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1 Introduction

Suggested by a paper [1], V. Kannan and R. Srikanth [2] have discovered the following inequality

ϕ(n)ϕ(n).ψ(n)ψ(n) > nϕ(n)+ψ(n) (1)

for n > 1, where ϕ and ψ denote the Euler totient function, resp. Dedekind arithmetic function.
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In what follows, we shall give inequalities of type (1), with strong refinements, as well as their
converses and analogues relations.

Recall that for n > 1 one has

ϕ(n)

n
=
∏
p|n

(
1− 1

p

)
,
ψ(n)

n
=
∏
p|n

(
1 +

1

p

)
(2)

where p is a prime, and ϕ(1) = ψ(1) = 1.

Similarly, one has for n > 1:

σ(n) =
∑
d|n

d =
∏
pα|n

pα − 1

p− 1
, (3)

where pα are the maximal prime power divisors of n. One has by definition σ(1) = 1.
These arithmetic functions satisfy many important properties (see, e.g., [4]). For example, the

following inequalities are well-known:

ϕ(n) ≤ ψ(n) ≤ σ(n), (4)

ϕ(n) + σ(n) ≥ 2n (5)

with equality in the left side of (4) only if n = 1; in the right side of (4) if n = 1 or n is prime;
and in (5) only if n = 1 or n is prime.

It follows at once from (2) that
ϕ(n).ψ(n) ≤ n2 (6)

for n > 1. For the same n, a stronger version of (6) is

ϕ(n).σ(n) ≤ n2. (7)

2 Auxilary results

Lemma 1. Let xi > 0, λi > 0 (i = 1, 2, ..., n) be real numbers such that λ1 + λ2 + ...+ λn = 1.

Then one has
xλ11 x

λ2
2 . . . xλnn ≤ λ1x1 + λ2x2 + · · ·+ λnxn. (8)

There is inequality only for x1 = ... = xn = 1.

Proof. This is the well-known weighted arithmetic mean-geometric mean inequality, see, e.g. [3].

Lemma 2. Let x, y > 0 and λ, µ > 0 with λ+ µ = 1. Then

xλyµ ≤ λx+ µy (9)

and
xλyµ ≥ 1

λ
x
+ µ

y

. (10)
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Proof. Let n = 2, x1 = x, x2 = y in (8). Then (9) follows. Now, letting n = 2, x1 = 1
x
, x2 = 1

y

in (8), we get (10).

Remark 1. (9) is called also as the weighted arithmetic-geometric inequality for two numbers;
while (10) as the weighted geometric-harmonic inequality for two numbers.
Proposition 1. For any a, b > 0 one has(

a+ b

2

)a+b
≤ aa.bb ≤

(
a2 + b2

a+ b

)a+b
(11)

with equality only for a = b.

Proof. Put x = a, y = b, λ = a
a+b

, µ = b
a+b

in (9). Then the right side of (11) follows. Apply
now inequality (10) for the same numbers. The left side of (11) follows.

Proposition 2. For any a, b > 0 one has(
ab(a+ b)

a2 + b2

)a+b
≤ ab.ba ≤

(
2ab

a+ b

)a+b
, (12)

with equality only in a = b.

Proof. Let now x = b, y = a, λ = a
a+b

, µ = b
a+b

in (9). Then we get

a
b
a+b .b

a
a+b ≤ a

a+ b
.b+

b

a+ b
.a =

2ab

a+ b
,

and the right side of (12) is proved. By applying inequality (10) with the same selections, we get

a
b
a+b .b

a
a+b ≥ 1

a
b(a+b)

+ b
a(a+b)

=
ab(a+ b)

a2 + b2
,

and we are done with the left side of (12).

Remark 2. As
2ab

a+ b
≤
√
ab,

clearly one has (
2ab

a+ b

)a+b
≤ (ab)

a+b
2 . (13)

3 Main results

Theorem 1. For any integer n > 1 one has

nϕ(n)+ψ(n) <

(
ϕ(n) + ψ(n)

2

)ϕ(n)+ψ(n)
< ϕ(n)ϕ(n).ψ(n)ψ(n)

<

(
ϕ(n)2 + ψ(n)2

2

)ϕ(n)+ψ(n)
2

< ψ(n)ϕ(n)+ψ(n). (14)
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Proof. Let a = ϕ(n), b = ψ(n) in Proposition 1. Then, by using inequalities (4) and (5), we get
the first three inequalities of (14). The last inequality follows only from the left side of relation
(4).

Remark 3. The weaker inequality on the left side of (14) is exactly relation (1). This proof of (1)
appears also in the recent book of the first author ([5], pp 50 - 52).
Theorem 2. For any integer n > 1 one has(

ϕ(n)ψ(n)(ϕ(n) + ψ(n))

ϕ(n)2 + ψ(n)2

)ϕ(n)+ψ(n)
< ϕ(n)ψ(n).ψ(n)ϕ(n)

<

(
2ϕ(n)ψ(n)

ϕ(n) + ψ(n)

)ϕ(n)+ψ(n)
< (ϕ(n)ψ(n))

ϕ(n)+ψ(n)
2 < nϕ(n)+ψ(n). (15)

Proof. We apply Proposition 2, combined with relation (13) for a = ϕ(n), b = ψ(n). The last
inequality of (15) follows by (6).

Remark 4. The weaker inequality on the right side of (15) gives the inequality

ϕ(n)ψ(n)ψ(n)ϕ(n) < nϕ(n)+ψ(n) (16)

for n > 1, which is an analogue of (1).
Remark 5. All inequalities of Theorems 1 and 2 may be replaced with function σ instead of
function ψ.

Indeed, by applying Properties 1 and 2 for a = ϕ(n), b = σ(n), by inequalities (4) and (5)
one has

ϕ(n)σ(n) < n2,

ϕ(n) + σ(n) ≥ 2n.

Thus, particularly, we get for n > 1:

ϕ(n)ϕ(n)σ(n)σ(n) > nϕ(n)+σ(n) (17)

and
ϕ(n)σ(n)σ(n)ϕ(n) < nϕ(n)+σ(n). (18)

Theorem 3. Let
A =

{
n | n ∈ N & f(n) ≤ n

2

}
,

where f is an arithmetic function and for every natural number n f(n) > 0. Then, for any
arithmetic function g so that g(n) > 0 one has

f(n)g(n).g(n)f(n) ≤ nf(n)+g(n) (19)

for n ∈ A.
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Proof. We apply the right side of (12) for a = f(n), b = g(n) and using the fact that the inequality

2f(n)g(n)

f(n) + g(n)
≤ n

may be rewritten as
g(n)(2f(n)− n) ≤ nf(n).

Now, since f(n) > 0, g(n) > 0, this is true, if 2f(n) − n ≤ 0. Thus, if n ∈ A, then (19) holds
true.

Remark 6. In particular, we get

ϕ(n)g(n).g(n)ϕ(n) ≤ nϕ(n)+g(n) (20)

for every even number n and for any arithmetic function g so that g(n) > 0.

If g(n) 6= ϕ(n), then the inequality (20) is strict. Indeed, it is well-known that ϕ(n) ≤ n
2

for
any even number n. So, for A - the set of positive even integers, (20) follows.
Theorem 4. Let the arithmetical functions f, g and h satisfy the following conditions:

(i) f(n).g(n) < n2 for n > 1;

(ii) n+ 1 ≤ h(n) ≤ g(n) for n ≥ 2.

Then one has
(g(n))f(n) < (g(n))

n2

g(n) < (h(n))n (21)

Proof. The first inequality of (21) follows by condition (i) and the remark that g(n) > 1 by (ii).
Now, for the proof of the second inequality , we will use the known fact that for x > 0 the real
function F (x) = x

1
x is strictly decreasing for x ≥ e (Eulers constant). Therefore, one has by (ii)

that (g(n))
1

g(n) ≤ (h(n))
1

h(n) , by remarking that (ii) can be applied, as n + 1 ≥ 3 > e for n ≥ 2.
Now, as h(n) > n, we get (h(n))

1
h(n) < (h(n))

1
n , and the result follows.

Remark 7.

1) By selecting f(n) = ϕ(n), g(n) = σ(n) and h(n) = ψ(n), we get from (21) the following
two inequalities:

(σ(n))n < (ψ(n))σ(n)

and
(σ(n))ϕ(n) < (ψ(n))n,

which have been proved in Part 1 (see [4])

2) Select f(n) = ϕ∗(n), g(n) = σ∗(n), and h(n) = n + 1, where ϕ∗ is the unitary analogue
of the Euler totient function, and σ∗ is the unitary analogue of the sigma function (see [6]).
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Now, by ([6], relation (15)), condition (i) is satisfied. The condition (ii) reduces to σ∗(n) ≥
n+ 1, which is well-known. Then we get the inequalities:

(σ∗(n))n < (n+ 1)σ
∗(n) (22)

and
(σ∗(n))ϕ

∗(n) < (n+ 1)n. (23)

Finally, we would like to mention that while preparing this manuscript we found that in pa-
per [2] there are some mistakes. For example, the inequality in the last line of page 20 is false.

It is asserted that

∑
p|n

ln

(
1 +

1

p

)
>

∣∣∣∣∣∣
∑
p|n

ln

(
1− 1

p

)∣∣∣∣∣∣ ,
where p runs through the prime divisors of n.

This is not correct. Let for example, n = 6. Then the prime divisors of n are p = 2 and p = 3.
We should have

ln

(
1 +

1

2

)
+ ln

(
1 +

1

3

)
>

∣∣∣∣ln(1− 1

2

)
+ ln

(
1− 1

3

)∣∣∣∣ .
After simple computations, this reduces to ln 2 > ln 3, which is false.
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