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Abstract: A positive integer N is said to be quasiperfect if σ(N) = 2N + 1 where σ(N) is
the sum of the positive divisors of N . So far no quasiperfect number is known. If such N exists,
let γ(N) denote the product of the distinct primes dividing N . In this paper, we obtain a lower
bound for γ(N) in terms of r = ω(N), the number of distinct prime factors of N . Also, we show
that every quasiperfect number N is divisible by a prime p with: (i) p ≡ 1 (mod 4), (ii) p ≡ 1

(mod 5) if 5 - N and (iii) p ≡ 1 (mod 3), if 3 - N.
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1 Introduction

For any natural number N let σ(N) denote the sum of its positive divisors. W. Sierpinski [6]
asked whether there is any natural number N satisfying

σ(N) = 2N + 1, (1.1)

which is unanswered till date. Calling such N , if it exists, a quasiperfect number, Cattaneo [2]
initiated the study of such numbers. H. L. Abbott et. al. [1] continued the investigations and
proved the following:
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If a quasiperfect number N exists and if ω(N) is the number of distinct prime factors of N
then

ω(N) ≥ 5 and N > 1020 ( [1] , Theorem 2 and 4) (1.2)

and
ω(N) ≥ 15 and N > 1057 if (N, 15) = 1 ( [3] ) (1.3)

In [4] M. Kishore improved (1.2) to ω(N) ≥ 6 and N > 1030 while a further refinement of it
to ω(N) ≥ 7 and N > 1035 was obtained by G.L. Cohen and Peter Hagis Jr. [3].

For other details of research on quasiperfect numbers one can see the excellent book of J.
Sandor and B. Crstici ( [5], p. 38-39).

Recently the authors [7] have given a different proof for the first part of (1.3) for which
Theorem 2.4 (given in Section 2 below) was used.

For any positive integer n let γ(n) denote the product of its distinct prime factors ( γ(n) is
called the radical of the integer n; and it is the maximal squarefree divisor of n, that is, the
greatest divisor of n having no square factor > 1).

In this paper we obtain a lower bound for γ(N) in terms of r = ω(N) for a quasiperfect
number N . Also we prove that every quasiperfect number is divisible by a prime p with
(i) p ≡ 1 (mod 4), (ii) p ≡ 1 (mod 5) if 5 - N and (iii) p ≡ 1 (mod 3) if 3 - N.

2 Preliminaries

Throughout the rest of the paper N stands for a quasiperfect number. We first state a theorem due
to Cattaneo [2] needed for our purpose:

Theorem 2.1.
(a) If N exists, then it is of the form

N = p2e11 p2e22 ...p2err , (2.2)

where p1, p2, ..., pr are distinct odd primes and ei ≥ 1 for i = 1, 2, 3, ..., r.

(b) If pi ≡ 1 (mod 8), then ei ≡ 0 or 1 (mod 4); if pi ≡ 3 (mod 8), then
ei ≡ 0 (mod 2) and if pi ≡ 5 (mod 8), then ei ≡ 0 or −1 (mod 4).

(c) IfM is a natural number such that σ(M) ≥ 2M, then no non-trivial multiple ofM is quasiper-
fect.

Remark 2.3. It follows from Theorem 2.1 that every quasiperfect number is the square of an odd
integer and that σ(d) < 2d for every divisor d of N.

In [7] the authors have proved:

Theorem 2.4. If N exists and is of the form (2.2), then an odd number of p2eii are such that either
pi ≡ 1 (mod 8) and ei ≡ 1 (mod 4) or pi ≡ 5 (mod 8) and ei ≡ −1 (mod 4).

(Such p2eii are called special factors of N in [7])
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3 Lower bound for γ(N)

Suppose A = {a1, a2, ..., ar} is a set of positive real numbers and for any
k(1 ≤ k ≤ r) suppose Sk(A) is the sum of the products of the elements in the k-element subsets
of A. That is,

Sk(A) =
∑

1≤i1<i2<...<ik≤r

ai1 .ai2 ...aik (3.1)

For example, S1(A) =
r∑

i=1

ai and S2(A) =
∑

1≤i1<i2≤r

ai1 .ai2 .

Note that
r∏

i=1

(1 + ai) = 1 +
r∑

k=1

Sk(A) (3.2)

Observe that Sk(A) has (rk) terms and that each aj ∈ A occurs exactly in (r−1k−1) terms of it.
Therefore the product Pk(A) of the terms in Sk(A) is given by

Pk(A) = (a1a2...ar)
(r−1
k−1) (3.3)

Therefore, the inequality between the arithmetic mean and the geometric mean gives

Sk(A)(
r
k

) > (Pk(A))

1

(rk)

(the strict inequality is due to the fact that aj are distinct)
which, in view of (3.3), shows that

Sk(A) >

(
r

k

)
(a1a2...ar)

k
r . (3.4)

Theorem 3.5. If N exists and is of the form (2.2), then

γ(N) > Ar,

where Ar =
1

(2
1
r − 1)r

Proof. Here γ(N) = p1p2...pr is a divisor of N so that by Remark 2.3 and (3.2) we have

2 >
σ(γ(N))

γ(N)
=

r∏
i=1

σ(pi)

pi
=

r∏
i=1

(1 +
1

pi
) = 1 +

r∑
k=1

Sk(B),

where B =
{

1
p1
, 1
p2
, ..., 1

pr

}
. Therefore, by (3.4), it follows that

2 > 1 +
r∑

k=1

(
r

k

)(
1

p1p2...pr

) k
r

= 1 +
r∑

k=1

(
r

k

)
{γ(N)−

1
r }k

= {1 + γ(N)−
1
r }r,

which proves the theorem.
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Remark 3.6. One of the reviewers has pointed out that a better lower bound for γ(N) than
Ar can be obtained by using known estimates for some functions over primes and this will be
investigated later. Another reviewer has observed that the proof of Theorem 3.5 bears a close
resemblance to the proof of a result of Anirudh Prabhu’s paper available online via arXiv at
https://arxiv.org/pdf/1008.1114.pdf and the authors were not aware of the paper
earlier.

4 On prime factors of N

Theorem 4.1. If N is of the form (2.2), then pi ≡ 1 (mod 4) for some i.

Proof. If not, pi ≡ 3 or 7 (mod 8) for each i, contradicting Theorem 2.4.

Theorem 4.2. If N is of the form (2.2) and (N, 5) = 1, then pi ≡ 1 (mod 5) for some i.

Proof. If (N, 5) = 1 then pi ≡ ±1 or ±2 (mod 5)

First suppose pi ≡ ±1 (mod 5) so that p2i ≡ 1 (mod 5) and therefore

σ(p2eii ) = (1 + pi)(1 + p2i + ...+ p2ei−2i ) + p2eii ≡ (1 + pi)ei + 1 (mod 5)

≡

2ei + 1 (mod 5) if pi ≡ 1 (mod 5)

1 (mod 5) if pi ≡ −1 (mod 5)
(4.3)

If pi ≡ ±2 (mod 5), then p2i ≡ −1 (mod 5) and therefore

σ(p2eii ) = (1 + pi)(1 + p2i + ...+ p2ei−2i ) + p2eii

≡ (1 + pi){1 + (−1) + (−1)2 + ...+ (−1)ei−1}+ (−1)ei (mod 5)

≡


1 (mod 5) if ei is even

2 (mod 5) if ei is odd, pi ≡ 2 (mod 5)

−2 (mod 5) if ei is odd, pi ≡ −2 (mod 5)

(4.4)

If possible, suppose no pi ≡ 1 (mod 5), then either pi ≡ −1 (mod 5) or pi ≡ ±2 (mod 5).

Therefore, by (4.3) and (4.4), we get

σ(N) ≡
∏

pi≡2 (mod 5)
ei is odd

(2)×
∏

pi≡−2 (mod 5)
ei is odd

(−2) · (mod 5)

≡ 2k+k′ · (−1)k′ (mod 5),

(4.5)

where k = #{p2eii : pi ≡ 2 (mod 5), ei odd} and k′ = #{p2eii : pi ≡ −2 (mod 5), ei odd}.
Also

2N + 1 ≡ 2.
r∏

i=1

(p2i )
ei + 1 ≡ 2.(−1)k+k′ + 1 (mod 5). (4.6)
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Now (4.5) and (4.6) imply that

2.(−1)k+k′ + 1 ≡ 2k+k′ .(−1)k′ (mod 5), (4.7)

which reduces to
2.(−1)k + (−1)k′ ≡ 2k+k′ (mod 5), (4.8)

and this congruence is impossible for all choices of integers k and k′, a contradiction, proving the
theorem.

Theorem 4.9. If N is of the form (2.2) and (N, 3) = 1, then pi ≡ 1 (mod 3) for some i.

Proof. If (N, 3) = 1 then pi ≡ ±1 (mod 3) for each i and since each pi is odd it follows pi ≡ ±1
(mod 6) for each i so that p2i ≡ 1 (mod 6). Therefore,

2N + 1 ≡ 2.
r∏

i=1

(p2i )
ei + 1 ≡ 3 (mod 6) (4.10)

and for each i,

σ(p2eii ) = (1 + pi)(1 + p2i + ...+ p2ei−2i ) + p2eii

≡ (1 + pi)ei + 1 (mod 6)

≡

2ei + 1 (mod 6) if pi ≡ 1 (mod 6)

1 (mod 6) if pi ≡ −1 (mod 6)

If possible, suppose no pi ≡ 1 (mod 6). Then

σ(N) =
r∏

i=1

σ(p2eii ) ≡ 1 (mod 6) (4.11)

Now, by (4.10) and (4.11), we have

1 ≡ 3 (mod 6) (4.12)

a contradiction. This proves the theorem.

Under certain stronger conditions we have a more general result given below:

Theorem 4.13. If N is of the form (2.2) and (N,m) = 1 for some odd m > 2 and if pi ≡ ±1
(mod m) for all i, then pj ≡ 1 (mod m) for some j (1 ≤ j ≤ r). Also if there is exactly one j
with this property then ej ≡ 1 (mod m).

Proof. Similar to the proof of Theorem 4.9 for the first part. If there is exactly one j with pj ≡ 1

(mod m) then 2ej + 1 ≡ 3 (mod m) giving ej ≡ 1 (mod m) since m is odd.
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