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Abstract: Let b be an integer greater than 1 and ¢ = b — 1. For any nonnegative integer n,
we define indispensable digits in the base-b representation of n so that we can calculate the digit
sum of the base-b representation of ¢ - n: Instead of adding every digit in it, we multiply g by the
number of the indispensable digits in the base-b representation of n. Then, we find the formula
to calculate the digit sum of g - n + r using the number of indispensable digits in n, for any
nonnegative integers 7 and r with 0 < r < g.
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1 Introduction

Throughout this paper, let b be an integer greater than 1 and g = b — 1.

Definition 1.1. For any nonnegative integer m, the digit sum of the base-b representation of m,
denoted by s;(m), is defined as

k
sp(m) = Zai,
i=0
where a;’s € {0,1,2,...,g} such that m = Zf:o a;b'.

It is well known that for any nonnegative integer m, m = s,(m) (mod g) [5]. That is, for any
nonnegative integers n and r with 0 < r < g,

sp(g-n+r)=9g-k+r, (1.1

for some integer k.
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In this paper, we define indispensable digits in the base-b representation of any nonnegative
integer as demonstrated in Definition 3.1. Then, we find £ satisfying (1.1) using the number of
indispensable digits in the base-b representation of n, instead of adding every digit in the base-b
representation of g - n + r.

In Section 2, we clarify notation for this paper. In Section 3, we define indispensable digits in
the base-b representation of a nonnegative integer. In Section 4, we calculate the digit sum of the
base-b representation of a multiple of g. Finally, in Section 5, we calculate the digit sum of the
base b representation of an integer with a nonzero residue modulo g.

2 Notation

The set containing every finite string consisting of digits in {0, 1,2, ..., g}, including the empty
string ¢, is denoted by {0,1,2,...,¢}*. For any strings x and y in {0,1,2,..., g}*, the con-
catenation of x and y, denoted by xy, is the string obtained by joining = and y end-to-end. The
concatenation of n z’s is denoted by x", for any positive integer n [4]. That is, if x = ay - - - a1a9
andy = ¢+ - cieo fora;, ¢; € {0,1,2,..., g},

XY = ag---ajapc; - -+ 1o and 2" = xxw - - - x(n times).
For example, the concatenation of 123 and 10 is 123 10 = 12310. The concatenation of n digit

n times

1’s is the string 1" = 11--- 1.

Every nonempty string in {0, 1,2, ..., g}* represents a nonnegative integer. That is, for any
a; €{0,1,2,..., g}, arag_1 - - - ayao represents Zf:o a;b', and we write
k
lag - - ajaplp = Z a;b'.
=0
For example, [011]3 = 4 = [0011];. If ax # 0, we have a unique base-b representation of a
nonnegative integer: for any nonnegative integer n, there exist unique a;’s in {0, 1,2, ..., g} such

that n = S 1% ") 4, We write

(n)b = Q|log, n|Q|log, n]—1 " " A20A100,

and we call it the b-ary string of n. For example, (4);3 = 11. Note that [(n)y], = n for any
nonnegative integer 7, but it is not always true that ([z]), = x for its b-ary string x [4].

For any string z, |z| denotes the number of digits in z, and for any nonnegative integer n,
ly(n) denotes the number of digits in (n),: if (n), = © = agax_1 - - - a1ao for some digit a; €
{0,1,2,...,¢9},

|z =k+1=llog,n| +1=1(n).

For example, /3(4) = 2.
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3 Indispensable digits

Definition 3.1. For any digits a;’s and a string © = a,,a,,_1 - - - a1ao, a; is called indispensable in
x,ifa; =a;1 = a;_9 = --- = a;_p11 > a;_ for some positive integer £ < ¢ + 1, considering
a_1 = 0; otherwise, dispensable in x. The number of indispensable digits in x is denoted by ¢().

For example, consider x = 288943771. Then, digits 9, 4, 7, 7, 1 are indispensable in z, because
9>4>3and7=7>1>0 = a_y, and digits 2, 8, 8, 3, are dispensable in x, because
2 <8=28<9and3 < 7. Hence, 1(288943771) = 5

Note 3.2. Digit O is always dispensable in any string.
For a nonzero digit to be dispensable, we have the following:

Lemma 3.3. For any digit a;’s and any string x = Q,,0p—1 - - - G100, if a; # 0 and a; is dispens-

ableinx, a; =a;_ 1 = a; o=+ = a;_p11 < a;_i for some positive integer k < 1.

Proof. Suppose a; = a; 1 = -+ = a;_11 > a;pforallk <i. Ifa; =a,1 = = a; 11 >
a;_j for some k < i, a; is indispensable. Otherwise, a; = a;_1 = -+ = a; = ap. Since a; is
nonzero, a; = ay > 0 = a_;. Hence, a; is indispensable. L]

Now we consider the number of indispensable digits in the b-ary string of a nonnegative
integer:

Definition 3.4. For any nonnegative integer n, we denote the number of indispensable digits in
(n)y by w(n).

For example, 13(50) = ¢(1212) = 2, since (50)3 = 1212. Then, the following is obvious:
Note 3.5. For any nonnegative integer n,

L Ifn=ay - araoly, tp(n) = t(am - arap);

2. w(n) =0ifand only if n = 0;

3. w(n) < l(n).
k
In general, n < m does not imply ¢,(n) < t,(m). However, [1¥], = [111--- 1], is the least
positive integer with £ indispensable digits in the base-b system.

Lemma 3.6. For any nonnegative integer n and a positive integer k,
ifn < [1¥,, w(n) < k.

Proof. Since n < [1¥],, l(n) < [1¥| = k. If [y(n) < k, w(n) < l(n) < k. If l(n) = k,
(n)y = ag_1 - - - ayag for some digits a;’s in {0,1,2,...,g}. Since n < [1¥],, a; < 1 for some 1,
i.e., a; = 0 for some i. Since digit 0 is dispensable, 1,(n) < k — 1. L]
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For example, for any positive integer n,

if n < [11], = [1%]y, t(n) < 250 1(n) = 1. (3.1
To simplify the further discussion in the following sections, we define a sequence as follows:
Definition 3.7. For any positive integer k, uy, is defined by uy = [11]5; up = [1“4-1],.
That is,

u = [11](,,
(1],

Uy = [1[1”1’]1; = 11...1%;

Uk—1

w, = [1"1], = [111111111111111111111 - - - 1],

By Definition 3.7 and Lemma 3.6, for any nonnegative integer n and a positive integer k,
ifn <ug, tp(n) < ugp_q. (3.2)

Theorem 3.8. For any positive integers k and n,

ifn <u tf(n) =1 (3.3)
Proof. The proof is done by mathematical induction on k. The base case is shown in (3.1).
Induction hypothesis: assume ng_l(n) = 1 for any positive integer n < uj_;. Suppose n < Uy.

Then, 1;(n) < ug_; by (3.2). Hence, by the induction hypothesis, 1 (n) = 1f *(1p(n)) = 1. O

4 Digit sums for multiples of g

In the base-b system, the product of g by a single digit is as follows:

Lemma 4.1. For any digita € {0,1,2,...,g},

0, ifa=0;

g.a:[a—é,b-é—a}b,whereéz{ 1. ifao.

Proof. If a = 0, g- 0 = 0 = [00],. Otherwise, 1 < a < g, soa — 1 and b — a are digits in
{0,1,2,...,¢9},and [a — L, b—alp=(a—1)b+(b—a) =g -a. O
Hence, the digit sum, s,(g - n), for any nonnegative integer n with [,(n) = 1, is as follows:

Corollary 4.2. For any integer nin {0,1,2,..., g},

9-0, ifn=0;

sp(g-n) = ,
g-1, ifn>0.

Proof. It is obtained by Lemma 4.1. [
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To help the further discussion on the digit sum, we define the following:

Definition 4.3. For any nonnegative integer n and any digit a; in {0,1,2,... ¢}, if (n), =
A1 - - . @1 0o, we define the b'-th place sum in g - n, denoted by o;, as follows:

g9g=0b-0y—ag; 05 =">b-0i41 —ai+1+ai—5i(k: 1727---77”); Tmi1 = A — O,
where 9; = 0 if a¢; = 0; 1 otherwise, for all 4.

IfO < ar = a1 = -+ = Qp—jy1 # Ap—j, 06, = b—ap +a, —1 = gforall i =
k,k—1,...,k— 7+ 2. Thatis,

g
><) s ay Ap—1 ce Af—j42 Af—j4+1 A—j
Ap—j (Sk,j *
ap — 1 b— ar
b— Qg
Qp — 1

(lk—l b—CLk
(lk—l b—ak

*

ap — 1+ % g g g b— ay
+ak_j—5k_j

If ap, > ap—; > 0, 0p—j41 < g — 1. Even if the b¥~I-th place sum exceeds b so there is
an increase in 0.1 by 1, op—j 1 +1 < g. If ap, > ap—; = 0, op—j41 < g but there is an
increase in oj_j41, $0 0x—j+1 + 1 < g. Hence, the b'-th place digit in (g - ), becomes g for all
i=kk—1,...,k—j+2. Since we gain another g by canceling a;’s in the b**!-th place digit
and the b*~7*+1-th place digit, every digit a; fori = k,k — 1,...,k — j + 1 affects the digit sum
sp(g - n).

If a, < ax_j, Ok_j+1 > g, so the b*~7F1-th place sum decreases by b and the b*~7+2-th
place sum increases by 1. Since g + 1 = b, so the b’-th place digit (g - n), becomes 0 for all
i=kk—1,... k—j+2. Since we cancel a; by adding tbe b**'-th place digit and the b*~7+1-th
place digit, every digit a; fori = k, k — 1,...,k — j + 1 does not affect the digit sum s,(g - n).

Therefore, the number of digits to determine the digit sum s,(¢g - n) is the number of indis-
pensable digits in the b-ary string of n.

Theorem 4.4. For any nonnegative integer n, sy(g-n) = g - tp(n).

Proof. The proof is done by mathematical induction on [,(n). The base case, when [,(n) = 1, is
covered by Corollary 4.2. Induction Hypothesis: assume if [,(n) < k, s3(g - n) = g - tp(n).

Consider n with [(n) = k + 1. Then, (n), = agax—_1 - - - a1ao for some a; € {0,1,2,...,g}
and ay, # 0. Then, by Definition 3.1 and Lemma 3.3,

if ay, 1s indispensable, a = ay_1 = - - - = ap_j41 > Ap—;
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for some positive integer j < k£ + 1 and
if ay, is dispensable, ar, = a1 = -+ = ap_j41 < ap—;j
for some positive integer j < k. Since a; # 0, by Lemma 4.1,

g-a;=lar —1,b— aglp foralli =k, ,k—1,....k—j+1;
g-ap_j = |ag—j — Op—j, * |p, Wwheredy_; =0ifa,_; =0; 1 else.

Then, the b'-th place suming-nfori =k —j+1,...,k+1is
oppr=ar— L o=g(i=kk—1,...k—j+2); Op—jr1 =b—ap + ar_j — op—j.

Let ¢; be a digit satisfying g -n = [cx1¢k - - - c1¢0]p. Consider & as a possible increase 1 in the
b¥=i*1_th place sum in ¢ - n. Then,

g- [Gk—j e 'G16L0]b = [ak—j - 5k—j + 5/, Ck—yj 'Clco]b,

where
5 — 1, if the b*7-th place sum in g - n excceeds g;
0, otherwise.

Let § = d;_; — &'. Since there is no increase in b*~!-th place sum in g - n when a;_; = 0,

0, ifay_; =0;
=< 0, ifag_;# 0and the b*7-th place sum in g - n excceeds g;
1, if ax_; # 0 and the b*~7-th place sum in g - n does not excceed g.
Hence,
k—j
sp(g - [ag—j - - araoly) = (ag—; — 0) + Z ¢; for some § = 0 or 1.
=0
If a4, 1s indispensable, —g < a;_; — ap < —1. Then,

0SUk_j+1+5':ak_j—ak+b—5§g.
Thus, there is no increase in each b'-th place sum forall i = k + 1,k,... .,k — j + 1, so

O'k_j+1—|—(5/=b—(lk+(lk_j—(5, le:k—j+1,
=4 0;,=4g, ife=kk—-1,....k—75+2;

Tpsr = ap — 1, ifi=k+ 1.

Hence, A
s(g-n) =ar—1+(—=1)-g+(b—a) + (ar; —6) + 317
=g-J+s(g-[ar—j...araolp).

Since q; is indispensable forall i = k, k —1,...,k —j + 1, y([ak—; - - - ara0p) = t(n) — j. By
the induction hypothesis, s,(g - [ax—; - .. a1a0ly) = g - (ty(n) — 7). Therefore,

sp(g-n)=g-7+g-(n)—7)=g-wn).
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If ay, is dispensable, 1 < a;_; — a < g, since a; # 0. Then,
b§0k7j+1+(5’:ak,j—ak+b—(5<b—|—g.

To find ¢;’s, the b*~7*!-th place sum decreases by b and the b*~7+2-th place sum increases by 1.
Since 0; + 1 =bforalli = k — j +2,..., k, every o; + 1 decreases by b again, and the v**!-th
place sum increases by 1. Thus,

O'kij+1+(5l—b:_ak+ak7j_5, le:k_]+1;
ak+1—|—1:ak, le:k"l—l,

Hence,

e

sp(g-n) =ar+(j = 1) - 04 (—ar) + (ar—; = 6) + ) _ i = s(g - [ar—; - - araoly)

i

Il
o

By the induction hypothesis, s,(g - [ax—; - - - a1ao]s) = g - t(ax—; - - - a1ap). Since a; is dispensable
foralli =k, k—1,....k—7+1, t([ax—; - - - a1a0]p) = tp(n). Therefore, sp(g-n) = g-wp(n). O

Example 4.5.

$10(9 - 11123455567000) = 9 - 119(11123455567000) = 9 - 1 = 9;
510(9 - 4355722256611) = 9 - 110(4355722256611 = 9 - 6 = 54.

Corollary 4.6. For any positive integer n, if n < uy, sf(g-n) = g.

Proof. 1t is obtained by Theorem 4.4 and Theorem 3.8. ]

5 Digit sums of integers with a nonzero residue modulo g

Now we consider integers with a nonzero remainder when divided by g: consider g - n 4 for any
nonnegative integer n and r with 0 < r < g. Let a;, ¢;, and ¢, be digits in {0,1,2,..., ¢} such
that

N = [Qpmm_1 - a1Go)p; g1 = [Cm41Cm ... C1C0Jp; G- N AT = [ q1Ch ... CiC)]b

By Lemma4.1, ¢y = 0ifag = 0; b—ag if ag > r. Hence, co+r =r < bifag =0;0—apg+r < b
if ag > 7,0 ¢, = ¢o + r and ¢, = ¢; for all i > 0. Therefore,

m+1
ifag=0orag>r,s(g-n+r)= Zcﬂ—r =s(9-m)+r. (5.1)
1=0
Assume 0 < ag < 7. Ifa, # ap—1 = ap_2--- = a1 = ao, the b-th place sum in g - n for

t=p,p—1,...,1,01s
op=0b-0,—a,+a—1;0,=b—ap+a—1=g(i=12,...,p—1); 09 =b— ao,
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where 9, = 0 if a, = 0; 1 else. That is,

g
X) e a, Ap—1  QAp_o -+ a9 a ao

&0—1 b—ao
(1,0—1 b—ao

b—ag
apg — 1
ap—1 b—ag
agp— 1 b—ag
x b0y —a
ag— 1 g g g g b—ag

+b -0, — a,

Ifa, =0,0, =0a9p—1<g,s0¢c, =0, <g. Ifa, # 0,0, =g — (a, — ap), Since a, # ao,
1<la,—ap|<g—1,s01<0,<gorb<o,<2g. Thus,if 1 <o, <g,c,=0,<g,andif
b<o,<2g,¢,=0,—b<2g—b<g. Therefore,

p<gc=gli=p—1,p—2,...,1); co = b— ay.
Since co +r =b—ag+r >bandc, < g,

¢,=c+1;=0(i=p—-1,p—2,...,1); qg=co+7—b.

Hence,
m+1 m+1 p—1
sp(g-n+71)=(co+7r—0)+(cp+1)+ Z ¢ = Zci—Zci—g—l—r =sp(g-n)—g-p+r.
i=p+1 i=0 i=1
That is,
if0<ay<r,s(g-n+r)=sy(g-n)—g-p+r. (5.2)
Theorem 5.1. For any nonnegative integers n and r with 0 < r < g, let a; be a digit in
{0,1,2,..., g} such that (n), = @pam-1---a1a0 and a, # ap—1 = Gp_9 = -+ = a1 = ao.
Then,
“p(n) + ifag=0o0rag > r;
solg-m+r)=3"Y (1) J o 0 (5.3)
g-(w(n) —p)+r, ifl <ag<r
Proof. 1t is obtained by Theorem 4.4, (5.1), and (5.2). [l

Example 5.2.
510(9 - 762344000 + 3) =9 -4 + 3 = 39;
$10(9 - 762344555 + 3) =9 - 5 + 3 = 48;
510(9 - 762344555 +5) = 9 - (5 — 3) + 5 = 23;
510(9 - 766234455 + 6) =9 - (5 — 2) + 6 = 33.
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Combining Theorem 4.4 and Theorem 5.1, we have the following:
Remark 5.3. For any nonnegative integers n and r with 0 < r < g,
sp(g-n+7)=g-(wn)—p)+r
for some nonnegative integer p < 1,(n).
Corollary 5.4. For any nonnegative integers n and r with 0 < r < g,
ifn<ug siti(g-n+r)=r

Proof. The proof is done by mathematical induction on k. When k = 1, n < u; = [1%],. Then,
by Lemma 3.6, ¢,(n) = 0 or 1, and thus, by Theorem 5.1,

sp(g-n+r)= either g-0+r=1r]p or g-1+r=b+r—1=[1,7r—1],.

Hence, sy(sp(g-n+71)) =r.
Induction hypothesis: assume s5(g - n + r) = r for any nonnegative integer n < wuj_;. If
n < ug, tp(n) < ug_ by (3.2). By Remark 5.3,

sp(g-n+71)=g-((n) — p)+ r for some nonnegative integer p < ¢(n).
Since tp(n) < ug—_1, tp(n) — p < ux_1. Hence, by the induction hypothesis,

sp(su(g - n+7)) =s5(g (w(n) —p)+7)=r.
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