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Abstract: In this paper, we consider the space R(p, 1) of generalized Fibonacci sequences and
orthogonal bases of this space. Using these orthogonal bases, we obtain the orthogonal projection
onto a subspace R(p, 1) of R". By using the orthogonal projection, we obtain the identities for
the generalized Fibonacci numbers.
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1 Introduction
The generalized Fibonacci numbers G,, are defined by the following recurrence relation for n > 1
Gr1 =pGp + Gna (1
with the initial conditions Gy = a, G; = b. The characteristic equation of recurrence (1) is
M —pA\—1=0. (2)
The Binet’s formula for the generalized Fibonacci numbers G, is
G, = Aa™ + Bp",
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where « and (3 are roots of the equation (2) and A = M, p=9" b
«

In particular, taking a = 0 in the initial conditions of the generalized Fibonacci number, we
obtain the sequence {u,, }. Namely, the sequence {u, } is defined as

Upt1 = Py + Up—1; Ug = 07 Uy = b.

Similarly, taking 2b and pb instead of a and b, we obtain the sequence {v, }, which is defined
by the following recurrence

Unt1 = PUp + Up—1; Vo = 20, vy = pb

The Binet’s formula for the numbers wu,, and v,, 1S

unzb(a;:gn); v, =b(a" + "),

Also, we can give some identities between u,, and v,,, as follows

PUn—2 = Up — Up—4, (3)
n Un = n -1 i 4
UpUn+k p2+4(1}2+k+( ) Uk)7 “)
X )

Uom = TUMUm,

T

Up = DUy, + 2un717 (6)
UmUm41 — UmlUms1 (P° +4) = 2(=1)" b%p. (7)

Taking p = k, a = 0 and b = 1 in (1), we have the k-Fibonacci numbers. Also, if we take
p =2, a=2>0=1in (1), we obtain the modified Pell numbers. We can give a few values of
{G}, {u,} and {v, } sequences as the following table

N G | [ v ]
=3 [ b(*+1) —ap(p*+2) | b(p*+1) | —pb(p* +3)
-2 a(p*+1)—pb —pb b(p*+2)
-1 b— pa b —pb

0 a 0 2b
1 b b b
2 pb+a pb b(p*+2)
3 b(p*+1)+ap b(p*+1) | pb(p*+3)

Now, we give the theorems about orthogonal projection.
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Theorem 1 ([2], p. 204, Theorem 5.1.4). Consider a vector 7 € R" and subspace V of R".
Then we can write @ = " + 7+ where 2" isin V and 7+ is perpendicular to V', and this
represantation is unique. The vector 2 is called the orthogonal projection of Z onto V, denoted
by projy (@) . The transformation T (') = projy (7)) = T from R™ to R" is linear:

Theorem 2 ([2], p. 206, Theorem 5.1.5). If V' is a subspace of R™ with orthonormal basis
UL, U, - -+, U, then

projy (x) = (ug, ) ug + -+ - + (U, T) Uy (8)
for all x in R™.

By using the equation (8), we can give the matrix of orthogonal projection as the following
theorem.

Theorem 3 ([2], p. 232, Theorem 5.3.10). Consider a subspace V' of R™ with orthonormal basis

U1, U, - . ., Uy, The matrix P of the orthogonal projection onto V' is

P =uwu + -+ unul,.
Theorem 4 ([4], p. 365, Theorem 6.12). The projection matrix P for subspace V' of R™ is both
idempotent and symmetric. Conversely, every n X n matrix that is both idempotent and symmetric
is a projection matrix.

Many authors have investigated the second order recurrence sequences. In particular, we
consider studies connected with the Generalized Fibonacci and Horadam numbers. In [6], the
author defines certain sequences and gives the properties of the certain sequences. In [7], the
authors consider Horadam numbers and Horadam polynomials. Also Horzum gives the properties
of Horadam polynomials. In [9], the author investigates sums of Horadam sequence. In [8], the
authors consider the general Fibonacci numbers and give some interesting properties. Dupree and
Mathes investigate the singular values of Hankel matrices with k-Fibonacci and k-Lucas numbers.
Also, they give the orthogonal projection onto the two dimensional space of k-Fibonacci and
k-Lucas sequences in [3]. In [5], the authors consider the orthogonal projection onto the two
dimensional space of k-Fibonacci and k-Lucas sequences in [3], and give a new proof of obtained
results by Dupree and Mathes. In [1], the authors give some identities of the Pell, modified Pell
and Pell-Lucas sequences via orthogonal projection.

Motivated by the above papers, we investigate the orthogonal projection onto the two di-
mensional space of Generalized Fibonacci sequences. We can see that the obtained orthogonal
projection matrix is a Hankel matrix with the elements of {u, } sequence entries. Also, we give
the identities for the Generalized Fibonacci numbers, the elements of {u,} and {v,} sequence
by using the orthogonal projection matrix. Since k-Fibonacci and modified Pell numbers are spe-
cial cases of the generalized Fibonacci number G,,, all results in this paper generalized results
from [1, 3, 5].
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2 Main results
Let R (p, 1) denote the subspace of R™, consisting of the (G;) € R™ which
Git1=pGi+ Gia

fori = 1,2,...,n. The elements of R (p, 1) whose first two coordinates a and b will be denoted
(G;) and is called the Generalized Fibonacci sequence.
In this paper, we obtain the matrix of orthogonal projection onto R (p, 1) as follows

Upt1 U-ny2 ... U
P U—p+2 U_pt3 ... Ui
— : o : ©)
Un : : T :
Ug Uy cee Up—1

for an even n. Let us note that, the matrix

Upy1 U-pty2 .- Up
U_pt+2 U_p43 ... Uq
H, =
Uo Ui e Up—1

is called the central Hankel matrix with elements of the sequence {u,, } entries. Replacing u; with
v; yields H, the central Hankel matrix. For an odd n, we obtain orthogonal projection matrix
onto R (p, 1) which is connected with the central Hankel matrix H.,.

Theorem 5. For an even n, the spectral norm of - H,, matrix is

Py
Up,

=1
2

Proof. For an even n, the characteristic polynomial of a H, s
n

‘)\I g = a2 - 12

Unp

A - Lm,
Unp,

Hence, the roots of the characteristic equation = (0 are

Ap = 1

and A\, = 0 for k = 3,4,...,n. The spectral norm is the maximum eigenvalue of the matrix due
to H, symetric matrix. Clearly,

Py

Unp

=1.
2
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Theorem 6. For odd n (n = 2m + 1), the eigenvalues of the Hankel matrix H, are

2
m¥m 4 m=m
A =2 U+1’/\2:(p‘|' ) U Un-41

pb pb
and N\, = 0 for k = 3,4, ..., n. Eigenvectors of correponding eigenvalues \1 and X\,
u= (u_m,...,uo,...,um)T and v = (v_m,...,vo,...,vm)T.

Proof. For odd n (n = 2m + 1), the characteristic polynomial of H, is

2 2 4 2 _b2
AN — H,| = \"2(\? — (M) Pt (p* + )(u§m+1 ))
p p

The roots of the characteristic equation are

)\1 _ vmvm—&—l? )\2 _ (p2 + 4) U Um+1
pb pb
and A\, = 0 for k£ = 3,4,...,n. The eigenvectors corresponding eigenvalues A\; and )\, are
u = (u_m,...,UO,...,um)T
and
v = (’U,m, » Vo, 7vm>T

Theorem 7. For odd n (n = 2m + 1), the spectral norm of H, matrix is

UmUm+1 .
s m 1S even
pb
1=,
(p + )umuerl’ misodd

pb

Proof. H,is a symmetric matrix, then the spectral norm of /7, matrix is the maximum eigenvalue
of the matrix. Thus, the spectral norm of H, matrix is

UmUm+1 .
_ m1is even
pb
=g
(" +4) umumH’ m 18 odd

pb
O

Now, we will prove the orthogonal projection matrix of the matrix ﬂHu in (9). Therefore,

we consider the matrix of order 2 as follows

E:Ob.
b pb
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It follows that
B — bm—l ( Um—1 Um > (10)

for all integers m.

Lemma 8. For any integer t and any nonnegative integer s, we have

Et+4i Et+25

_ Ug(s+1)
pt+di—1 - pb pt+2s—1" (11)

1=0

Proof. It suffices to prove the identity

s—i—l)
E Uptas = — 73 Ut42s-

Using the Binet’s formula for the {u,,} sequence, we have

§:Ut+4 Zb( t+4z 51&—1—41)
1=0
% ; SN
=b— 6;& - b—a — 6;54

. [(a4s+t _ 54s+t) _ (a4s+t+4 _ ﬁ4s+t+4) _ (at—4 _ ﬁt—4) + (at _ ﬁt)
(a—=p)(a*=1)(B*—1)

(Ugs it — Ugsitpa — Up—g + Ut) .

1
p4 + 4p2

From the identity (3), we obtain

S
g Up4-45 =
i=0

Taking n = 2s + 2 and k = ¢t — 2 in the identity (4), we have

5+1)
E Upyai = — 7 Utt2s-

4p (U4s+t+2 - Ut—2) .

Theorem 9. For an even n, the matrix ﬁHu is orthogonal projection matrix onto R (p, 1) .
Unp

Proof. The orthogonal projection matrix is both symmetric and idempotent. The matrix ﬁHu is
n

clearly symmetric. Therefore, we need to show only that ﬁHu is idempotent. Namely, we will

prove that

u

H2=""H,.
p
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We can express the matrix H,, as

E7n+2 E7n+4 E 2 0

p—n+1 p—n+3 -3 b—1

E—n+4 E—n+6 EU E2

p—n+3 p—n+5 —1 D

H, = : :

E—2 0 En—6 En—4

b—3 p—1 pn—"7 pn—>5
EO° E? En—4 En—2

F T pn—>5 pn—3

with the matrix £™. Taking n = 2m, we have

FR2(i+5)—2(m+1) 7™
i | |
ij=1

p2(it+5)—2(m+1)—1

Using the Lemma 6, we obtain

H? =

[ p2(itr)=2(m+1)  p2(r+i)-2(m+1) ]m

p2(itr)—2(m+1)—1 p2(r+4)—2(m+1)—1

Lr=1 i,j=1

M E2itg)—4m+4(r—1) ]m

p2(it5)—4m+4(r—1)—2

Lr=1

i,j=1
U, |:E2(i+j)—4m+2(m—l) }m
,j=1

p b2(i+j)—4m+2(m—1)-1

w, [ E26+)-26m41) 7™
_ ? |:b2(i+j)2(m+1)1:|i,j:1

Up,
= —H,.

]

Using the idempotency of the matrix £Hu, we obtain the identity for the elements of {u,, }
u
sequence as "
on—1

p 4

—Uitj—n+1 = 5 Uit k—n+1U; 4 iy
2 J

U, uz 0

forallevenn and —n + 1 <i,57 <n — 1. Thus, we give the following corollary.

Corollary 10. For an evenn and —n+1 < 1,7 <n — 1, we have

n—1
UnUitj—n+1 = pzuifmujfm-
m=0
Now, we give the matrix of orthogonal projection onto R (p,1) for the even values of n.
Hence, we consider the different orthogonal bases of the space R (p, 1) .
Assume that n is even and s = (Go,G1,...,G,_2,G,1) € R(p,1), which is a column

vector. We define
1

s = (_Gn—la Gn-2,...,—Gq, GO)T .
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It is clear that {s, SJ‘} is an orthogonal basis for the space R (p,1). Normalizing s and s+,
we consider the ¢ and w vectors as

S SJ'

t=— w=——
K el

where
GG 1+ (pa® — ab)

2 L 2:
I = 1| g

From Theorem 3, the matrix of orthogonal projection onto R (p, 1) is
P =tt" + ww?, (12)
which is the Hankel matrix in (9).

Theorem 11. For an evenn and 0 < i,5 <n — 1, we have
Wit j—n+1 (GnGnq + (pa2 - Gb)) = Up (GiGj + (_1)i+jGn7iflanjfl) . (13)

Proof. By equalizing the ¢7-th entries of the matrices in (9) and (12), we have

p i p
GnGn-1 — GoG1 (GiGj +(=1) ﬂG"*i’lG"’j*l) - u_nui+j*n+1-

From Gy = a and G_; = b — pa, we obtain
Wit j—nt1 (Gnanl + (Pa2 - ab)) = Up (GiGj + (_1)i+jGn7i71anjfl> .
O]

By using the above theorem, we have the identities for the elements of {G,} and {u,}
sequences as follows.
Fort=7=0 and 7= 7 =n — 1in (13), we obtain

U,  GpGpy + (pa® — ab)
U_pi1 a?+Gh '

Taking + = j = gin (13), we have

(GpGr1 + (pa® —ab)) b

Unp

=G%+ Ga_,.
2 2

Let:=n—1, 7 =11in(13), then

b (GnGro1 + (pa® — ab)) = uy, (bGn_y + aGyp_s).
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Let a and (3 be roots of the characteristic equation (2). Now, we consider the another orthog-
onal basis of R (p, 1), which is {s,t}, where

= (1,a,a2, . ,oz”_l)T and t = (1,5,52,...,5"_1)T

The orthogonal projection matrix onto R (p, 1) is

1 1
= sst + — T, (14)
2 2
sl 2]

This matrix is a Hankel matrix with the elements of the sequence {u,,} in (9).

Theorem 12. For n is even, we have
ai+j+1 5z+g+1 1

R T S

Uit j—n+1- (15)
forall 0 <u1,7 <n-—1.

Proof. By equalizing the 7j-th entries of the matrices in (9) and (14), we have

0[2 1 o 62
i+ i+j
———a' + = P
agn . 1 /BQn . /8 U/n +j +1-
For a? — 1 = pa and 32 — 1 = pg, the result is clear. O

In particular, taking? =1 and j =n — 11in (15), we have

an—i—l 6n+1 1
a2n ﬁ2n 1 u_nul'
Using a8 = —1 and an even n,
an—l—l Bn—l—l " .
(e ) @ = == 5).

Hence, the Binet’s formula for the elements of {u,, } sequence appears as follows
u, =b (M) .
a—pf

Now, we give the matrix of orthogonal projection onto R (p,1) for the odd values of n,
n = 2m + 1. Therefore, we consider the eigenvectors v and v of the matrix H,,, which are

u= (u_m,...,uo,...,um)T and v = (v_m,...,vo,...,vm)T,
respectively. We have the norms of u and v
2 2
[u?> = Zmimtd gng Jjo|? = Z0mUmtt
p
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Also, using the fact that u_; = (—1)""" w; and v_; = (—1)" v;, we have

m m m
E U;V; = — E U;V; + UgVg + E U;V; = 0.
i=1 =1

i=—m

Namely {u,v} is an orthogonal basis of R (p,1). The orthogonal projection matrix onto
R (p,1) is given by
P=—"L T+ LT (16)
2umum—i—l vavm-i-l

The following theorem gives the second expression for this projection.

Theorem 13. The orthogonal projection matrix in (16) is

p( ) ool + p

H,. (17)
(p? + 4)ugmUzmi2 U U1 (P? + 4)

Proof. Let us consider the Hankel matrix with elements of {v,, } sequence entries, H,. The eigen-
umum+1(p2 + 4) d UmUm+1

pb pb
these eigenvalues. Thus

values of H, are . The eigenvectors u and v are connected with

U, U, 2 +4 UmUm
H, = +1(p ) p wul + +1 p ool
pb U U1 pb 205Vm41
244 1
= p 2—2 uut + Q—bva.

The projection matrix in (16) is

p p
— w4+ ———wT
2umum+1 2UmvrnJrl

2b 1
S P (Hv - —UUT) TR -
p° + 4 2Umum-&-l 2Umvm-&-l

P=

b b
= ( P - b ) vl + P H,.
20mUmi1 20 (P? +4) Ui (p? + 4) U Upp i1

Using the identities (5) and (7), we simplify the above equation. Namely, we have

o P’ (_1)m+1 T pb
= 3 VU + B) v
(p + 4)u2mu2m+2 umum—i-l(p + 4)
O]
Corollary 14. If n is odd, then
2 m+1
P p p°(-1) pb
P i+ — ;= v i 18
2Umum+1u uj * 2'Umvm—s—lru U] <p2 + 4>U2mu2m+2v U] * U Um+1 (P2 + 4)U I ( )

for —m <i,5 <m.
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Proof. By equalizing the ij-th entries of the matrices in (16) and (17), the result is clear. O]

Taking ¢ = j = m in (18), we have the identity for the elements of {u,, } and {v,} sequences
as follows

2
bUgmto = VomUomia — pb°.
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