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Abstract: Quadratic functions have applications in cryptography. In this paper, we investigate
the modular quadratic equation

ax2 + bx+ c = 0 (mod 2n),

and provide a complete analysis of it. More precisely, we determine when this equation has a
solution and in the case that it has a solution, we give not only the number of solutions, but
also the set of solutions, in O(n) time. One of the interesting results of our research is that, if
this equation has a solution, then the number of solutions is a power of two. Most notably, as
an application, we characterize the number of fixed-points of quadratic permutation polynomials
over Z2n , which are used in symmetric cryptography.
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1 Introduction

The square mapping is one of the tools which is used in cryptography. For instance, the Rabin
cryptosystem [6] employs a modular quadratic mapping. As another example, in the design of
the stream cipher Rabbit [1], the square map is used. A quadratic polynomial modulo 232 is used
in the AES finalist block cipher RC6 [5].

The quadratic equation has been solved over various algebraic structures. For example, the
quadratic equation over F2n is solved in Theorem 3.2.15 of [3]. Note that an algorithm for finding
the solutions of quadratic equation over F2n is also given in [8]. This research is not the first one
concerning the quadratic equation mod 2n. For instance, [7] gives the solutions of equation (1) in
spacial cases.

In this paper, we examine the quadratic equation mod 2n. We verify when this equation has a
solution and, in the case that it has a solution, we give the number of solutions as well as the set
of its solutions in O(n) time. As an application for symmetric cryptography, we characterize the
number of fixed-points of quadratic permutation polynomials over Z2n .

In section 2, we give the preliminary notations and definitions. Section 3 is devoted to the
main theorems of the paper which solve the modular quadratic equation mod 2n, completely, and
presents its number of solutions along with its set of solutions. In section 4, we conclude the
paper.

2 Notations and definitions

We denote the well-known ring of integers mod 2n by Z2n . For every nonzero element a ∈ Z2n ,
we define p2(a) as the greatest power of 2 that divides a. The odd part of a or

a

2p2(a)
is denoted

by o2(a), in the current paper. Note that, we define p2(0) := n.
The number of elements (cardinal) of a finite set R is denoted by |R|. For a function f : R→

S, the preimage of an element b ∈ S is defined as {a ∈ R|b = f(a)} and is denoted by f−1(b). If
f(x) = x for some x ∈ R, then x is called a fixed-point of f . The i-th bit of a natural number x
in its binary representation is denoted by [x]i. For an integer j, we define ej as follows

ej =

0, j odd,

1, j even.

A mapping
f : Z2n → Z2n ,

f(x) = ax2 + bx+ c (mod 2n),

is called a quadratic polynomial over Z2n . When f is a permutation, it is called a quadratic
permutation polynomial over Z2n .

Let (G, ∗) be a group and ϕ : G → G be a group endomorphism. We denote the kernel of ϕ
by ker(ϕ) and the image of ϕ by Im(ϕ).
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3 Solving the quadratic equation mod 2n

In this section, we study the modular quadratic equation

ax2 + bx+ c = 0 (mod 2n), (1)

and wish to solve it. More precisely, we want to determine:

a) whether (1) has a solution;

b) if it has a solution, then what is the number of its solutions;

c) the set of its solutions.

In the sequel, we note that x = 0 is equivalent to p2(x) = n.

Lemma 3.1. Let a, b, and c be even and t = min{p2(a), p2(b), p2(c)}. Set A = a
2t

, B = b
2t

, and
C = c

2t
. Consider the equations (1) and

Ax2 +Bx+ C = 0 (mod 2n−t). (2)

Let N1 and N2 be the number of solutions of (1) and (2), respectively. Also, let {x1, . . . , xN2} be
the set of solutions of (2). Then, the set of solutions of (1) is as follows

{xi + r2n−t : 0 ≤ r < 2t, 1 ≤ i ≤ N2}.

Further, N1 = 2tN2.

Proof. Firstly, fix 1 ≤ i ≤ N2 and 0 ≤ r < 2t. We show that xi + r2n−t is a solution of (1):

a(xi + r2n−t)2 + b(xi + r2n−t) + c

= 2tA(x2i + r222n−2t + xir2
n−t+1) + 2tB(xi + r2n−t) + 2tC

= 2tAx2i + Ar222n−t + Axir2
n+1 +Bxi2

t +Br2n + 2tC

= 2t(Ax2i +Bxi + C) = 0 (mod 2n).

Conversely, let x ∈ Z2n be a solution of (1). Then

2t(Ax2 +Bx+ C) = 0 (mod 2n).

So,
Ax2 +Bx+ C = 0 (mod 2n−t).

One can check that χ = x (mod 2n−t) is a solution of (2). Thus, all of solutions y of (1) are such
that y = xi + r2n−t, for some 1 ≤ i ≤ N2 and 0 ≤ r < 2t.

Example. Consider the equations

4x2 + 4x+ 24 = 0 (mod 25) (3)

and
x2 + x+ 6 = 0 (mod 23). (4)

The set of solutions of (3) and (4) are A = {1, 6, 9, 14, 17, 22, 25, 30} and B = {1, 6}, respec-
tively. One can check that Lemma 3.1 holds for this example and |A| = 22|B|.

The proof of the following lemma is straightforward.
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Lemma 3.2. The equation (1) has no solutions when p2(a) = p2(b) = p2(c) = 0 or when
p2(a) > 0, p2(b) > 0, and p2(c) = 0.

Lemma 3.3. If p2(a) > 0 and p2(b) = 0, then the equation (1) has a unique solution.

Proof. Consider the two following cases:
Case I) Let p2(a) > 0, p2(b) = p2(c) = 0, a = 2A, b = 2B + 1, and c = 2C + 1. In this case,
any solution x of (1) is odd; so, we have x = 2X + 1. Thus, we have

2A(2X + 1)2 + (2B + 1)(2X + 1) + 2C + 1 = 0 (mod 2n),

which simplifies to

4AX2 + (4A+ 2B + 1)X + A+B + C + 1 = 0 (mod 2n−1).

So, if we set α = 4A, β = 4A + 2B + 1, and γ = A + B + C + 1, then [x]0 = 1 and we must
solve the equation

αX2 + βX + γ = 0 (mod 2n−1),

such that p2(α) > 0 and p2(β) = 0. Now, we have either p2(γ) = 0, which is this same case or
p2(γ) > 0, which is Case II, below.
Case II) Let p2(a) > 0, p2(c) > 0, p2(b) = 0, a = 2A, b = 2B + 1, and c = 2C. In this case,
x = 2X . So we have

2A(2X)2 + (2B + 1)(2X) + 2C = 0 (mod 2n),

or
4AX2 + (2B + 1)X + C = 0 (mod 2n−1).

Put α = 4A, β = 2B + 1, and γ = C. Then [x]0 = 0 and we should solve the equation

αX2 + βX + γ = 0 (mod 2n−1),

with p2(α) > 0 and p2(β) = 0. Now, if p2(γ) = 0, then we transit to Case I and if p2(γ) > 0,
then we transit to this same case. Therefore, (1) has a unique solution.

The trend of the proof of Lemma 3.3 justifies the correctness of Algorithm 1, which computes
the solution of (1) with the conditions of Lemma 3.3 in O(n) time.

Algorithm 1: Solve(a, b, c, n)
Input: a, b, c ∈ Z2n with p2(a) > 0 and p2(b) = 0.
Output: The solution of (1) in binary form.
for i = 0 to n− 1 do
begin
if p2(c) > 0 then
[x]i = 0

Solve(2a, b, c
2
, n− 1)

else
[x]i = 1

Solve(2a, 2a+ b, a
2
+ b b

2
c+ b c

2
c+ 1, n− 1).
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Lemma 3.4. In the case that p2(a) = p2(b) = 0 and p2(c) > 0, the equation (1) has two solutions.

Proof. Consider the equation 2ay2 + by + c
2
= 0 (mod 2n−1). Lemma 3.3 shows that this

equation has a unique solution δ ∈ Z2n−1 . One can check that π = 2δ is a solution of (1), in this
case. On the other hand, Lemma 3.3 shows that the equation

2az2 + (2a+ b)z +
a+ b+ c

2
= 0 (mod 2n−1)

has a unique solution ρ ∈ Z2n−1 . It is straightforward to see that ε = 2ρ+ 1 is a solution of (1) in
Z2n . Now, we show that (1) has no other solutions. Suppose that x is a solution of (1). We have
the two following cases:
Case I) x = 2X; we have

4aX2 + 2bX + c = 0 (mod 2n).

So,
2aX2 + bX +

c

2
= 0 (mod 2n−1),

which is not a new solution.
Case II) x = 2X + 1; in this case we have

4aX2 + (4a+ 2b)X + a+ b+ c = 0 (mod 2n).

So,

2aX2 + (2a+ b)X +
a+ b+ c

2
= 0 (mod 2n−1),

which is not a new solution.

The proof of next lemma is straightforward.

Lemma 3.5. If a is an odd element in Z2n , then a2 = 1 (mod 8).

The next theorem provides the set of solutions of the equation x2 = a (mod 2n).

Theorem 3.6. Suppose that f : Z2n → Z2n is defined as f(x) = x2 (mod 2n). Then,
a) For the three cases p2(a) = n, p2(a) = n− 1 with en = 0, and a = 2n−2 with en = 1, we have

|f−1(a)| = 2
n−1+en

2 .

b) For the two cases p2(a) = 1 (mod 2), and p2(a) = 0 (mod 2) with 0 ≤ p2(a) ≤ n − 3 and
o2(a) 6= 1 (mod 8), we have

|f−1(a)| = 0.

c) For the case of p2(a) = 0 (mod 2) with 0 ≤ p2(a) ≤ n− 3 and o2(a) = 1 (mod 8), we have

|f−1(a)| = 2
p2(a)+4

2 .
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Proof. Case a) On one hand, every a ∈ Z2n with p2(a) ≥ dn2 e satisfies x2 = 0 (mod 2n). So,
|f−1(a)| is at least 2n−d

n
2
e = 2

n−1+en
2 . On the other hand, for each a ∈ Z2n with p2(a) < dn2 e,

a2 6= 0 (mod 2n). Thus, |f−1(a)| = 2
n−1+en

2 .
Now, suppose that n is odd and p2(a) = n − 1; i.e., a = 2n−1. Let x = 2rq with odd q. We

have
22rq2 = 2n−1 (mod 2n).

So, r = n−1
2

, 1 ≤ q ≤ 2
n+1
2 − 1 and q2 = 1 (mod 2). Thus, only the odd q’s satisfy the equation

x2 = 2n−1 (mod 2n). Therefore, |f−1(a)| = 2
n−1+en

2 .
Now, let n be even and p2(a) = n−2. So, a = s2n−2, where s ∈ {1, 3}. If s = 1, put x = 2rq

with odd q. Then
22rq2 = 2n−2 (mod 2n).

Hence r = n−2
2

, 1 ≤ q ≤ 2
n+2
2 − 1 and q2 = 1 (mod 4). Thus, only half of odd q’s satisfy the

equation x2 = 2n−1 (mod 2n). Therefore, |f−1(a)| = 2
n−1+en

2 .
Case b) In the proof of the Case a), put s = 3. Consider the equation x2 = 2n−2×3 (mod 2n)

and suppose that x = 2rq with odd q. Then,

22rq2 = 2n−2 × 3 (mod 2n).

So, r = n−2
2

and q2 = 3 (mod 4). Thus, by Lemma 3.5, we have |f−1(a)| = 0.
Now, suppose that p2(a) = 1 (mod 2). Since the square of any odd element is odd, so only

even elements x ∈ Z2n can satisfy x2 = a (mod 2n). Let x = 2rq, r 6= 0, and suppose that q is
odd. Then p2(x2) = 2r which contradicts p2(a) = 1 (mod 2). Therefore, |f−1(a)| = 0.

Now, let p2(a) = 0 (mod 2) and o2(a) 6= 1 (mod 8). So, a = 22jt, where p2(a) = 2j and
t = o2(a). If x = 2rq with odd q, then

22rq2 = 22jt (mod 2n).

Consequently, r = j and q2 = t (mod 2n−2j). Thus, regarding Lemma 3.5, |f−1(a)| = 0.
Case c) We use Theorem 13.3 in [2] to prove this case. Suppose that p2(a) = 0 and a =

1 (mod 8). The algebraic structure (G, ∗), where G is the subset of odd elements in Z2n and ∗
is the operator of multiplication modulo 2n is a group structure. The function φ : G → G with
φ(g) = g ∗ g is a group endomorphism on G. To compute |ker(φ)|, we must count the number of
solutions for the equation x ∗ x = 1G. In other words, we must count the number of solutions for
the equation x2 = 1 (mod 2n). We have

(x− 1)(x+ 1) = 0 (mod 2n).

Since x is odd, so for some q ∈ Z2n , x = 2q + 1 (mod 2n). So,

4q(q + 1) = 0 (mod 2n).

Consequently, q = 0, q = 2n−2, q = 2n−1, q + 1 = 2n−2, q + 1 = 2n−1. Substituting the values
of q, we have the solutions x1 = 1, x2 = 2n − 1, x3 = 2n−1 + 1, and x4 = 2n−1 − 1. Thus
|ker(φ)| = 4 and since |Im(φ)| = |G|

|ker(φ)| , we have

|Im(φ)| = 2n−1

4
= 2n−3.
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Conditions Verified in Number of solutions

p2(a) > 0, p2(b) > 0, p2(c) > 0

t = min{p2(a), p2(b), p2(c)}
Lemma 3.1

2t times the number of solutions
of a corresponding other case

p2(a) = 0, p2(b) = 0, p2(c) = 0 Lemma 3.2 0

p2(a) > 0, p2(b) > 0, p2(c) = 0 Lemma 3.2 0

p2(a) > 0, p2(b) = 0, p2(c) = 0 Lemma 3.3 1

p2(a) > 0, p2(b) = 0, p2(c) > 0 Lemma 3.3 1

p2(a) = 0, p2(b) = 0, p2(c) > 0 Lemma 3.4 2

p2(a) = 0, p2(b) > 0, p2(c) = 0

b = 2B, s = a−2B2 − a−1c, r = p2(s)
Corollary 3.6.1

0 in some cases
and 2

r
2
+2 o.w.

p2(a) = 0, p2(b) > 0, p2(c) > 0

b = 2B, s = a−2B2 − a−1c, r = p2(s)
Corollary 3.6.1

0 in some cases
and 2

r
2
+2 o.w.

Table 1. The summary of cases of solving equation (1)

On the other hand, according to Lemma 3.5 and since the number of elements in Z2n in the form
of 8q + 1 is equal to 2n−3 and |Im(φ)| = 2n−3, so every element in the form of 8q + 1 in Z2n is
a square. Thus, the equation x2 = a (mod 2n) has at least one solution. Obviously this solution,
say x, is odd: x = 2y + 1. So we have (2y + 1)2 = 8q + 1 or y2 + y − 2q = 0, for some q.
By Lemma 3.4, this equation has two solutions q1 and q2. One can check that q3 = 2n − q1 and
q4 = 2n − q2 are the two other solutions. Consequently,

|f−1(a)| = |ker(φ)| = 4 = 2
p2(a)+4

2 .

Now, suppose that p2(a) = 0 (mod 2), 2 ≤ p2(a) ≤ n− 3 and o2(a) = 1 (mod 8). In this case,
we have a = 22jt with p2(a) = 2j and t = o2(a). Let x = 2rq with odd q. Then,

22rq2 = 22jt (mod 2n).

So, r = j and q2 = t (mod 2n−2j). Regarding Lemma 3.5 and the proof of Case b), this equation
has four solutions q1, q2, q3, q4 with 0 ≤ qi ≤ 2n−2j − 1. For each of these solutions, we present
2j solutions

xs,t = 2j
(
s2n−2j+1 + qt

)
, 0 ≤ s < 2j, 1 ≤ t ≤ 4.

We have,
x2s,t = 22j (s222n−4j+2 + q2t + 2s2n−2j+1)

= s222n−2j+2 + 22jq2t + s2n+2

= 22jq2t (mod 2n).

Regarding 2j ≤ n− 3, we have 2n− 2j ≥ n+ 3. Therefore,

|f−1(a)| = 2
p2(a)+4

2 .

Note that Theorem 3.6 gives the set of solutions that are needed in the next corollary.
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Corollary 3.6.1. Let p2(a) = 0, p2(b) > 0, and b = 2B. Put s = a−2B2 − a−1c, r = p2(s), and
q = o2(s). If p2(r) = 0 or q 6= 1 (mod 8), then (1) has no solutions. Otherwise, (1) has 2

r
2
+2

solutions.

Proof. We have
ax2 + 2Bx+ c = 0 (mod 2n)

or
x2 + 2a−1Bx+ a−1c = 0 (mod 2n).

So, we get
(x+ a−1B)2 = s (mod 2n).

Now, by Theorem 3.6, if p2(r) = 0 or q 6= 1 (mod 8), then (1) has no solutions and, otherwise, it
has 2

r
2
+2 solutions.

In Corollary 3.6.1, one should note that if p2(c) = 2(p2(b)− 1) or p2(c) > 2(p2(b)− 1) with
p2(p2(c)) = 0, then equation (1) has no solutions. In Corollary 3.6.1, if p2(c) < 2(p2(b) − 1) or
p2(c) > 2(p2(b) − 1) with p2(p2(c)) > 0, then we should compute s (mod 8). The interesting
point is that, since a−2 = 1 (mod 8), it suffices to compute S = B2 − a−1c.

It is a well-known fact that (see [4] for example) a polynomial ax2 + bx + c over Z2n is a
permutation polynomial, iff p2(a) > 0 and p2(b) = 0. Lemma 3.3 provides another proof of
this fact. The number of fixed-points, is one of the properties which is studied in symmetric
cryptography. The less is the number of fixed-points, the stronger is the component, from this
aspect. In the next corollary, we characterize the number of fixed-points for quadratic permutation
polynomials over Z2n .

Corollary 3.6.2. Suppose that f(x) = ax2 + bx + c on Z2n is a permutation polynomial; i.e.,
p2(a) > 0 and p2(b) = 0. Obviously, the number of fixed-points of f is equal to the number of
solutions for ax2+(b−1)x+ c = 0, (mod 2n). So, regarding Table 1, f has no fixed-points (the
best case, from the viewpoint of cryptography) if p2(c) = 0. Otherwise, it has 2t fixed-points, for
some t ≥ 1, if it has any.

4 Conclusion

Quadratic functions have applications in cryptography. In this paper, we study the quadratic
equation mod 2n. We determine whether this equation has a solution or not and in the case that it
has a solution, we give the number of solutions along with the set of its solutions in O(n) time.

One of our results is the fact that, when the quadratic equation modulo a power of two has a
solution, then the number of its solutions is a power of two. The other interesting application is
characterizing the number of fixed-points of a quadratic permutation polynomial over Z2n .
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