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Abstract: We derive some averages of the Dirichlet convolution of the binary digital sum s2(n),
the sum of digits ofthe expansion of n in base 2. The Trollope–Delange formula is used in our
proof. It provides an explicit asymptotic formula for the total number of digits ‘1’ in the binary
expansions of the integers between 1 and n− 1 in term of the continuous, nowhere differentiable
Takagi function. Moreover, we also extend the result to averages of the k-th convolution of the
binary digital sum, for k ≥ 2.
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1 Introduction and statement of results

Each non-negative integer can be written uniquely in base 2 as n =
∑
i≥0
ai2

i, where the integer

ai ∈ {0, 1}. The binary digital sum is defined by s2(n) =
∑
i≥0
ai. The sum of digits function s(n)

appears in many different fields of mathematics. In 1948, Bellman and Shapiro [1] proved that∑
0≤n<x

s2(n) =
x log x

2 log 2
+O(x log log x). (1)

L. Mirsky [6] improved the error term in (1) to O(x). There are many related results to (1). We
refer the reader to the monograph [7, Chapter 4, section 4.3] for more details. The classical results
on the sum (1) is the Trollope–Delange formula [8, Trollope] and [3, Delange] which is stated as
the following theorem.
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Theorem 1.1. [Trollope [8] and Delange [3]] Let T be the Takagi function:

T (x) =
∞∑
n=1

1

2n
Ψ(2n−1x), 0 ≤ x ≤ 1,

where ψ(x) = |2x − 2
⌊
x+ 1

2

⌋
|. And let F : R → R be periodic of period 1, continuous and

nowhere differentiable defined by

F (x) = 1− x− 21−xT

(
1

21−x

)
, 0 ≤ x ≤ 1.

Then ∑
0≤n<x

s2(n) =
x log x

2 log 2
+
x

2
F

(
log x

log 2

)
. (2)

The Trollope–Delange formula is a powerful tool for attacking problems involving the binary
digital sum. In particular, the moments of the sum of digits function is an interesting question.
Coquet [2] gave the moments of the binary sum of digits function,

∑
n<x

s2(n)2 =

(
log2 x

2

)2

x+ x log2 xν1(log2 x) + xν2(log2 x),

where ν1(x) and ν2(x) are continuous nowhere differentiable functions of period 1. Recently,
Grabner, Kirschenhofer, Prodinger and Tichy [4] considered the s-th moment in the binary num-
ber system by using Delange’s approach and proved that, for a given integer s ≥ 1,

∑
n<x

s2(n)s =

(
log2 x

2

)s

x+ x
s−1∑
j=1

(log2 x)jνj(log2 x),

where νj(x) are continuous nowhere differentiable functions of period 1.
We define a Dirichlet convolution for binary digital sum as

s
(2)
2 (n) := s2 ∗ s2(n) =

∑
d|n

s2(d)s2(n/d).

In this paper, we shall investigate the asymptotic behaviour for∑
n≤x

s
(2)
2 (n), x > 1. (3)

The Trollope–Delange formula (2) is the main ingredient in the proof. Our result is:
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Theorem 1.2. Let x > 1, we have∑
0≤n≤x

s
(2)
2 (n) ≤ x log3 x

24 log2 2
+
x log2 x

log2 2

(
1

8
+ FM(

√
x) log 2

)
+
x log x

log 2

(
1

4
F

(
log x

log 2

)
− 1

2
G(
√
x) +

1

4
FM(
√
x)

)
− x

2

(
G(
√
x) +H(

√
x)

log 2
− FM(

√
x)F

(
log x

log 2

)
+
G(
√
x)FM(

√
x)

2
+ F 2

(
log x

log 2

))
,

∑
0≤n≤x

s(2)(n) ≥ x log3 x

24 log2 2
+
x log2 x

8 log2 2
+
x log x

log 2

(
1

4
F

(
log x

log 2

)
− 1

2
G(
√
x)

)
− x

2

(
G(
√
x) +H(

√
x)

log 2
− F

(
log x

log 2

)
+
G(
√
x)

2
+ F 2

(
log x

log 2

))
,

where FM(x), G(x) and H(x) are continuous nowhere differentiable functions of period 1 that
can be expressed explicitly from F (x).

The consequence of Theorem 1.2 is:

Corollary 1.2.1. As x→∞, we have

∑
0≤n≤x

s
(2)
2 (n) =

x log3 x

24 log2 2
+O

(
x log2 x

)
.

Moreover, we extend Corollary 1.2.1 to the k-th convolution of the binary digital sum, for any
integer k ≥ 2. Namely, for k ≥ 2, we define the k-th convolution for binary digital sum as

s
(k)
2 (n) := s2 ∗ s(k−1)2 (n) =

∑
d|n

s2(d)s
(k−1)
2 (n/d)

and by using the mathematical induction, we obtain the following result.

Theorem 1.3. For any integer k ≥ 2, we have∑
0≤n≤x

s
(k)
2 (n) =

a(k)

24 log2 2
x log2k−1 x+O

(
x log2k−2 x

)
, (4)

where

a(2) = 1 and a(k) =
a(k − 1)

2 log 2

2k−3∑
j=0

(
2k − 3

j

)
(−1)j

j + 2
.

In the proofs of our results, Theorem 1.1 plays an important role. Dirichlet’s hyperbolic
method and Abel’s identity are used to derive Theorem 1.2.

2 Lemmas on the binary digital sum

The following lemmas are used in the proofs of Theorem 1.2 and 1.3.
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Lemma 2.1. As x→∞, we have∑
n≤x

s2(n)

n
=

log x

2 log 2
+

log2 x

4 log 2
+

1

2
F

(
log x

log 2

)
+

1

2
G (x) , (5)

∑
n≤x

s2(n) log n

n
=

log3 x

6 log 2
+

log2 x

4 log 2
+

log x

2
F

(
log x

2 log 2

)
+

(
log x

2
− 1

2

)
G(x)− 1

2
H(x), (6)

where

G(x) =

∫ x

1

F

(
log u

log 2

)
du

u

and

H(x) =

∫ x

1

∫ u

1

F

(
log v

log 2

)
dvdu

uv
.

Proof. By Abel’s identity and (2), we have∑
n≤x

s2(n)

n
=

1

x

(
x log x

2 log 2
+
x

2
F

(
log x

log 2

))
+

∫ x

1

(
u log u

2 log 2
+
u

2
F

(
log u

log 2

))
du

u2

=
log x

2 log 2
+

1

2
F

(
log x

log 2

)
+

log2 x

4 log 2
+

1

2
G(x).

Using Abel’s identity again and (5), we have

∑
n≤x

s2(n) log n

n
= log x

(
log x

2 log 2
+

1

2
F

(
log x

log 2

)
+

log2 x

4 log 2
+

1

2
G(x)

)
−
∫ x

1

(
log u

2 log 2
+

1

2
F

(
log u

log 2

)
+

log2 u

4 log 2
+

1

2
G(u)

)
du

u

=
log3 x

6 log 2
+

log2 x

4 log 2
+

log x

2
F

(
log x

log 2

)
+

(
log x

2
− 1

2

)
G(x)− 1

2
H(x).

Lemma 2.2. ∑
n≤y

s2(n)

n
F

(
log(x/n)

log 2

)
≤ FM(y)

∑
n≤y

s2(n)

n
, (7)

where FM(y) := max{F
(

log(x/n)
log 2

)
, n ∈ [1, y]}.

Proof. This follows from the boundness of the Takagi function (see [5])

Lemma 2.3. For any positive integer j, we have

∑
n≤x

s2(n)

n
logj n =

logj+2 x

2(j + 2) log 2
+O

(
logj+1 x

)
.

Proof. This follows from using Abel’s identity and (5).
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3 Proofs of Theorems

Proof of Theorem 1.2. Let x > 1. In view of Dirichlet’s hyperbolic method, we have∑
0≤n≤x

s
(2)
2 (n) =

∑
0≤n<x

∑
d|n

s2(d)s2(n/d)

= 2
∑
n≤
√
x

s2(n)
∑

m≤x/n

s2(m)− (
∑
n≤
√
x

s2(n))2. (8)

Inserting (2) in the right hand of (8), we have

∑
0≤n≤x

s
(2)
2 (n) = 2

∑
n≤
√
x

s2(n)

(
x log(x/n)

2n log 2
+

x

2n
F

(
log(x/n)

log 2

))
−
(√

x log x

4 log 2
+

√
x

2
F

(
log x

log 2

))2

=
x log x

log 2

∑
n≤
√
x

s2(n)

n
− x

log 2

∑
n≤
√
x

s2(n) log n

n
+ x

∑
n≤
√
x

s2(n)

n
F

(
log(x/n)

log 2

)

− x log2 x

16 log2 2
− x log x

4 log 2
F

(
log x

log 2

)
− x

4
F 2

(
log x

log 2

)
.

We apply (5) and (6) in Lemma 2.1 to the first and second sum, respectively, and Lemma 2.2 to
the third sum. This completes Theorem 1.2.

Proof of Theorem 1.3. We use induction on k. The relation (4) holds for k = 2 with a(2) = 1.
Let us assume that the relation (4) holds for all k < l. We have∑

0≤n≤x

s
(l)
2 (n) =

∑
0≤n<x

∑
d|n

s2(d)s
(l−1)
2 (n/d)

=
∑
n≤x

s2(n)
∑

m≤x/n

s
(l−1)
2 (m). (9)

Inserting the hypothesis in the right hand of (9), we have∑
0≤n≤x

s
(l)
2 (n) =

∑
n≤x

s2(n)

(
a(l − 1)

24 log2 2

x

n
(log x− log n)2l−3 +O

(x
n

(log x− log n)2l−4
))

=
a(l − 1)x

24 log2 2

∑
n≤x

s2(n)

n
(log x− log n)2l−3 +O

(
x

∣∣∣∣∣∑
n≤x

s2(n)

n
(log x− log n)2l−4

∣∣∣∣∣
)
.

By Abel’s identity and (5), we have

∑
0≤n≤x

s
(l)
2 (n) =

a(l − 1)x

24 log2 2

∑
n≤x

s2(n)

n

2l−3∑
j=0

(
2l − 3

j

)
(−1)j log2l−3−j x logj n+O

(
x log2l−2 x

)
=
a(l − 1)x

24 log2 2
log2l−3 x

2l−3∑
j=0

(
2l − 3

j

)
(−1)j log−j x

∑
n≤x

s2(n)

n
logj n+O

(
x log2l−2 x

)
.
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In view of Lemma 2.3, we have

∑
0≤n≤x

s
(l)
2 (n) =

a(l − 1)x

24 log2 2
log2l−3 x

2l−3∑
j=0

(
2l − 3

j

)
(−1)j log−j x

(
logj+2 x

2(j + 2) log 2
+O

(
logj+1 x

))
+O

(
x log2l−2 x

)
=
a(l − 1)x

24 log2 2
log2l−1 x

2l−3∑
j=0

(
2l − 3

j

)(
(−1)j

2(j + 2) log 2

)
+O

(
x log2l−2 x

)
.

This gives

a(l) =
a(l − 1)

2 log 2

2l−3∑
j=0

(
2l − 3

j

)
(−1)j

j + 2
.

Thus, the relation (4) holds at rank l, and Theorem 1.3 is proved.
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