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Abstract: In this paper, we give three identities involving the Lucas sequences of the first kind
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1 Introduction

There are many Diophantine equations that have all solutions given in terms of particular Lucas
sequences as Fibonacci and Lucas numbers (e.g. [1, 2, 3]). Keskin [4] exhibits families of so-
lutions involving Fibonacci and Lucas numbers to some Diophantine equations. He says that it
is a bit difficult and interesting to give all integer solutions to these Diophantine equations. The
aim of this paper is to extend the work of Keskin [4] to Lucas sequences in order to obtain larger
families of solutions to all Diophantine equations given in [4]. The Lucas sequence of the first
kind

(
F

(s,r)
n

)
n≥0

is defined by the initial values F (s,r)
0 = 0 and F (s,r)

1 = 1 with the recurrence

relation F (s,r)
n+1 = sF

(s,r)
n + rF

(s,r)
n−1 for n ≥ 1, where s and r are any non-zero integers. Its com-

panion sequence
(
L
(s,r)
n

)
n≥0

, i.e., the Lucas sequence of the second kind, is defined by the initial
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values L(s,r)
0 = 2 and L(s,r)

1 = s with the same recurrence relation L(s,r)
n+1 = sL

(s,r)
n + rL

(s,r)
n−1 .

The numbers F (1,1)
n and L(1,1)

n are the classical Fibonacci and Lucas numbers, respectively. Let
α = (s +

√
∆)/2 and β = (s −

√
∆)/2 be the roots of the polynomial x2 − sx − r, where

∆ = s2 + 4r. These roots satisfy

α + β = s, αβ =
1

4
(s2 −∆) = −r and α− β =

√
∆. (1)

Throughout this paper, we will assume that α 6= β, then we have the well-known Binet’s formulas

F (s,r)
n =

αn − βn√
∆

and L(s,r)
n = αn + βn, n ≥ 0. (2)

From (1) and (2) we get that Lucas sequences for negative subscripts are defined by

F
(s,r)
−n = −(−r)−nF (s,r)

n and L
(s,r)
−n = (−r)−nL(s,r)

n . (3)

In particular, we have

F
(s,1)
−n = (−1)n+1F (s,1)

n , L
(s,1)
−n = (−1)nL(s,1)

n .

and
F

(s,−1)
−n = −F (s,−1)

n , L
(s,−1)
−n = L(s,r)

n .

Thus, these particular sequences give also integers for negative subscripts.
In order to alleviate the notations, we will note by (un) and (vn) the sequences

(
F

(s,r)
n

)
and(

L
(s,r)
n

)
, respectively, except when we give precise values to s or r. There are many identities

satisfied by the terms of Lucas sequences that are generalizations of those satisfied by Fibonacci
numbers, we list here those needed for our paper.

vn = un+1 + run−1, (4)

v2n −∆u2n = 4(−r)n, (5)

λun + run−1 = λn, (6)

vnvm + ∆unum = 2vn+m, (7)

where λ ∈ {α, β} and n,m ∈ Z. For more information about Lucas sequences one can see
[5, 6, 7].

In this paper we give some new identities satisfied by the terms of Lucas sequences, from
which we deduce families of solutions to Diophantine equations. Some of these Diophantine
equations are presented in [4]. Here we obtain larger families of solutions to these equations
than those given in [4]. As an example, the solutions given in [4] to the Diophantine equation
z2 + x2 + y2 = xyz + 4 are (x, y, z) =

(
L
(1,1)
2n , L

(1,1)
2m , L

(1,1)
2n+2m

)
and (a2 − 2, a, a) where a is

an integer. In this paper, the solutions we obtain are (x, y, z) =
(
L
(s,1)
2n , L

(s,1)
2m , L

(s,1)
2n+2m

)
and

(x, y, z) =
(
L
(s,−1)
n , L

(s,−1)
m , L

(s,−1)
n+m

)
.
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The Diophantine equations presented in [4] are

z2 + x2 + y2 = xyz + 4

z2 − x2 − y2 = xyz + 4

z2 − x2 + y2 = xyz − 4

z2 − 5x2 − 5y2 = 5xyz + 4

z2 + 5x2 + 5y2 = 5xyz + 4

z2 − 5x2 + 5y2 = 5xyz − 4

5z2 − x2 + 5y2 = 5xyz − 4

Note that if (a, b, c) is a solution to one of the above equations, then also are (−a,−b, c),
(−a, b,−c) and (a, −b, −c). Note also that if (x1, x2, x3) is a solution of one of almost all the
preceding equations, then there exists at least one σ ∈ S3 such that (xσ(1), xσ(2), xσ(3)) is also a
solution of the same equation, where S3 denotes the symmetric group. For example, if (x1, x2, x3)

is a solution of the first equation, then (xσ(1), xσ(2), xσ(3)) is also a solution for any σ ∈ S3.

2 Some new identities

In this section, we present some new identities involving the Lucas sequences (un) and (vn) which
were defined previously. Recall that r and s are the integers defining the recursive relation of the
sequences (un) and (vn).

Lemma 1. If X is a square matrix with X2 = sX + rI , then Xn = unX + run−1I for all n ∈ Z.

Proof. The identity Xn = unX + run−1I is trivially checked for n = 0 and 1 using the fact that
u−1 = 1/r. For n ≥ 2 the result follows from a straightforward induction. It remains to show that
X−n = u−nX + ru−n−1I for n < 0. Let Y = sI −X = −rX−1, it follows that Y 2 = sY + rI .
Which shows that Y n = unY + run−1I . That is(

−rX−1
)n

= −unX + un+1I.

From which we deduce that

X−n = −(−r)−nunX + (−r)−nun+1I.

Now, using (3) we get
X−n = u−nX + ru−n−1I.

Proposition 2. Let A =

(
α 0

1 β

)
, then

An =

(
αn 0

un βn

)
, n ∈ Z.
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Proof. Since A2 = sA+ rI , then from Lemma 1 and identity (6) we obtain

An = unA+ run−1I =

(
αun + run−1 0

un βun + run−1

)
=

(
αn 0

un βn

)
.

Theorem 3. Let n and m be integers, then

(−1)n+mvn+mvnvm + 4rn+m = (−1)n+mv2n+m + (−1)nrmv2n + (−1)mrnv2m (8)

and

(−1)n+mv2n+m −∆rm(−1)nu2n −∆rn(−1)mu2m = (−1)n+m∆vn+munum + 4rn+m. (9)

Proof. We have
√

∆αn = (α− β)αn = αn+1 − βαn = αn+1 − (αβ)αn−1 = αn+1 + rαn−1.

In the same way, we have βn+1 + rβn−1 = −
√

∆βn. Thus, from Proposition 2 and (4) we get

An+1 + rAn−1 =

(√
∆αn 0

vn −
√

∆βn

)
,

from which we obtain

(
An+1 + rAn−1

) (
Am+1 + rAm−1

)
=

(
∆αn+m 0√

∆ (αmvn − βnvm) −∆βn+m

)
.

On the other hand, we have(
An+1 + rAn−1

) (
Am+1 + rAm−1

)
= An+m+2 + 2rAn+m + r2An+m−2

=

(
αn+m+2 + 2rαn+m + r2αn+m−2 0

un+m+2 + 2run+m + r2un+m−2 · · ·

)
.

We deduce that
√

∆ (αmvn − βnvm) = un+m+2 + 2run+m + r2un+m−2

= sun+m+1 + 3run+m + run+m − srun+m−1

= s2un+m + srun+m−1 + 4run+m − srun+m−1

= ∆Un+m.

That is,
√

∆Un+m = αmvn − βnvm. Thus,

∆U2
n+m = (αmvn − βnvm) (αnvm − βmvn)

= αn+mvnvm − (αβ)mv2n − (αβ)nv2m + βn+mvnvm

= vn+mvnvm − (−r)mv2n − (−r)nv2m.
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Using identity (5), we obtain

vn+mvnvm − (−r)mv2n − (−r)nv2m = v2n+m − 4(−r)n+m,

i.e.,
(−1)n+mvn+mvnvm + 4rn+m = (−1)n+mv2n+m + (−1)nrmv2n + (−1)mrnv2m.

This proves (8). Now replacing v2n = ∆u2n + 4(−r)n and v2m = ∆u2m + 4(−r)m in (5) we get

(−1)n+mvn+mvnvm = (−1)n+mv2n+m + (−1)nrm∆u2n + (−1)mrn∆u2m + 4rn+m.

Using (7), we obtain

(−1)n+mvn+m(2vn+m −∆unum) = (−1)n+mv2n+m + (−1)nrm∆u2n + (−1)mrn∆u2m + 4rn+m,

i.e.,

(−1)n+mv2n+m −∆rm(−1)nu2n −∆rn(−1)mu2m = (−1)n+m∆vn+munum + 4rn+m.

This proves (9).

Theorem 4. Let n and m be integers, then

(−1)n+m∆u2n+m − (−1)nrmv2n + ∆(−1)mrnu2m = ∆(−1)n+mun+mvnum − 4rn+m. (10)

Proof. We just saw that

An+1 + rAn−1 =

(√
∆αn 0

vn −
√

∆βn

)
.

Thus, by calculating (An+1 + rAn−1)Am and Am (An+1 + rAn−1) in two different ways, it
can be shown that

vn+m = αmvn −
√

∆βnum and vn+m =
√

∆αnum + βmvn.

We deduce that

v2n+m =
(
αmvn −

√
∆βnum

)(√
∆αnum + βmvn

)
=
√

∆
(
αn+m − βn+m

)
vnum + (−1)mrmv2n −∆(−1)nrnu2m

= ∆un+mvnum + (−1)mrmv2n −∆(−1)nrnu2m.

Using (5) we get

∆u2n+m + 4(−1)n+mrn+m = ∆un+mvnum + (−1)mrmv2n −∆(−1)nrnu2m,

i.e.,

(−1)n+m∆u2n+m − (−1)nrmv2n + ∆(−1)mrnu2m = ∆(−1)n+mun+mvnum − 4rn+m.
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3 Families of solutions to some Diophantine equations

Theorems 3 and 4 allow us to state the following results, in which we find the equations described
in [4] with larger families of solutions.

Corollary 5. Let n and m be integers, then (x, y, z) =
(
L
(s,1)
2n , L

(s,1)
2m , L

(s,1)
2n+2m

)
and (x, y, z) =(

L
(s,−1)
n , L

(s,−1)
m , L

(s,−1)
n+m

)
are solutions of the equation x2 + y2 + z2 = xyz + 4. Moreover,

(x, y, z) =
(
L
(s,1)
2n+1, L

(s,1)
2m+1, L

(s,1)
2n+2m+2

)
is a solution of the equation z2 − x2 − y2 = xyz + 4 and

(x, y, z) =
(
L
(s,1)
2n , L

(s,1)
2m+1, L

(s,1)
2n+2m+1

)
is a solution of z2 − x2 + y2 = xyz + 4.

Corollary 6. Let n and m be integers, then (x, y, z) =
(
F

(s,1)
2n , F

(s,1)
2m , L

(s,1)
2n+2m

)
and (x, y, z) =(

F
(s,−1)
n , F

(s,−1)
m , L

(s,−1)
n+m

)
are solutions of the equation z2−∆x2−∆y2 = ∆xyz+ 4. Moreover,

(x, y, z) =
(
F

(s,1)
2n+1, F

(s,1)
2m+1, L

(s,1)
2n+2m+2

)
is a solution of the equation z2 + ∆x2 + ∆y2 = ∆xyz+ 4

and (x, y, z) =
(
F

(s,1)
2n+1, F

(s,1)
2m , L

(s,1)
2n+2m+1

)
is a solution of z2 −∆x2 + ∆y2 = ∆xyz − 4.

Corollary 7. Let n and m be integers, then (x, y, z) =
(
L
(s,1)
2n , F

(s,1)
2m , F

(s,1)
2n+2m

)
and (x, y, z) =(

L
(s,−1)
n , F

(s,−1)
m , F

(s,−1)
n+m

)
are solutions of the equation ∆z2−x2 + ∆y2 = ∆xyz− 4. Moreover,

(x, y, z) =
(
L
(s,1)
2n+1, F

(s,1)
2m , F

(s,1)
2n+2m+1

)
is a solution of the equation ∆z2−x2−∆y2 = ∆xyz+ 4.

Remark 8. In Corollaries 6 and 7 we obtain the same equations as in [4] for ∆ = 5. So if r = 1,
then s = ±1, and if r = −1, then s = ±3. This gives larger families of solutions than in [4].
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