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1 Introduction

The generalized Fibonacci numbersGn are defined by the following recurrence relation for n ≥ 1

Gn+1 = pGn +Gn−1 (1)

with the initial conditions G0 = a, G1 = b. The characteristic equation of recurrence (1) is

λ2 − pλ− 1 = 0. (2)

The Binet’s formula for the generalized Fibonacci numbers Gn is

Gn = Aαn +Bβn,
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where α and β are roots of the equation (2) and A =
(b− aβ)
α− β

, B =
aα− b
α− β

.

In particular, taking a = 0 in the initial conditions of the generalized Fibonacci number, we
obtain the sequence {un}. Namely, the sequence {un} is defined as

un+1 = pun + un−1; u0 = 0, u1 = b.

Similarly, taking 2b and pb instead of a and b, we obtain the sequence {vn}, which is defined
by the following recurrence

vn+1 = pvn + vn−1; v0 = 2b, v1 = pb.

The Binet’s formula for the numbers un and vn is

un = b

(
αn − βn

α− β

)
; vn = b (αn + βn) .

Also, we can give some identities between un and vn, as follows

pvn−2 = un − un−4, (3)

unun+k =
b

p2 + 4

(
v2n+k + (−1)n+1 vk

)
, (4)

u2m =
1

b
umvm, (5)

vn = pun + 2un−1, (6)

vmvm+1 − umum+1

(
p2 + 4

)
= 2 (−1)m b2p. (7)

Taking p = k, a = 0 and b = 1 in (1), we have the k-Fibonacci numbers. Also, if we take
p = 2, a = b = 1 in (1), we obtain the modified Pell numbers. We can give a few values of
{Gn} , {un} and {vn} sequences as the following table

n Gn un vn
...

...
...

...
−3 b (p2 + 1)− ap (p2 + 2) b (p2 + 1) −pb (p2 + 3)

−2 a (p2 + 1)− pb −pb b (p2 + 2)

−1 b− pa b −pb
0 a 0 2b

1 b b pb

2 pb+ a pb b (p2 + 2)

3 b (p2 + 1) + ap b (p2 + 1) pb (p2 + 3)
...

...
...

...

Now, we give the theorems about orthogonal projection.
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Theorem 1 ([2], p. 204, Theorem 5.1.4). Consider a vector −→x ∈ Rn and subspace V of Rn.

Then we can write −→x = −→x q + −→x ⊥ where −→x q is in V and −→x ⊥ is perpendicular to V , and this
represantation is unique. The vector−→x q is called the orthogonal projection of −→x onto V , denoted
by projV (−→x ) . The transformation T (−→x ) = projV (−→x ) = −→x q from Rn to Rn is linear.

Theorem 2 ([2], p. 206, Theorem 5.1.5). If V is a subspace of Rn with orthonormal basis
u1, u2, . . . , um, then

projV (x) = 〈u1, x〉u1 + · · ·+ 〈um, x〉um (8)

for all x in Rn.

By using the equation (8), we can give the matrix of orthogonal projection as the following
theorem.

Theorem 3 ([2], p. 232, Theorem 5.3.10). Consider a subspace V of Rn with orthonormal basis
u1, u2, . . . , um. The matrix P of the orthogonal projection onto V is

P = u1u
T
1 + · · ·+ umu

T
m.

Theorem 4 ([4], p. 365, Theorem 6.12). The projection matrix P for subspace V of Rn is both
idempotent and symmetric. Conversely, every n×n matrix that is both idempotent and symmetric
is a projection matrix.

Many authors have investigated the second order recurrence sequences. In particular, we
consider studies connected with the Generalized Fibonacci and Horadam numbers. In [6], the
author defines certain sequences and gives the properties of the certain sequences. In [7], the
authors consider Horadam numbers and Horadam polynomials. Also Horzum gives the properties
of Horadam polynomials. In [9], the author investigates sums of Horadam sequence. In [8], the
authors consider the general Fibonacci numbers and give some interesting properties. Dupree and
Mathes investigate the singular values of Hankel matrices with k-Fibonacci and k-Lucas numbers.
Also, they give the orthogonal projection onto the two dimensional space of k-Fibonacci and
k-Lucas sequences in [3]. In [5], the authors consider the orthogonal projection onto the two
dimensional space of k-Fibonacci and k-Lucas sequences in [3], and give a new proof of obtained
results by Dupree and Mathes. In [1], the authors give some identities of the Pell, modified Pell
and Pell–Lucas sequences via orthogonal projection.

Motivated by the above papers, we investigate the orthogonal projection onto the two di-
mensional space of Generalized Fibonacci sequences. We can see that the obtained orthogonal
projection matrix is a Hankel matrix with the elements of {un} sequence entries. Also, we give
the identities for the Generalized Fibonacci numbers, the elements of {un} and {vn} sequence
by using the orthogonal projection matrix. Since k-Fibonacci and modified Pell numbers are spe-
cial cases of the generalized Fibonacci number Gn, all results in this paper generalized results
from [1, 3, 5].
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2 Main results

Let R (p, 1) denote the subspace of Rn, consisting of the (Gi) ∈ Rn which

Gi+1 = pGi +Gi−1

for i = 1, 2, . . . , n. The elements of R (p, 1) whose first two coordinates a and b will be denoted
(Gi) and is called the Generalized Fibonacci sequence.

In this paper, we obtain the matrix of orthogonal projection onto R (p, 1) as follows

p

un


u−n+1 u−n+2 . . . u0
u−n+2 u−n+3 . . . u1

...
... . . . ...

u0 u1 . . . un−1

 (9)

for an even n. Let us note that, the matrix

Hu =


u−n+1 u−n+2 . . . u0
u−n+2 u−n+3 . . . u1

...
... . . . ...

u0 u1 . . . un−1


is called the central Hankel matrix with elements of the sequence {un} entries. Replacing ui with
vi yields Hv the central Hankel matrix. For an odd n, we obtain orthogonal projection matrix
onto R (p, 1) which is connected with the central Hankel matrix Hv.

Theorem 5. For an even n, the spectral norm of p
un
Hu matrix is∥∥∥∥ punHu

∥∥∥∥
2

= 1.

Proof. For an even n, the characteristic polynomial of
p

un
Hu is

∣∣∣∣λI − p

un
Hu

∣∣∣∣ = λn−2(λ− 1)2.

Hence, the roots of the characteristic equation
∣∣∣∣λI − p

un
Hu

∣∣∣∣ = 0 are

λ1,2 = 1

and λk = 0 for k = 3, 4, . . . , n. The spectral norm is the maximum eigenvalue of the matrix due
to Hu symetric matrix. Clearly, ∥∥∥∥ punHu

∥∥∥∥
2

= 1.
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Theorem 6. For odd n (n = 2m+ 1) , the eigenvalues of the Hankel matrix Hv are

λ1 =
vmvm+1

pb
, λ2 =

(p2 + 4)umum+1

pb

and λk = 0 for k = 3, 4, . . . , n. Eigenvectors of correponding eigenvalues λ1 and λ2

u = (u−m, . . . , u0, . . . , um)
T and v = (v−m, . . . , v0, . . . , vm)

T .

Proof. For odd n (n = 2m+ 1), the characteristic polynomial of Hv is

|λI −Hv| = λn−2(λ2 −
(
2v2m+1

p

)
λ+

(p2 + 4) (u22m+1 − b2)
p2

)

The roots of the characteristic equation are

λ1 =
vmvm+1

pb
, λ2 =

(p2 + 4)umum+1

pb

and λk = 0 for k = 3, 4, . . . , n. The eigenvectors corresponding eigenvalues λ1 and λ2 are

u = (u−m, . . . , u0, . . . , um)
T

and
v = (v−m, . . . , v0, . . . , vm)

T .

Theorem 7. For odd n (n = 2m+ 1) , the spectral norm of Hv matrix is

‖Hv‖2 =


vmvm+1

pb
, m is even

(p2 + 4)umum+1

pb
, m is odd

.

Proof. Hv is a symmetric matrix, then the spectral norm ofHv matrix is the maximum eigenvalue
of the matrix. Thus, the spectral norm of Hv matrix is

‖Hv‖2 =


vmvm+1

pb
, m is even

(p2 + 4)umum+1

pb
, m is odd

.

Now, we will prove the orthogonal projection matrix of the matrix
p

un
Hu in (9). Therefore,

we consider the matrix of order 2 as follows

E =

(
0 b

b pb

)
.
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It follows that

Em = bm−1

(
um−1 um
um um+1

)
(10)

for all integers m.

Lemma 8. For any integer t and any nonnegative integer s, we have

s∑
i=0

Et+4i

bt+4i−1 =
u2(s+1)

pb

Et+2s

bt+2s−1 . (11)

Proof. It suffices to prove the identity

s∑
i=0

ut+4i =
u2(s+1)

pb
ut+2s.

Using the Binet’s formula for the {un} sequence, we have

s∑
i=0

ut+4i =
s∑

i=0

b

(
αt+4i − βt+4i

α− β

)
= b

αt

α− β

s∑
i=0

α4i − b βt

α− β

s∑
i=0

β4i

= b

[
(α4s+t − β4s+t)− (α4s+t+4 − β4s+t+4)− (αt−4 − βt−4) + (αt − βt)

(α− β) (α4 − 1) (β4 − 1)

]
= − 1

p4 + 4p2
(u4s+t − u4s+t+4 − ut−4 + ut) .

From the identity (3), we obtain

s∑
i=0

ut+4i =
1

p3 + 4p
(v4s+t+2 − vt−2) .

Taking n = 2s+ 2 and k = t− 2 in the identity (4), we have

s∑
i=0

ut+4i =
u2(s+1)

pb
ut+2s.

Theorem 9. For an even n, the matrix
p

un
Hu is orthogonal projection matrix onto R (p, 1) .

Proof. The orthogonal projection matrix is both symmetric and idempotent. The matrix
p

un
Hu is

clearly symmetric. Therefore, we need to show only that
p

un
Hu is idempotent. Namely, we will

prove that
H2

u =
un
p
Hu.
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We can express the matrix Hu as

Hu =



E−n+2

b−n+1
E−n+4

b−n+3 . . . E−2

b−3
E0

b−1

E−n+4

b−n+3
E−n+6

b−n+5 . . . E0

b−1
E2

b
...

... . . . ...
...

E−2

b−3
E0

b−1 . . . En−6

bn−7
En−4

bn−5

E0

b−1
E2

b
. . . En−4

bn−5
En−2

bn−3


with the matrix Em. Taking n = 2m, we have

Hu =

[
E2(i+j)−2(m+1)

b2(i+j)−2(m+1)−1

]m
i,j=1

.

Using the Lemma 6, we obtain

H2
u =

[
m∑
r=1

E2(i+r)−2(m+1)

b2(i+r)−2(m+1)−1
E2(r+j)−2(m+1)

b2(r+j)−2(m+1)−1

]m
i,j=1

=

[
m∑
r=1

E2(i+j)−4m+4(r−1)

b2(i+j)−4m+4(r−1)−2

]m
i,j=1

=
u2m
p

[
E2(i+j)−4m+2(m−1)

b2(i+j)−4m+2(m−1)−1

]m
i,j=1

=
un
p

[
E2(i+j)−2(m+1)

b2(i+j)−2(m+1)−1

]m
i,j=1

=
un
p
Hu.

Using the idempotency of the matrix
p

un
Hu, we obtain the identity for the elements of {un}

sequence as
p

un
ui+j−n+1 =

p2

u2n

n−1∑
k=0

ui+k−n+1uj+k−n+1

for all even n and −n+ 1 ≤ i, j ≤ n− 1 . Thus, we give the following corollary.

Corollary 10. For an even n and −n+ 1 ≤ i, j ≤ n− 1, we have

unui+j−n+1 = p

n−1∑
m=0

ui−muj−m.

Now, we give the matrix of orthogonal projection onto R (p, 1) for the even values of n.
Hence, we consider the different orthogonal bases of the space R (p, 1) .

Assume that n is even and s = (G0, G1, . . . , Gn−2, Gn−1) ∈ R (p, 1), which is a column
vector. We define

s⊥ = (−Gn−1, Gn−2, . . . ,−G1, G0)
T .

173



It is clear that
{
s, s⊥

}
is an orthogonal basis for the space R (p, 1) . Normalizing s and s⊥,

we consider the t and w vectors as

t =
s

‖s‖
, w =

s⊥

‖s⊥‖
,

where

‖s‖2 =
∥∥s⊥∥∥2 = GnGn−1 + (pa2 − ab)

p
.

From Theorem 3, the matrix of orthogonal projection onto R (p, 1) is

P = ttT + wwT , (12)

which is the Hankel matrix in (9).

Theorem 11. For an even n and 0 ≤ i, j ≤ n− 1, we have

ui+j−n+1

(
GnGn−1 +

(
pa2 − ab

))
= un

(
GiGj + (−1)i+jGn−i−1Gn−j−1

)
. (13)

Proof. By equalizing the ij-th entries of the matrices in (9) and (12), we have

p

GnGn−1 −G0G−1

(
GiGj + (−1)i+jGn−i−1Gn−j−1

)
=

p

un
ui+j−n+1.

From G0 = a and G−1 = b− pa, we obtain

ui+j−n+1

(
GnGn−1 +

(
pa2 − ab

))
= un

(
GiGj + (−1)i+jGn−i−1Gn−j−1

)
.

By using the above theorem, we have the identities for the elements of {Gn} and {un}
sequences as follows.

For i = j = 0 and i = j = n− 1 in (13), we obtain

un
u−n+1

=
GnGn−1 + (pa2 − ab)

a2 +G2
n−1

.

Taking i = j =
n

2
in (13), we have

(GnGn−1 + (pa2 − ab)) b
un

= G2
n
2
+ G2

n
2
−1.

Let i = n− 1, j = 1 in (13), then

b
(
GnGn−1 +

(
pa2 − ab

))
= un (bGn−1 + aGn−2) .
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Let α and β be roots of the characteristic equation (2). Now, we consider the another orthog-
onal basis of R (p, 1), which is {s, t}, where

s =
(
1, α, α2, . . . , αn−1)T and t =

(
1, β, β2, . . . , βn−1)T

The orthogonal projection matrix onto R (p, 1) is

P =
1

‖s‖2
ssT +

1

‖t‖2
ttT . (14)

This matrix is a Hankel matrix with the elements of the sequence {un} in (9).

Theorem 12. For n is even, we have

αi+j+1

α2n − 1
+

βi+j+1

β2n − 1
=

1

un
ui+j−n+1. (15)

for all 0 ≤ i, j ≤ n− 1.

Proof. By equalizing the ij-th entries of the matrices in (9) and (14), we have

α2 − 1

α2n − 1
αi+j +

β2 − 1

β2n − 1
βi+j =

p

un
ui+j−n+1.

For α2 − 1 = pα and β2 − 1 = pβ, the result is clear.

In particular, taking i = 1 and j = n− 1 in (15), we have

αn+1

α2n − 1
+

βn+1

β2n − 1
=

1

un
u1.

Using αβ = −1 and an even n,(
αn+1

α2n − 1
+

βn+1

β2n − 1

)
(αn − βn) = (α− β) .

Hence, the Binet’s formula for the elements of {un} sequence appears as follows

un = b

(
αn − βn

α− β

)
.

Now, we give the matrix of orthogonal projection onto R (p, 1) for the odd values of n,
n = 2m+ 1. Therefore, we consider the eigenvectors u and v of the matrix Hv, which are

u = (u−m, . . . , u0, . . . , um)
T and v = (v−m, . . . , v0, . . . , vm)

T ,

respectively. We have the norms of u and v

‖u‖2 = 2umum+1

p
and ‖v‖2 = 2vmvm+1

p
.
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Also, using the fact that u−i = (−1)i+1 ui and v−i = (−1)i vi, we have

m∑
i=−m

uivi = −
m∑
i=1

uivi + u0v0 +
m∑
i=1

uivi = 0.

Namely {u, v} is an orthogonal basis of R (p, 1) . The orthogonal projection matrix onto
R (p, 1) is given by

P =
p

2umum+1

uuT +
p

2vmvm+1

vvT . (16)

The following theorem gives the second expression for this projection.

Theorem 13. The orthogonal projection matrix in (16) is

p2 (−1)m+1

(p2 + 4)u2mu2m+2

vvT +
pb

umum+1(p2 + 4)
Hv. (17)

Proof. Let us consider the Hankel matrix with elements of {vn} sequence entries, Hv. The eigen-

values of Hv are
umum+1(p

2 + 4)

pb
and

vmvm+1

pb
. The eigenvectors u and v are connected with

these eigenvalues. Thus

Hv =
umum+1 (p

2 + 4)

pb

p

2umum+1

uuT +
vmvm+1

pb

p

2vmvm+1

vvT

=
p2 + 4

2b
uuT +

1

2b
vvT .

The projection matrix in (16) is

P =
p

2umum+1

uuT +
p

2vmvm+1

vvT

=
2b

p2 + 4

p

2umum+1

(
Hv −

1

2b
vvT
)
+

p

2vmvm+1

vvT

=

(
p

2vmvm+1

− bp

2b (p2 + 4)umum+1

)
vvT +

pb

(p2 + 4)umum+1

Hv.

Using the identities (5) and (7), we simplify the above equation. Namely, we have

P =
p2 (−1)m+1

(p2 + 4)u2mu2m+2

vvT +
pb

umum+1(p2 + 4)
Hv.

Corollary 14. If n is odd, then

p

2umum+1

uiuj +
p

2vmvm+1

vivj =
p2(−1)m+1

(p2 + 4)u2mu2m+2

vivj +
pb

umum+1(p2 + 4)
vi+j (18)

for −m ≤ i, j ≤ m .
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Proof. By equalizing the ij-th entries of the matrices in (16) and (17), the result is clear.

Taking i = j = m in (18), we have the identity for the elements of {un} and {vn} sequences
as follows

bu4m+2 = v2mu2m+2 − pb2.
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