Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 25, 2019, No. 2, 16–21 DOI: 10.7546/nntdm.2019.25.2.16-21

On the prime factors of a quasiperfect number

V. Siva Rama Prasad¹ and C. Sunitha²

¹ Nalla Malla Reddy Engineering College, Divyanagar, Ghatkesar Mandal, Ranga Reddy District, Telangana-501301, India e-mail: vangalasrp@yahoo.co.in

²Department of Mathematics and Statistics, RBVRR Women's College, Narayanaguda, Hyderabad, Telangana-500027, India e-mail: csunithareddy1974@gmail.com

 Received: 16 July 2018
 Revised: 14 May 2019
 Accepted: 20 May 2019

Abstract: A positive integer N is said to be *quasiperfect* if $\sigma(N) = 2N + 1$ where $\sigma(N)$ is the sum of the positive divisors of N. So far no quasiperfect number is known. If such N exists, let $\gamma(N)$ denote the product of the distinct primes dividing N. In this paper, we obtain a lower bound for $\gamma(N)$ in terms of $r = \omega(N)$, the number of distinct prime factors of N. Also, we show that every quasiperfect number N is divisible by a prime p with: (i) $p \equiv 1 \pmod{4}$, (ii) $p \equiv 1 \pmod{5}$ if $5 \nmid N$ and (iii) $p \equiv 1 \pmod{3}$, if $3 \nmid N$.

Keywords: Quasiperfect number, Radical of an integer. **2010 Mathematics Subject Classification:** 11A25.

1 Introduction

For any natural number N let $\sigma(N)$ denote the sum of its positive divisors. W. Sierpinski [6] asked whether there is any natural number N satisfying

$$\sigma(N) = 2N + 1,\tag{1.1}$$

which is unanswered till date. Calling such N, if it exists, a *quasiperfect* number, Cattaneo [2] initiated the study of such numbers. H. L. Abbott et. al. [1] continued the investigations and proved the following:

If a quasiperfect number N exists and if $\omega(N)$ is the number of distinct prime factors of N then

$$\omega(N) \ge 5 \text{ and } N > 10^{20} \text{ ([1], Theorem 2 and 4)}$$
 (1.2)

and

$$\omega(N) \ge 15 \text{ and } N > 10^{57} \text{ if } (N, 15) = 1 ([3])$$
 (1.3)

In [4] M. Kishore improved (1.2) to $\omega(N) \ge 6$ and $N > 10^{30}$ while a further refinement of it to $\omega(N) \ge 7$ and $N > 10^{35}$ was obtained by G.L. Cohen and Peter Hagis Jr. [3].

For other details of research on quasiperfect numbers one can see the excellent book of J. Sandor and B. Crstici ([5], p. 38-39).

Recently the authors [7] have given a different proof for the first part of (1.3) for which Theorem 2.4 (given in Section 2 below) was used.

For any positive integer n let $\gamma(n)$ denote the product of its distinct prime factors ($\gamma(n)$ is called the *radical* of the integer n; and it is the maximal squarefree divisor of n, that is, the greatest divisor of n having no square factor > 1).

In this paper we obtain a lower bound for $\gamma(N)$ in terms of $r = \omega(N)$ for a quasiperfect number N. Also we prove that every quasiperfect number is divisible by a prime p with (i) $p \equiv 1 \pmod{4}$, (ii) $p \equiv 1 \pmod{5}$ if $5 \nmid N$ and (iii) $p \equiv 1 \pmod{3}$ if $3 \nmid N$.

2 Preliminaries

Throughout the rest of the paper N stands for a quasiperfect number. We first state a theorem due to Cattaneo [2] needed for our purpose:

Theorem 2.1.

(a) If N exists, then it is of the form

$$N = p_1^{2e_1} p_2^{2e_2} \dots p_r^{2e_r}, (2.2)$$

where $p_1, p_2, ..., p_r$ are distinct odd primes and $e_i \ge 1$ for i = 1, 2, 3, ..., r. (b) If $p_i \equiv 1 \pmod{8}$, then $e_i \equiv 0$ or $1 \pmod{4}$; if $p_i \equiv 3 \pmod{8}$, then $e_i \equiv 0 \pmod{2}$ and if $p_i \equiv 5 \pmod{8}$, then $e_i \equiv 0$ or $-1 \pmod{4}$. (c) If M is a natural number such that $\sigma(M) \ge 2M$, then no non-trivial multiple of M is quasiperfect.

Remark 2.3. It follows from Theorem 2.1 that every quasiperfect number is the square of an odd integer and that $\sigma(d) < 2d$ for every divisor d of N.

In [7] the authors have proved:

Theorem 2.4. If N exists and is of the form (2.2), then an odd number of $p_i^{2e_i}$ are such that either $p_i \equiv 1 \pmod{8}$ and $e_i \equiv 1 \pmod{4}$ or $p_i \equiv 5 \pmod{8}$ and $e_i \equiv -1 \pmod{4}$. (Such $p_i^{2e_i}$ are called *special factors of* N in [7])

3 Lower bound for $\gamma(N)$

Suppose $A = \{a_1, a_2, ..., a_r\}$ is a set of positive real numbers and for any $k(1 \le k \le r)$ suppose $S_k(A)$ is the sum of the products of the elements in the k-element subsets of A. That is,

$$S_k(A) = \sum_{1 \le i_1 < i_2 < \dots < i_k \le r} a_{i_1} . a_{i_2} ... a_{i_k}$$
(3.1)

For example, $S_1(A) = \sum_{i=1}^r a_i$ and $S_2(A) = \sum_{1 \le i_1 < i_2 \le r} a_{i_1} \cdot a_{i_2}$. Note that

$$\prod_{i=1}^{r} (1+a_i) = 1 + \sum_{k=1}^{r} S_k(A)$$
(3.2)

Observe that $S_k(A)$ has $\binom{r}{k}$ terms and that each $a_j \in A$ occurs exactly in $\binom{r-1}{k-1}$ terms of it. Therefore the product $P_k(A)$ of the terms in $S_k(A)$ is given by

$$P_k(A) = (a_1 a_2 \dots a_r)^{\binom{r-1}{k-1}}$$
(3.3)

Therefore, the inequality between the arithmetic mean and the geometric mean gives

$$\frac{S_k(A)}{\binom{r}{k}} > \left(P_k(A)\right)^{\frac{1}{\binom{r}{k}}}$$

(the strict inequality is due to the fact that a_j are distinct) which, in view of (3.3), shows that

$$S_k(A) > \binom{r}{k} (a_1 a_2 \dots a_r)^{\frac{k}{r}}.$$
 (3.4)

Theorem 3.5. If N exists and is of the form (2.2), then

$$\gamma(N) > A_r,$$

where $A_r = \frac{1}{(2^{\frac{1}{r}}-1)^r}$

Proof. Here $\gamma(N) = p_1 p_2 \dots p_r$ is a divisor of N so that by Remark 2.3 and (3.2) we have

$$2 > \frac{\sigma(\gamma(N))}{\gamma(N)} = \prod_{i=1}^{r} \frac{\sigma(p_i)}{p_i} = \prod_{i=1}^{r} (1 + \frac{1}{p_i}) = 1 + \sum_{k=1}^{r} S_k(B),$$

where $B = \left\{\frac{1}{p_1}, \frac{1}{p_2}, \dots, \frac{1}{p_r}\right\}$. Therefore, by (3.4), it follows that

$$2 > 1 + \sum_{k=1}^{r} {r \choose k} \left(\frac{1}{p_1 p_2 \dots p_r}\right)^{\frac{k}{r}}$$
$$= 1 + \sum_{k=1}^{r} {r \choose k} \{\gamma(N)^{-\frac{1}{r}}\}^k$$
$$= \{1 + \gamma(N)^{-\frac{1}{r}}\}^r,$$

which proves the theorem.

Remark 3.6. One of the reviewers has pointed out that a better lower bound for $\gamma(N)$ than A_r can be obtained by using known estimates for some functions over primes and this will be investigated later. Another reviewer has observed that the proof of Theorem 3.5 bears a close resemblance to the proof of a result of Anirudh Prabhu's paper available online via arXiv at https://arxiv.org/pdf/1008.1114.pdf and the authors were not aware of the paper earlier.

4 On prime factors of *N*

Theorem 4.1. If N is of the form (2.2), then $p_i \equiv 1 \pmod{4}$ for some *i*.

Proof. If not, $p_i \equiv 3 \text{ or } 7 \pmod{8}$ for each *i*, contradicting Theorem 2.4.

Theorem 4.2. If N is of the form (2.2) and (N, 5) = 1, then $p_i \equiv 1 \pmod{5}$ for some i.

Proof. If (N, 5) = 1 then $p_i \equiv \pm 1$ or $\pm 2 \pmod{5}$

First suppose $p_i \equiv \pm 1 \pmod{5}$ so that $p_i^2 \equiv 1 \pmod{5}$ and therefore

$$\sigma(p_i^{2e_i}) = (1+p_i)(1+p_i^2+\ldots+p_i^{2e_i-2}) + p_i^{2e_i} \equiv (1+p_i)e_i + 1 \pmod{5}$$
$$\equiv \begin{cases} 2e_i+1 \pmod{5} & \text{if } p_i \equiv 1 \pmod{5} \\ 1 \pmod{5} & \text{if } p_i \equiv -1 \pmod{5} \end{cases}$$
(4.3)

If $p_i \equiv \pm 2 \pmod{5}$, then $p_i^2 \equiv -1 \pmod{5}$ and therefore

$$\begin{aligned} \sigma(p_i^{2e_i}) &= (1+p_i)(1+p_i^2+\ldots+p_i^{2e_i-2})+p_i^{2e_i} \\ &\equiv (1+p_i)\{1+(-1)+(-1)^2+\ldots+(-1)^{e_i-1}\}+(-1)^{e_i} \pmod{5} \\ &\equiv \begin{cases} 1 \pmod{5} & \text{if } e_i \text{ is even} \\ 2 \pmod{5} & \text{if } e_i \text{ is odd}, p_i \equiv 2 \pmod{5} \\ -2 \pmod{5} & \text{if } e_i \text{ is odd}, p_i \equiv -2 \pmod{5} \end{aligned}$$
(4.4)

If possible, suppose no $p_i \equiv 1 \pmod{5}$, then either $p_i \equiv -1 \pmod{5}$ or $p_i \equiv \pm 2 \pmod{5}$. Therefore, by (4.3) and (4.4), we get

$$\sigma(N) \equiv \prod_{\substack{p_i \equiv 2 \pmod{5} \\ e_i \text{ is odd}}} (2) \times \prod_{\substack{p_i \equiv -2 \pmod{5} \\ e_i \text{ is odd}}} (-2) \cdot \pmod{5}$$

$$\equiv 2^{k+k'} \cdot (-1)^{k'} \pmod{5},$$
(4.5)

where $k = \#\{p_i^{2e_i} : p_i \equiv 2 \pmod{5}, e_i \text{ odd}\}$ and $k' = \#\{p_i^{2e_i} : p_i \equiv -2 \pmod{5}, e_i \text{ odd}\}.$ Also

$$2N+1 \equiv 2.\prod_{i=1}^{r} (p_i^2)^{e_i} + 1 \equiv 2.(-1)^{k+k'} + 1 \pmod{5}.$$
(4.6)

Now (4.5) and (4.6) imply that

$$2.(-1)^{k+k'} + 1 \equiv 2^{k+k'}.(-1)^{k'} \pmod{5},$$
(4.7)

which reduces to

$$2.(-1)^k + (-1)^{k'} \equiv 2^{k+k'} \pmod{5},\tag{4.8}$$

and this congruence is impossible for all choices of integers k and k', a contradiction, proving the theorem.

Theorem 4.9. If N is of the form (2.2) and (N,3) = 1, then $p_i \equiv 1 \pmod{3}$ for some *i*.

Proof. If (N, 3) = 1 then $p_i \equiv \pm 1 \pmod{3}$ for each *i* and since each p_i is odd it follows $p_i \equiv \pm 1 \pmod{6}$ for each *i* so that $p_i^2 \equiv 1 \pmod{6}$. Therefore,

$$2N + 1 \equiv 2 \prod_{i=1}^{r} (p_i^2)^{e_i} + 1 \equiv 3 \pmod{6}$$
(4.10)

and for each i,

$$\begin{aligned} \sigma(p_i^{2e_i}) &= (1+p_i)(1+p_i^2+\ldots+p_i^{2e_i-2})+p_i^{2e_i} \\ &\equiv (1+p_i)e_i+1 \pmod{6} \\ &\equiv \begin{cases} 2e_i+1 \pmod{6} & \text{if } p_i \equiv 1 \pmod{6} \\ 1 \pmod{6} & \text{if } p_i \equiv -1 \pmod{6} \end{cases} \end{aligned}$$

If possible, suppose no $p_i \equiv 1 \pmod{6}$. Then

$$\sigma(N) = \prod_{i=1}^{r} \sigma(p_i^{2e_i}) \equiv 1 \pmod{6}$$
(4.11)

Now, by (4.10) and (4.11), we have

$$1 \equiv 3 \pmod{6} \tag{4.12}$$

a contradiction. This proves the theorem.

Under certain stronger conditions we have a more general result given below:

Theorem 4.13. If N is of the form (2.2) and (N, m) = 1 for some odd m > 2 and if $p_i \equiv \pm 1 \pmod{m}$ for all *i*, then $p_j \equiv 1 \pmod{m}$ for some $j (1 \le j \le r)$. Also if there is exactly one j with this property then $e_j \equiv 1 \pmod{m}$.

Proof. Similar to the proof of Theorem 4.9 for the first part. If there is exactly one j with $p_j \equiv 1 \pmod{m}$ then $2e_j + 1 \equiv 3 \pmod{m}$ giving $e_j \equiv 1 \pmod{m}$ since m is odd.

Acknowledgements

The authors would like to thank the learned reviewers for their valuable suggestion and useful observation on Theorem 3.5.

References

- Abbott, H. L., Aull, C. E., Brown, E. & Suryanarayana, D. (1976). Quasiperfect numbers, *Acta Arithmetica*, XXII(1973),439-447; correction to the paper, *Acta Arithmetica*, XXIX (1976), 636–637.
- [2] Cattaneo, P. (1951). Sui numeri quasiperfetti, Boll. Un. Mat. Ital., 6 (3), 59-62.
- [3] Cohen G. L. & Hagis Jr., P. (1982). Some results concerning quasiperfect numbers, J. Austral. Math. Soc. (Ser.A), 33, 275–286.
- [4] Kishore, M. (1975). Quasiperfect numbers are divisible by at least six distinct divisors, *Notices*. AMS, 22, A441.
- [5] Sándor, J. & Crstici, B. (2004). *Hand book of Number Theory II*, Kluwer Academic Publishers, Dordrecht/ Boston/ London.
- [6] Sierpinski, W. (1964). A Selection of problems in the Theory of Numbers, New York, (see page 110).
- [7] Siva Rama Prasad, V. & Sunitha, C.(2017). On quasiperfect numbers, *Notes on Number Theory and Discrete Mathematics*, 23 (3), 73–78