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1 Introduction

The rational number n is a congruent number (CN) if there are positive rational numbers a, b, c
such that a2+b2 = c2 and 1

2
ab = n (Otherwise, it is called a non-congruent number.), equivalently,
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there is a Pythagorean triangle (PT) with rational sides and the area equal to n. A famous problem
regarding CNs is which rational numbers occur as the area of rational right triangles. This easy
looking problem has not been solved completely. It suffices that we study square-free CNs,
because from the CN ab

2
(a2 + b2 = c2), we conclude that k2ab

2
≡ ab

2
((ka)2 + (kb)2 = (kc)2) is a

CN and vice versa. Also, note that the notation ≡ means that we omit the square number of the
CN.

An elliptic curve over the rationals is a curve E of genus 1, defined over Q, together with a
Q-rational point, and is expressed by the generalized Weierstrass equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, a2, a3, a4, a6 ∈ Q.

A theorem of Mordell–Weil [27] states that the rational points on E, form a finitely generated
Abelian group E(Q) under a natural group law, i.e., E(Q) ∼= Zr(E)× E(Q)tors, where r(E) is a
nonnegative integer called the rank of E, and E(Q)tors is the subgroup of elements of finite order
in E(Q), called the torsion subgroup of E(Q). The rank of E is the rank of the free part of this
group. For more information about elliptic curves, see [27].

In a modern language, n is a CN if and only if the elliptic curve E : y2 = x3 − n2x contains
a rational point with y 6= 0, equivalently, a rational point of infinite order, i.e., the rank of E is
non-zero (see [27]). The rank of an elliptic curve is a measure of the size of the set of rational
points. However, the question is how one can compute the exact size of this set of rational points.
There is no known guaranteed algorithm to determine the rank and it is not known which numbers
can occur as the rank of an elliptic curve (see [21]).

The CNs problem has been studied by some authors (see [2–5,12,13,16–18]) As an example,
each of these families has been shown to be CNs:

• n = 2p3, i.e., p3 ≡ 3 (mod 4) [Heegner (1952) [15] and Birch (1968) [7]],

• n = p5, p7, i.e., pi ≡ i (mod 8) [Stephen (1975) [25]],

• n = puqv ≡ 5, 6, 7 (mod 8), 0 ≤ u, v ≤ 1 [B. Groos (1985) [14]],

• n = 2p3p5, 2p5p7,

• n = 2p1p7, (
p1
p7
) = 1 [P. Monsky (1990) [20]],

• n = 2p1p3, (
p1
p3
) = 1,

where (
p

q
) is the Legendre symbol.

A rational triangle is a triangle with rational sides and rational area. A Heron triangle is a
triangle with integer sides and integer area. The area 4 of a triangle having sides a, b, c is given
by the well-known formula of Heron 4 =

√
s(s− a)(s− b)(s− c), where s = (a+b+c)

2
is the

semiperimeter (sP) of the triangle. Brahmagupta gave a parametrization for all Heron triangles
with sides proportional to

(v + w)(u2 − vw), v(u2 + w2), w(u2 + v2),
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where the sP is equal to u2(v + w), and the area is equal to uvw(v + w)(u2 − vw). There
are several open problems concerning the existence of Heron triangles with certain properties
(see [9, 24, 28, 29]).

Izadi in [16] obtained some CNs in terms of polynomials by using PTs. For more references
about CNs also consult [16]. In this paper, we obtain some new families of CNs in terms of
polynomials by elementary methods. In particular, we introduce two methods that find some CNs
of the forms p ≡ 1 (mod 8) and 2p where p is a prime number. Also, by our methods, we may
again get some of the results and families of CNs given in [16] and obtain some Diophantine
equations (especially of degree 4) which have no positive solutions. We also obtain a result on
Heron triangles.

2 Our results

2.1 Producing other CNs when a CN is given

By a simple idea, we obtain some new families of CNs. This method shows how we can produce
other CNs when a CN is given.

Let a2 + b2 = c2, be a PT where a, b, c ∈ N. We know that the number
ab

2
is CN. We try to

find other PTs in the form

(ax1 + by1 + cz1)
2 + (ax2 + by2 + cz2)

2 = (ax3 + by3 + cz3)
2, (1)

where xi, yi, zi ∈ N are variables. Then, the number (ax1+by1+cz1)(ax2+by2+cz2)
2

will be a CN. After
some simplifications, (1) becomes

(x21+x
2
2)a

2+(y21+y
2
2)b

2+(z21+z
2
2)c

2+2ab(x1y1+x2y2)+2ac(x1z1+x2z2)+2bc(y1z1+y2z2) =

(2)
x23a

2 + y23b
2 + z23c

2 + 2abx3y3 + 2acx3z3 + 2bcy3z3.

Then, by using the relation a2 + b2 = c2, we can take

x21 + z21 + x22 + z22 = x23 + z23 ,

x1z1 + x2z2 = x3z3,

y21 + z21 + y22 + z22 = y23 + z23 ,

y1z1 + y2z2 = y3z3,

x1y1 + x2y2 = x3y3.

Then, any solution for the above Diophantine system will produce a CN. As an example, by
letting x1 = y2, x2 = y1, x3 = y3 in the system, we will have z1 = z2 , x1 6= x2 and the system
becomes

x21 + x22 + 2z21 = x23 + z23 ,

(x1 + x2)z1 = x3z3,

2x1x2 = x23.
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By squaring the second relation, replacing 2x1x2 = x23, and putting z21 = 2x1x2, z3 = x1 + x2,
the first relation is established. As an example, by letting x1 = y2 = 1, x2 = y1 = 2, x3 = y3 =

z1 = z2 = 2, z3 = 3 we obtain

(a+ 2b+ 2c)2 + (2a+ b+ 2c)2 = (2a+ 2b+ 3c)2.

By letting x1 = y2 = 2, x2 = y1 = 9, x3 = y3 = z1 = z2 = 6, z3 = 11 we get (2a + 9b +

6c)2 + (9a+ 2b+ 6c)2 = (6a+ 6b+ 11c)2.
Finally, we conclude that (a+2b+2c)(2a+b+2c)

2
and (2a+9b+6c)(9a+2b+6c)

2
are CNs. Then, by letting

a = t2−s2, b = 2ts, c = t2+s2, so that the relation a2+b2 = c2 holds, we get two families of CNs.
As an example, by letting a = 3, b = 4, c = 5 in the above identities we get 202 +212 = 292, and
652 + 722 = 972, then conclude that 20·21

2
= 210, and 65·72

2
≡ 65 are CNs. Note that by replacing

a → −a or b → −b or c → −c in the relation a2 + b2 = c2, we can obtain other identities
such as:

(−a+ 2b+ 2c)2 + (−2a+ b+ 2c)2 = (−2a+ 2b+ 3c)2,

(a− 2b+ 2c)2 + (2a− b+ 2c)2 = (2a− 2b+ 3c)2,

(a+ 2b− 2c)2 + (2a+ b− 2c)2 = (2a+ 2b− 3c)2,

(a− 2b− 2c)2 + (2a− b− 2c)2 = (2a− 2b− 3c)2.

Then, each of the numbers (−a+2b+2c)(−2a+b+2c)
2

= s(t+ s)(t+2s)(t+3s), (a−2b+2c)(2a−b+2c)
2

,
(a+2b−2c)(2a+b−2c)

2
, and (a−2b−2c)(2a−b−2c)

2
are CNs. This is correct for all of our cases.

Remark 2.1. By letting s = k2 in the CN (−a+2b+2c)(−2a+b+2c)
2

= s(t + s)(t + 2s)(t + 3s), we
conclude that there are infinitely many CNs in the form (t + k2)(t + 2k2)(t + 3k2), which is the
product of three consecutive terms of an arithmetic progression. If we set t = g2 − k2, we get the
CN g2(g2 + k2)(g2 + 2k2) ≡ (g2 + k2)(g2 + 2k2).

Similarly, we conclude that if a2 + b2 = c2, then we have

(2p2a+ q2b+ 2pqc)2 + (q2a+ 2p2b+ 2pqc)2 = (2pqa+ 2pqb+ (2p2 + q2)c)2,

i.e., for every t, s, p, q, the number

(p2(t2 − s2) + q2st+ pq(t2 + s2))(q2(t2 − s2) + 4p2st+ 2pq(t2 + s2))

is a CN. If p = q = t = 1, then we conclude that (s + 1)(s + 2)(s + 3) is a CN. This shows
that the product of three consecutive integers is a CN, which is mentioned in [16], too. If we set
s + 3 = k2, we conclude that (s + 1)(s + 2)(s + 3) ≡ (k2 − 2)(k2 − 1) is a CN (k 6= 1 ∈ N)
which is in the form of product of two consecutive integers. If s = 1 and t = 2, then we see that
(q + p)(q + 2p)(2q + 3p) is a CN (p, q ∈ N). Letting s + 2 = k2 leads to k4 − 1 is a CN, which
is also mentioned in [16]. As an example, if k = 3, we conclude that 80 ≡ 5 is a CN.
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2.2 CNs of the forms p ≡ 1 (mod 8) and 2p where p is a prime number

We introduce an easily checked method which finds some of CNs of the form p = 8k + 1

(p is a prime number.). Up to now, it is not exactly determined which prime numbers of the form
p = 8k+1 are CNs (see [16]). For instance, 17 is known to be non-congruent, while 41 is known
to be congruent.

We assert that every prime number of the form P = 8k + 1 = a2 + b2 (Note that every prime
number of the form P = 4k + 1 is uniquely written in the form of P = a2 + b2.) in which
a2 − b2 := u2 is a square integer (This work can be checked by an easy computer search.), is a
CN. This result is followed by using the congruent number st(s2 − t2) = st(s + t)(s − t) and
letting s = a2, t = b2, P = a2 + b2, and s − t = a2 − b2 = u2 in the above family. Then, the
number st(s+ t)(s− t) = a2b2(a2 + b2)(u2) ≡ a2 + b2 = P will be CN. As two examples, since
we have 41 = 42+52, 52−42 = 32, and 353 = 82+172, 172−82 = 152, then the prime numbers
41 and 353 are CNs.

To get other examples, let p = n2 + (n − 1)2 and n2 − (n − 1)2 = c2. Then, we get
p = 2n2 − 2n + 1 and n = c2+1

2
. Now by using the above idea and letting c = 3, 5, 7, . . . ,

such that p is prime, we obtain the CNs p = 42 + 52, 122 + 132, 242 + 252, 602 + 612, 842 + 852,

1442 + 1452, . . . , which are also prime numbers of the form p = 8k + 1.
Note that the above idea is correct for any composite number, i.e., c2− b2 := a2(a2+ b2 = c2)

yields that the numbers b2 + c2 and a2 + c2 (due to symmetry) are CNs. Thus, by using the CN
ab
2

(a2 + b2 = c2), we can produce the CNs b2 + c2 and a2 + c2. Now we obtain all of the results
of Corollary 3.2 given in [16] by a different easy method, again. By letting s = a2, t = b2, in
the CN st(s2 − t2) = st(s + t)(s − t) = a2b2(a2 + b2)(a2 − b2) and setting a2 + b2 = c2, we
get the CN a2 − b2, i.e., a2 + b2 = c2 yields that a2 − b2 is a CN. Letting s = c and t = b in the
CN st(s2 − t2) = bc(c2 − b2) and setting c2 − b2 = a2, yields the CN bc, i.e., a2 + b2 = c2 leads
to the CNs bc and ac (similarly). Then, from a2 + b2 = c2, we conclude that all of the numbers
ac, bc, |a2 − b2|, a2 + c2, and b2 + c2 are CNs. This is one of the main results given in [16]. So,
we can obtain some of the other main results given in [16] by these methods, again.

Example 2.2. By using the PT (3, 4, 5) (with corresponding CN 6), we get the square-free CNs
15, 20 ≡ 4, 7, 34, 41.

2.3 CNs and PEs

Pell’s equation is a Diophantine equation of the form x2 − dy2 = 1, x, y ∈ Z, where d is a given
natural number which is not a square. An equation of the form x2 − dy2 = a for an integer a is
usually referred to as a Pell-type equation. For more information about Pell’s equation, the reader
can see any textbook on number theory.

Now, we study the PE x2 − py2 = −1 where p is a prime number and relate it to CNs. It is
clear that if this equation has a solution, then p ≡ 1 (mod 4) because we have x2 ≡ −1 (mod p).
It is well-known that the general PE x2 − dy2 = 1 has infinitely many positive integer solutions
when d is a given non-square positive integer, but it is possible that there exists no solution of the
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PE x2 − dy2 = −N2. For more information about PE, the reader may consult [1, 22]. First we
mention the following theorem, which can be found in every book on number theory:

Theorem 2.3. The PE x2 − py2 = −1, where p ≡ 1 (mod 4) is an arbitrary prime number, has
infinitely many solutions in natural numbers.

Now we introduce our main result. We know that (x2− 1, 2x, x2 +1) is a PT and the number
2x(x2+1) is a CN. Then, by replacing x2+1 by py2 in the CN 2x(x2+1) (Note that we are going
to relate the CN 2x(x2+1) to the PE x2−py2 = −1.), we conclude that in the PE x2−py2 = −1,
the number 2x(x2 + 1) = 2xpy2 ≡ 2xp is a CN. In particular, if 2x (or x) is a square number,
then p (or 2p) will be a CN. Then, we must find the solutions of this equation such that 2x (or
x) is a square number which is possible by an easy computer search. It is interesting that this
method finds some of CNs of the forms p and 2p, in which p is prime of the form 8k + 1. As an
example, the solution (18, 5) of the PE equation x2 − 13y2 = −1, finds the CN 2 · 18 · 13 ≡ 13.
The solutions (4, 1) and (268, 65) of the PE x2 − 17y2 = −1, discovers the CNs 2 · 4 · 17 ≡ 34

and 2 · 268 · 17 ≡ 2 · 17 · 67.

2.4 CNs and some DEs which have no solutions in N

In this part, by the PEs, we obtain a family of CNs in which any term is the product of some
prime numbers. From part 1, we know that the number s(s − 1)(s + 1) = s(s2 − 1) is a CN
(s > 1 ∈ N). Let s2 − 1 = dy2, where d is a non-square positive integer. Then, the number
s(s2 − 1) ≡ sd will be a CN. We have s2 − dy2 = 1. Then, we need to obtain the solutions of
the PE x2 − dy2 = 1 and so the number xd will be a CN. As an example, we know that all of
the positive solutions of the PE x2 − 2y2 = 1 are (xn, yn) where (3 + 2

√
2)n = (xn + yn

√
2).

Also, we have (x, y) = (Q2n

2
, P2n) where Qn = αn + βn, Pn = αn−βn

α−β , α = 1 +
√
2 and

β = 1−
√
2. Then, any term of the set of {Q2n: n ∈ N} is a CN. As an example, 2x1 = 2 ·3 = 6,

2x2 = 2 · 17 = 34, 2x3 = 2 · 99 ≡ 22 are CNs. By using the solutions of x2 − 3y2 = 1, we
conclude that 3x4 = 3 · 97 = 291 is a CN. Similarly, by using the general PE x2 − dy2 = N2 (d
is a non-square positive integer) and replacing x2 − N2 by dy2 in the CN xN(x2 − N2), we get
the CN xN(x2 − N2) ≡ xNd, i.e., in the PE x2 − dy2 = N2, the number xNd is a CN. Also,
using the solutions of the PE x2 − dy2 = −N2 (If there exists any solution of it.) and replacing
x2 +N2 by dy2 in the CN 2xN(x2 +N2), leads to the CN 2xNd. As an example, the solutions
(x, y) = (7, 5), (41, 29) of x2 − 2y2 = −1 leads to the CNs 2 · 7 · 1 · 2 ≡ 7 and 2 · 41 · 1 · 2 ≡ 41.

It is interesting to see that with the results of the above idea, we can show that some Diophan-
tine equations (DEs) have no solutions in N. We know that in the PE x2 − dy2 = N2 where d is
a square-free number, the number xN(dy2) ≡ xNd is a CN (note that x 6= N , because in the PT
(x2−N2, 2xN, x2 +N2), we have x 6= N ). Now if x, N , d are chosen so that xNd is a non-CN,
then the DE x2−dy2 = N2 will not have any solutions in N. As an example, in the number xNd,
let d be a non-CN and N = N ′2. Now it is clear that if x is a square, say x′2, then the number
xNd ≡ x′2N ′2d ≡ d will be a non-CN (note that d is a non-CN) that is a contradiction because
xNd is a CN. This yields that the DE x′4 − dy2 = N ′4 has no solutions in N (x′ 6= N ′) where
d is an arbitrary non-CN which is not a square. As two examples, the DEs x′4 − 2y2 = 1 (This
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means that in the PE x2 − 2y2 = 1, the variable x cannot be a square.) and x′4 − 2y4 = N ′4 (or
2y4 +N ′4 = x′4) have no solutions in N. Euler conjectured that the DE A4 + B4 + C4 = D4, or
more generally AN1 +AN2 + · · ·+ANN−1 = ANN , (N ≥ 4), has no solution in N (see [10]). Nearly
two centuries later, a computer search (see [19]) found the first counterexample to the general
conjecture (for N = 5): 275 + 845 + 1105 + 1335 = 1445.

In 1986, Noam Elkies, by using the elliptic curves theory, found an infinite series of coun-
terexamples for the case K = 4 (see [11]). His smallest counterexample was:

26824404 + 153656394 + 187967604 = 206156734.

This shows that the DE A4 + B4 + C4 = D4 has infinitely many solutions in N but the DE
2y4 +N ′4 = x′4 has no solutions.

Similarly, let Nd = t2, x = x′2 (we know that square numbers are not CNs). Then, there
exist k, p, q such that we have N = kp2, d = kq2, (p, q) = 1 and t = kpq. Thus, the DE
x′4+ kY 2 = k2N ′4, where k is an arbitrary positive integer which is not a square, has no solution
in N (because d is not square). So the quartic DE x′4 + kY 4 = k2N ′4 has no solutions with the
above condition on k, either.

Similarly in the PE x2−dy2 = −N2 (if there exist any solutions), the number 2xN(x2+N2) =

2xN(dy2) ≡ 2xNd is a CN (x 6= N ). Then, if x, N , d are chosen such that 2xNd be non-CN,
then the DE x2 − dy2 = N2 will not have any solutions in N. As an example, by replacing
x→ 2x′2,N → N ′2 in the above PE and letting d as a non-CN which is not a square, we conclude
that the DE 4x′4− dy2 = N ′4 has no solutions in N. As examples, the DEs 4x′4 = 2y4 +N ′4 and
4x′4 = 3y4+N ′4 have no solutions in N (note that these DEs have no solutions in Q, too, because
these DEs are homogenous). By this method, we can obtain other DEs which have no solutions
in N.

2.5 CNs and an identity

We prove that if a2 + b2 = c2 + d2, then the numbers (ac±bd)(ad∓bc)
2

will be CNs. We have two
identities

(ac± bd)2 + (ad∓ bc)2 = (a2 + b2)(c2 + d2).

It can be easily shown that all integer solutions to the equation a2 + b2 = c2 + d2 are

a =
1

2
(mn+ pq), b =

1

2
(mp− nq), c =

1

2
(mp+ nq), d =

1

2
(mn− pq),

where m,n, p, q are integers. Then, for these values of a, b, c, d, the numbers (ac±bd)(ad∓bc)
2

are
CNs.

Also, by letting a = p + q, b = r − s, c = p − q and d = r + s such that pq = rs,
we will have a2 + b2 = c2 + d2. Then, we conclude that if pq = rs, so two new families of
(p2 − q2 + r2 − s2)(ps+ qr) and (p2 − q2 − r2 + s2)(pr + qs) will be CNs.

By letting a2 + b2 = kr2 and c2 + d2 = kw2 in the above identity, we get

(ac± bd)2 + (ad∓ bc)2 = (a2 + b2)(c2 + d2) = kr2k̇w2 = k2r2w2 = (krw)2.
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Then, the numbers (ac±bd)(ad∓bc)
2

will be CNs.
If k = 1 then (a, b, r) and (c, d, w) are PTs. For example, with PTs (3, 4, 5) and (5, 12, 13) we

get the CNs n = (3×12+4×5)(3×5−12×4)
2

≡ 231 and n = (3×12−4×5)(3×5+12×4)
2

≡ 14. This method
introduces a way for producing new CNs when two CNs are given.

For k = m2 + n2, let {a, b, r} = {s2m− kt2m,ns2 − 2kst+ knt2, s2 − 2nst+ kt2} and
{c, d, w} = {S2m− kT 2m,nS2 − 2kST + knT 2, S2 − 2nST + kT 2}, then a2 + b2 = kr2 and
c2 + d2 = kw2. Hence (ac±bd)(ad∓bc)

2
will be a CN.

2.6 Other families of CNs

In the following, we mention some other families of CNs. We know that if (a, b, c) is a PT,
then (2ac, b2, a2 + c2) is a PT, too. (see [16]) By repeating, we conclude that (4ac(a2 + c2), b4,

(a2 + c2)2 + (2ac)2) = (A′, B′, C ′) is a PT. Then, we get that 2ac(a2 + c2) is a CN. Similarly, we
conclude that 2bc(b2 + c2) is a CN. Also, A′C ′, B′C ′ are CNs⇒ ac(a2 + c2)(a4 + c4 + 6a2c2),
and bc(b2 + c2)(b4 + c4 + 6b2c2) are CNs.

Similarly (see [16]), (a, b, c)⇒ (2bc, a2, b2 + c2)⇒ (2a2(b2 + c2), 4b2c2, a4 + (b2 + c2)2) =

(A′, B′, C ′). B′C ′ is a CN.⇒ a4+ b4+ c4+2b2c2 = 2(b4+ c4) and similarly 2(a4+ c4) are CNs.

(a, b, c)⇒ (2ab, b2 − a2, c2)⇒ (4ab(b2 − a2), (b2 − a2)2 − 4a2b2, c4) = (A′, B′, C ′).

A′C ′ and B′C ′ are CNs⇒ ab(b2 − a2) and b4 + a4 − 6a2b2 are CNs.
Note that, applying the formulas recursively, we can obtain in infinite families of PTs and

CNs from any PT.

2.7 A family of Heron triangles with some properties

We obtain a family of Heron triangles by an elementry method. In the Heron formula let s = t21,
s− a = t22, s− b = t23 and s− c = t24. Then, we get a = t21 − t22, b = t21 − t23, c = t21 − t24.

Also the relation s = (a+b+c)
2

yields

t21 = t22 + t23 + t24. (3)

Now it is clear that any solution of (3) produces a Heron triangle with sides a, b, c in terms of ti
with the area equal to | t1t2t3t4 |. A parametric solution of (3) is given by

t1 = l2 +m2 + n2, t2 = l2 +m2 − n2, t3 = 2ln, t4 = 2mn,

where m,n, l ∈ N.
Then, we get a family of Heron triangles as follows

a = 4n2(l2 +m2),

b = l4 +m4 + n4 + 2l2m2 + 2m2n2 − 2l2n2,

c = l4 +m4 + n4 + 2l2m2 − 2m2n2 + 2l2n2,

4 = 4lmn2 | l4 +m4 − n4 + 2l2m2 |,
P = 2(l2 +m2 + n2)2.
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It can be easily checked that the conditions a + b > c, a + c > b, b + c > a on the sides of the
triangle imply that we must have l2 +m2 6= n2. As an example, by letting l = m = n = 1 and
m = n = 2, l = 1, we get the triangles of (5, 5, 8) and (17, 65, 80) with the areas equal to 12 and
288, respectively.

Now we obtain Heron triangles with two equal sides. It is clear that by letting t2 = t3 in (3),
the two sides of the triangle a, bwill be equal. Now we have t21 = 2t22+t

2
4 or (t1−t4)(t1+t4) = 2t22.

By letting (t1 − t4) = A and (t1 + t4) = B we get AB = 2t22 and conclude that A or B is even.
Letting A = 2A′ yields t22 = A′B. All of the integer solutions of this equation are A′ = kM2,
B = kN2, t2 = t3 = kMN , where (M,N) = 1. Then, we get t1 = A+B

2
= 2kM2+kN2

2
and

t4 = B−A
2

= kN2−2kM2

2
. Finally, by taking N = 2N ′ and removing the factor of k, we obtain

t1 = M2 + 2N ′2, t2 = t3 = 2MN ′, t4 = 2N ′2 − M2 and a family of Heron triangles as
follows a = b = t21 − t22 = M4 + 4N ′4, c = t21 − t24 = 8M2N ′2 whose area and perimeter are
S = t1t

2
2t4 = 4M2N ′2(4N ′4 −M4) and P = 2(M2 + 2N ′2). Note that letting M2 = G and

2N ′2 = F yields a = b = G2+F 2, c = 4GF , S = 2GF | F 2−G2 |, and P = 2(G+F )2. Also,
the inequalities of the sides show that we must have F 6= G, and F,G 6= 0. As two examples
by taking G = 1, F = 3 and G = 2, F = 3, we obtain the Heron triangles of (10, 10, 12) and
(13, 13, 24) with two equal sides and the areas equal to 48, 60, respectively. The above formula
shows for every prime number of the form p = 4t+1, there exists a Heron triangle with the sides
a = b = p, because any p in this form is written as p = G2 + F 2.

Now, by using the above family, we obtain infinitely many triples of Heron triangles with
equal areas such that each triangle has two equal sides. To equate the areas, we must solve the
Diophantine equation

G1F1(G
2
1 − F 2

1 ) = G2F2(G
2
2 − F 2

2 ) = G3F3(G
2
3 − F 2

3 ). (4)

Any solution of this system of equations produces a triple of Heron triangles of (G2
i + F 2

i ,

G2
i + F 2

i , 4GiFi) with two equal sides and equal areas.
Take the three sets of generators G1 = r2 + rs + s2, F1 = r2 − s2, G2 = r2 + rs + s2,

F2 = 2rs+ s2, G3 = r2 + 2rs, F3 = r2 + rs+ s2.
Then, the right triangle generated by each triple (G2

i −F 2
i , 2GiFi, G

2
i +F

2
i ) has common area

4 = rs(2r + s)(r + 2s)(r + s)(r − s)(r2 + rs+ s2) (see [6]).
As an example, by taking r = 2, s = 1, we get the three triangles (58, 58, 84), (73, 73, 140)

and (113, 113, 224) with the areas equal to 1680.
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