sigma_{k-j+1} > g$, so the b^{k-j+1} -th place sum decreases by b and the b^{k-j+2} -th place sum increases by 1. Since g+1=b, so the b^i -th place digit $(g\cdot n)_b$ becomes 0 for all $i=k,k-1,\ldots,k-j+2$. Since we cancel a_k by adding the b^{k+1} -th place digit and the b^{k-j+1} -th place digit, every digit a_i for $i=k,k-1,\ldots,k-j+1$ does not affect the digit sum $s_b(g\cdot n)$.

Therefore, the number of digits to determine the digit sum $s_b(g \cdot n)$ is the number of indispensable digits in the b-ary string of n.

Theorem 4.4. For any nonnegative integer n, $s_b(g \cdot n) = g \cdot \iota_b(n)$.

Proof. The proof is done by mathematical induction on $l_b(n)$. The base case, when $l_b(n) = 1$, is covered by Corollary 4.2. Induction Hypothesis: assume if $l_b(n) \le k$, $s_b(g \cdot n) = g \cdot \iota_b(n)$.

Consider n with $l_b(n) = k+1$. Then, $(n)_b = a_k a_{k-1} \cdots a_1 a_0$ for some $a_i \in \{0, 1, 2, \dots, g\}$ and $a_k \neq 0$. Then, by Definition 3.1 and Lemma 3.3,

if
$$a_k$$
 is indispensable, $a_k = a_{k-1} = \cdots = a_{k-i+1} > a_{k-i}$

for some positive integer $j \le k + 1$ and

if
$$a_k$$
 is dispensable, $a_k = a_{k-1} = \cdots = a_{k-i+1} < a_{k-i}$

for some positive integer $j \le k$. Since $a_k \ne 0$, by Lemma 4.1,

$$g \cdot a_i = [a_k - 1, b - a_k]_b$$
 for all $i = k, k - 1, \dots, k - j + 1$;
 $g \cdot a_{k-j} = [a_{k-j} - \delta_{k-j}, *]_b$, where $\delta_{k-j} = 0$ if $a_{k-j} = 0$; 1 else.

Then, the b^i -th place sum in $g \cdot n$ for $i = k - j + 1, \dots, k + 1$ is

$$\sigma_{k+1} = a_k - 1; \ \sigma_i = g \ (i = k, k - 1, \dots, k - j + 2); \ \sigma_{k-j+1} = b - a_k + a_{k-j} - \delta_{k-j}.$$

Let c_i be a digit satisfying $g \cdot n = [c_{k+1}c_k \cdots c_1c_0]_b$. Consider δ' as a possible increase 1 in the b^{k-j+1} -th place sum in $g \cdot n$. Then,

$$g \cdot [a_{k-j} \cdots a_1 a_0]_b = [a_{k-j} - \delta_{k-j} + \delta', c_{k-j} \cdots c_1 c_0]_b,$$

where

$$\delta' = \left\{ \begin{array}{ll} 1, & \text{if the } b^{k-j}\text{-th place sum in } g \cdot n \text{ exceeds } g; \\ 0, & \text{otherwise.} \end{array} \right.$$

Let $\delta = \delta_{k-j} - \delta'$. Since there is no increase in b^{k-j+1} -th place sum in $g \cdot n$ when $a_{k-j} = 0$,

$$\delta = \left\{ \begin{array}{l} 0, \quad \text{if } a_{k-j} = 0; \\ 0, \quad \text{if } a_{k-j} \neq 0 \text{ and the } b^{k-j}\text{-th place sum in } g \cdot n \text{ exceeds } g; \\ 1, \quad \text{if } a_{k-j} \neq 0 \text{ and the } b^{k-j}\text{-th place sum in } g \cdot n \text{ does not exceed } g. \end{array} \right.$$

Hence,

$$s_b(g \cdot [a_{k-j} \cdots a_1 a_0]_b) = (a_{k-j} - \delta) + \sum_{i=0}^{k-j} c_i \text{ for some } \delta = 0 \text{ or } 1.$$

If a_k is indispensable, $-g \le a_{k-j} - a_k \le -1$. Then,

$$0 \le \sigma_{k-j+1} + \delta' = a_{k-j} - a_k + b - \delta \le g.$$

Thus, there is no increase in each b^i -th place sum for all $i = k + 1, k, \dots, k - j + 1$, so

$$c_{i} = \begin{cases} \sigma_{k-j+1} + \delta' = b - a_{k} + a_{k-j} - \delta, & \text{if } i = k - j + 1; \\ \sigma_{i} = g, & \text{if } i = k, k - 1, \dots, k - j + 2; \\ \sigma_{k+1} = a_{k} - 1, & \text{if } i = k + 1. \end{cases}$$

Hence,

$$s_b(g \cdot n) = a_k - 1 + (j-1) \cdot g + (b-a_k) + (a_{k-j} - \delta) + \sum_{i=0}^{k-j} c_i$$

= $g \cdot j + s_b(g \cdot [a_{k-j} \dots a_1 a_0]_b).$

Since a_i is indispensable for all $i=k,k-1,\ldots,k-j+1$, $\iota_b([a_{k-j}\cdots a_1a_0]_b)=\iota_b(n)-j$. By the induction hypothesis, $s_b(g\cdot [a_{k-j}\ldots a_1a_0]_b)=g\cdot (\iota_b(n)-j)$. Therefore,

$$s_b(g \cdot n) = g \cdot j + g \cdot (\iota_b(n) - j) = g \cdot \iota_b(n).$$

If a_k is dispensable, $1 \le a_{k-j} - a_k < g$, since $a_k \ne 0$. Then,

$$b \le \sigma_{k-j+1} + \delta' = a_{k-j} - a_k + b - \delta < b + g.$$

To find c_i 's, the b^{k-j+1} -th place sum decreases by b and the b^{k-j+2} -th place sum increases by 1. Since $\sigma_i+1=b$ for all $i=k-j+2,\ldots,k$, every σ_i+1 decreases by b again, and the b^{k+1} -th place sum increases by 1. Thus,

$$c_{i} = \begin{cases} \sigma_{k-j+1} + \delta' - b = -a_{k} + a_{k-j} - \delta, & \text{if } i = k - j + 1; \\ \sigma_{i} + 1 - b = 0, & \text{if } i = k, k - 1, \dots, k - j + 2; \\ \sigma_{k+1} + 1 = a_{k}, & \text{if } i = k + 1, \end{cases}$$

Hence,

$$s_b(g \cdot n) = a_k + (j-1) \cdot 0 + (-a_k) + (a_{k-j} - \delta) + \sum_{i=0}^{k-j} c_i = s_b(g \cdot [a_{k-j} \cdots a_1 a_0]_b)$$

By the induction hypothesis, $s_b(g \cdot [a_{k-j} \cdots a_1 a_0]_b) = g \cdot \iota(a_{k-j} \cdots a_1 a_0)$. Since a_i is dispensable for all $i = k, k-1, \ldots, k-j+1$, $\iota_b([a_{k-j} \cdots a_1 a_0]_b) = \iota_b(n)$. Therefore, $s_b(g \cdot n) = g \cdot \iota_b(n)$. \square

Example 4.5.

$$s_{10}(9 \cdot 11123455567000) = 9 \cdot \iota_{10}(11123455567000) = 9 \cdot 1 = 9;$$

 $s_{10}(9 \cdot 4355722256611) = 9 \cdot \iota_{10}(4355722256611) = 9 \cdot 6 = 54.$

Corollary 4.6. For any positive integer n, if $n < u_k$, $s_b^k(g \cdot n) = g$.

Proof. It is obtained by Theorem 4.4 and Theorem 3.8.

5 Digit sums of integers with a nonzero residue modulo g

Now we consider integers with a nonzero remainder when divided by g: consider $g \cdot n + r$ for any nonnegative integer n and r with $0 < r \le g$. Let a_i , c_i , and c'_i be digits in $\{0, 1, 2, \ldots, g\}$ such that

$$n = [a_m a_{m-1} \cdots a_1 a_0]_b; \ g \cdot n = [c_{m+1} c_m \dots c_1 c_0]_b; \ g \cdot n + r = [c'_{m+1} c'_m \dots c'_1 c'_0]_b.$$

By Lemma 4.1, $c_0 = 0$ if $a_0 = 0$; $b - a_0$ if $a_0 > r$. Hence, $c_0 + r = r < b$ if $a_0 = 0$; $b - a_0 + r < b$ if $a_0 > r$, so $c'_0 = c_0 + r$ and $c'_i = c_i$ for all i > 0. Therefore,

if
$$a_0 = 0$$
 or $a_0 > r$, $s_b(g \cdot n + r) = \sum_{i=0}^{m+1} c_i + r = s_b(g \cdot n) + r$. (5.1)

Assume $0 < a_0 \le r$. If $a_p \ne a_{p-1} = a_{p-2} \cdots = a_1 = a_0$, the b^i -th place sum in $g \cdot n$ for $i = p, p-1, \ldots, 1, 0$ is

$$\sigma_p = b \cdot \delta_p - a_p + a_0 - 1; \ \sigma_i = b - a_0 + a_0 - 1 = g \ (i = 1, 2, \dots, p - 1); \ \sigma_0 = b - a_0,$$

where $\delta_p = 0$ if $a_p = 0$; 1 else. That is,

If $a_p=0$, $\sigma_p=a_0-1 < g$, so $c_p=\sigma_p < g$. If $a_p \neq 0$, $\sigma_p=g-(a_p-a_0)$, Since $a_p \neq a_0$, $1 \leq |a_p-a_0| \leq g-1$, so $1 \leq \sigma_p < g$ or $b \leq \sigma_p < 2g$. Thus, if $1 \leq \sigma_p < g$, $c_p=\sigma_p < g$, and if $b \leq \sigma_p < 2g$, $c_p=\sigma_p-b < 2g-b < g$. Therefore,

$$c_p < g; c_i = g \ (i = p - 1, p - 2, \dots, 1); c_0 = b - a_0.$$

Since $c_0 + r = b - a_0 + r \ge b$ and $c_p < g$,

$$c'_p = c_p + 1; \ c'_i = 0 \ (i = p - 1, p - 2, \dots, 1); \ c'_0 = c_0 + r - b.$$

Hence,

$$s_b(g \cdot n + r) = (c_0 + r - b) + (c_p + 1) + \sum_{i=p+1}^{m+1} c_i = \sum_{i=0}^{m+1} c_i - \sum_{i=1}^{p-1} c_i - g + r = s_b(g \cdot n) - g \cdot p + r.$$

That is,

if
$$0 < a_0 \le r$$
, $s_b(g \cdot n + r) = s_b(g \cdot n) - g \cdot p + r$. (5.2)

Theorem 5.1. For any nonnegative integers n and r with 0 < r < g, let a_i be a digit in $\{0, 1, 2, \ldots, g\}$ such that $(n)_b = a_m a_{m-1} \cdots a_1 a_0$ and $a_p \neq a_{p-1} = a_{p-2} = \cdots = a_1 = a_0$. Then,

$$s_b(g \cdot n + r) = \begin{cases} g \cdot \iota_b(n) + r, & \text{if } a_0 = 0 \text{ or } a_0 > r; \\ g \cdot (\iota_b(n) - p) + r, & \text{if } 1 \le a_0 \le r. \end{cases}$$
 (5.3)

Proof. It is obtained by Theorem 4.4, (5.1), and (5.2).

Example 5.2.

$$s_{10}(9 \cdot 7\dot{6}23\dot{4}\dot{4}000 + 3) = 9 \cdot 4 + 3 = 39;$$

$$s_{10}(9 \cdot 7\dot{6}2344\dot{5}\dot{5}\dot{5} + 3) = 9 \cdot 5 + 3 = 48;$$

$$s_{10}(9 \cdot 7\dot{6}2344\dot{5}\dot{5}\dot{5} + 5) = 9 \cdot (5 - 3) + 5 = 23;$$

$$s_{10}(9 \cdot 7\dot{6}\dot{6}2344\dot{5}\dot{5} + 6) = 9 \cdot (5 - 2) + 6 = 33.$$

Combining Theorem 4.4 and Theorem 5.1, we have the following:

Remark 5.3. For any nonnegative integers n and r with $0 \le r < g$,

$$s_b(g \cdot n + r) = g \cdot (\iota_b(n) - p) + r$$

for some nonnegative integer $p \leq \iota_b(n)$.

Corollary 5.4. For any nonnegative integers n and r with 0 < r < g,

if
$$n < u_k$$
, $s_b^{k+1}(g \cdot n + r) = r$.

Proof. The proof is done by mathematical induction on k. When k = 1, $n < u_1 = [1^2]_b$. Then, by Lemma 3.6, $\iota_b(n) = 0$ or 1, and thus, by Theorem 5.1,

$$s_b(g \cdot n + r) = \text{ either } g \cdot 0 + r = [r]_b \text{ or } g \cdot 1 + r = b + r - 1 = [1, r - 1]_b.$$

Hence, $s_b(s_b(g \cdot n + r)) = r$.

Induction hypothesis: assume $s_b^k(g \cdot n + r) = r$ for any nonnegative integer $n < u_{k-1}$. If $n < u_k, \iota_b(n) < u_{k-1}$ by (3.2). By Remark 5.3,

$$s_b(g \cdot n + r) = g \cdot (\iota_b(n) - p) + r$$
 for some nonnegative integer $p \le \iota_b(n)$.

Since $\iota_b(n) < u_{k-1}, \iota_b(n) - p < u_{k-1}$. Hence, by the induction hypothesis,

$$s_b^k(s_b(q \cdot n + r)) = s_b^k(q \cdot (\iota_b(n) - p) + r) = r.$$

References

- [1] Atanassov, K. (1985). An arithmetic function and some of its applications, *Bull. of Number Theory and Related Topics*, 9, 18–27.
- [2] Atanassov, K. (2015). A digital arithmetical function and some of its applications, *Proceedings of the Jangjeon Mathematical Society*, 18 (4), 511–528.
- [3] Datta, D. & Singh, A. N. (1962). *History of Hindu Mathematics: A Source Book*, Asia Publishing House, Bombay, Available online at: https://ia801600.us.archive.org/20/items/HinduMathematics/HinduMathematics.pdf
- [4] Shallit, J. (2009). A Second Course in Formal Languages and Automata Theory, Cambridge University Press, New York.
- [5] Weisstein, E. W. *MathWorld-A Wolfram Web Resource*, Available online at: http://mathworld.wolfram.com/DigitSum.html.