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1 Introduction

Let p,, denote the nth prime number. In this paper, we consider the sequence (C),),>1, where

C =npn— Y _ P

k<n

In [1, Theorem 10], it is proved that the asymptotic formula
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holds for each positive integer m. By setting m = 9 in (1.1), we get
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In the direction of (1.2), the present author [1, Theorems 3 and 4] showed that
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for every integer n > 52703 656, where
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and that the upper bound
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holds for every positive integer n, where
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Using new explicit estimates for the prime counting function 7 (), see [2, Propositions 3 and 5],
we improve the inequalities (1.3) and (1.4) by showing the following two results.

Theorem 1.1. For every integer n > 440 200 309, we have
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Theorem 1.2. For every positive integer n, we have
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2 Preliminaries

Let m(z) denote the number of primes not exceeding x. In 1793, Gauss [3] stated a conjecture
concerning the asymptotic behaviour of 7(x), namely

m(x) ~ li(x) (r — 00), (2.1



where the logarithmic integral 1i(x) is defined for every real x > 0 as
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Let m be a positive integer. Using integration by parts, (2.2) implies that
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The asymptotic formula (2.1) was proved independently by Hadamard [4] and de la Vallée-
Poussin [5], and is known as the Prime Number Theorem. In a later paper, where the existence of
a zero-free region for the Riemann zeta-function ((s) to the left of the line Re(s) = 1 was proved,
de la Vallée-Poussin [6] also estimated the error term in the Prime Number Theorem by showing

7(z) = li(z) + O(ze*VI8T), (2.4)

where a is a positive absolute constant. Applying (2.3) to (2.4), we get
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3 A proof of Theorem 1.1

In the following proof of Theorem 1.1, we use a new lower bound for 7(z).

Proof of Theorem 1.1. First, let m be an integer with m > 2, and let aso, . . ., a,,, and zy be real
numbers so that .
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for every x > xg, and let y, be a real number such that
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for every x > yo. The asymptotic formulae (2.5) and (2.3) guarantee the existence of such
parameters. In [1, Theorem 13], it is proved that
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Now we choose m = 9, a2 = 1, a3 = 2, as = 5.85, a5 = 23.85, ag = 119.25, a; = 715.5,
ag = 5008.5, ag = 0, xog = 19027490297, and yo = 4171. By [2, Proposition 5], we see that the
inequality (3.1) holds for every x > x(. By [1, Lemma 15], the inequality (3.2) holds for every
x > 1yo. Substituting these values into (3.3), we get
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for every n > 841160648, where dy = do(9, 1,2, 5.85,23.85,119.25, 715.5,5008.5, 0, x¢) is
given by
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Hence it suffices to show that dy > 0. By [1, Lemma 16], we have
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for every x > 10'°. Applying (3.6) to (3.5), we get
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We can show by a straightforward calculation that dy > 1.12 - 10'* > 0. For every integer n
satisfying 440200 309 < n < 841160647, we check the inequality with a computer. O]

4 A proof of Theorem 1.2

Next, we use a recent result concerning an upper bound for the prime counting function 7(x) to
establish the required inequality stated in Theorem 1.2.

Proof of Theorem 1.2. Let m be an integer with m > 2, let as, ..., a,,, and z; be real numbers
so that
T " apr
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for every x > y;. Again, the asymptotic formulae (2.5) and (2.3) guarantee the existence of such
parameters. In [1, Theorem 14] it is proved that the inequality
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holds for every integer n > max{m(z;) + 1,7(y/y1) + 1}, where t; ; is defined by (3.4) and
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Next we choose m = 9, ay = 1, a3 = 2, as = 6.15, a5 = 24.15, ag = 120.75, a; = 724.5,
ag = 6601, ag = 0, A\ = 6300, z; = 13, and y; = 10'®. By [2, Proposition 3], we get that the
inequality (4.1) holds for every x > x; and by [1, Lemma 19], we see that (4.2) holds for every

y > y,. By substituting these values into (4.3), we get
v, 3p; ; 0.375p;,

+ + U(n
2logp, éllog2 Dn 410g3 Dn (n)

C, <d + 4.4)

B 16 log8 DPn

for every integer n > 50847 535, where d; = d;(9, 1,2,6.15,24.15,120.75, 724.5,6601, 0, 1) is
given by

b 26599 2650922 2632922 2596922
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A direct computation gives d; < 453. We define f(x) = 0.37522/(161og®z) — 453. Since
f'(x) > 0 for every x > e and f(9187322) > 0, we get f(p,) > 0 for every integer n >
m(9187322) + 1 = 614 124. Now we can use (4.4) to obtain the desired inequality for every
integer n > 50 847 535. Finally, we check the remaining cases with a computer. ]
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