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Abstract: The sums of reciprocals are demonstrated to diverge for infinite sequences consist-
ing of arbitrarily long arithmetic progressions. It is demonstrated that there may exist sequences
that do not include arithmetic progressions of arbitrary length that yield divergent sums.
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1 Introduction

It is well known that the harmonic sum diverges when the upper limit tends to infinity. Further-
more, existence of an infinite number of primes follows from the divergence of the sum∑

p prime

1

p
. (1.1)

Between the set of natural numbers and the primes are arithmetic progressions. Consider the
arithmetic sequence xn = an+ b, a, b > 0. The sum of the reciprocals is
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(1.2)

While the sum of reciprocals of integers in a finite arithmetic sequence would converge,
the possibility of considering the necessity of a set of integers with arithmetic progressions of
arbitrarily length for divergence of the sum can be considered [4].
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Reciprocal sums reflect the distribution of number sets. Convergent sums have been bounded
for consecutive primes differing by 2 [1], amicable pairs [8] and primitive nondeficient numbers
[7] that are consistent with the order estimates for the cardinality of the sets less than a given
integer [2].

When these estimates reach O
(

x
ln x

)
, which is characteristic of the primes, the reciprocal

sums may be divergent. Consequently, the connection between the arithmetic sequences in
the sumsets and the divergence of the reciprocal sums would clarify the extent of progressions
amongst other integer sets including the primes.

Several advances on the characteristics of infinite sets of integers within the natural numbers
indicate the computational complexity of this problem. It has been averred that any subset of N
of positive density includes arithmetic sequences of arbitrarily length [3, 9]. Given this statement
and other results on measures defined over the integer set ZN , the existence of arbitrarily long
arithmetic progressions within the primes may be investigated [6]. The results prompt the study
of all arithmetic sequences that can occur in an infinite set in the natural numbers and not only
those that are required for its construction. Configurations within a integer lattice in the plane
could consist of segments representing bounded linear sequences. Nevertheless, the entire set of
lines through the integer points, including those traversing different edges, must be examined.
The extent of these arithmetic sequences and the existence of transformations of the number sets,
so that the progressions have a bounded maximal length, are elaborated in the following sections.
It is demonstrated that points in a saw-toothed configuration can be moved such that the number
of elements of the linear sequences are decreased. Then the number of steps is estimated, and
the feasibility of constructing a set with a finite upper bound for the the lengths of the arithmetic
progressions is demonstrated.

2 Divergence of the sums of reciprocals over sets of integers
including arithmetic progressions

If the recriprocals have denominators that belong to arbitrarily long arithmetic progressions, the
sum of reciprocals will contain∑

k1∈S1⊂Z

1

α1 + k1β1

+
∑

k2∈S2⊂Z

1

α2 + k2β2

+ · · · , (2.1)

where |S1 ∪ S2 ∪ . . . | = ∞. If there is only one set S1, the sum diverges trivially. For a finite
number of sets, the arithmetic progressions can be ordered so that αN + kNβN is largest and
infinite. Then

∑
kN∈SN⊂Z

1
αN+kNβN

= ∞. There cannot be an infinite number of sums because
almost all would contain only a finite number of elements and no arithmetic progression for a
one-to-one correspondence with the set of natural numbers. However, the cardinality may be
regarded as equal to ℵ0. If the sum of reciprocals is defined by a set with no arbitrarily long
arithmetic sequence

N∑
n=1

∑
kn∈SN⊂Z

1

αn + knβn
<

∞∑
n=1

(
κ

αn

)
k bounded, 1 < κ < B{Sn}}. (2.2)
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When the set {αn} forms a random pattern, this sequence only would be bounded by an
arithmetic progression. A bounding by an arithmetic progression yields an infinite bound. To
derive a finite bound, it is necessary to choose αn to be increasing as nγ , γ > 1. There would be
no arithmetic progression bounding {αn}.

Consider a random sequence increasing linearly. The graph would be that of data points
scattered about a linear plot. To fit this scattered data, either a polynomial or an arithmetic
progression kn,0αn,0 + kn,1αn,1 + · · ·+ kn,n−1αn,n−1, is used. When the number of data points is
infinite, the linear combination has an infinite number of coefficients. The discrete set of points
would be given by the values kn,0 = 1, kn,i = 0, i ≥ 1, kn,0 = 0, kn,1 = 1, kn,i = 0, i ≥ 2. Line
segments may be drawn between these points if kn,0(t) = (1 − t), kn,1(t) = t, kn,i = 0, i ≥ 2,
kn,0 = 0, kn,1 = 1− t, kn,2 = t, kn,i = 0, i ≥ 3, 0 ≤ t ≤ 1. Since the range of t has two integer
values, the corresponding arithmetic progressions has two elements. Letting the first coefficient
be 1 and replacing t by an integer parameter n, it can determined if the data set includes linear
sequences with greater lengths.

The two-term arithmetic progression can be described geometrically in the real plane as a line
through a lattice of points bounded by two infinite lines of fixed slopes. Let the lattice of integer
points between βminx and βmaxx be L. The existence of an arbitrarily long arithmetic progression
is equivalent to the occurrence of an infinite line belonging to L that consists of elements of the
sequence of denominators. It is immediate that the sequence of points can be selected so that an
infinite number are not located on a single line with a slope between βmin and βmax. If Ln is the
subset of points at x = n, then |Ln| = |β2n−β1n|. An infinite line will cross one point at each n,
and there are |βmaxn− βminn| − 1 such points. Suppose a line with slope β > βmax intersects a
sequence of integer points representing denominators in the reciprocal sums. Beginning with the
point (y0, n0), when βminn0 ≤ y0 ≤ βmaxn0, and the line y = y0 + β(x − n0) will intersect the
line y = βmaxn0 when

βmaxx = y0 + β(x− n0)

x =
βn0 − y0

β − βmin
=
y0 − βn0

βmin − β
≥ n0,

(2.3)

which is finite. The line therefore will have a finite number of points, and the denominators in the
reciprocals will comprise a finite set. Similarly, if β < βmin, the line y = y0 + β(x − n0) will
intersect the line y = βminn0 when

βminx = y0 + β(x− n0)

y0

βmin − β
> x =

βn0 − y0

β − βmin
=
y0 − βn0

βmin − β
≥ n0.

(2.4)

Only a finite number of points representing a finite arithmetic progression would be located
on this line. Since any infinite line must have a gradient between βmin and βmax, there exist
sequences which do not coincide with these lines. The union of such sequences would form
saw-toothed trajectories with edges of bounded length.

Suppose that the edges have a maximum length of Lmax. Then, if the minimum slope of
the lines is β0, the number of elements in each edge does not exceed Lmax

β0
. Even though each

edge does not represent a sequence with more than Lmax
β0

elements, it could be conjectured that
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arbitrarily long progressions may be constructed from points belonging to a collection of different
edges. Each of these progressions might be reduced to finite length by moving the points off the
lines formed by these larger sequences.

It is traditional to require that β0 ≥ 1 for arithmetic sequences, and, if β1 is the maximum
slope of an edge, the density ρ of the entire set of integers in a saw-toothed trajectory within the
natural numbers would satisfy the inequality 1 ≥ 1

β0
≥ ρ ≥ 1

β1
> 0. By Szemerédi’s theorem,

the positive density ensures the existence of a arithmetic progressions of arbitrary length amongst
the set of integers in the trajectory.

There remains then the mechanism of moving a set of integer points off the saw-toothed
trajectory so that the lengths of all of the larger arithmetic sequences become bounded. The
divergent reciprocal sums for these sequences would represent counterexamples to the Erdős–
Turan conjecture.

3 The construction of sequences with bounded
arithmetic progressions

The precise form of the result for sets of density δ > 0 is the existence of a number N0(δ, k) such
that, if N ≥ N0(δ, k), it is claimed that the set S ⊂ ZN , with |S| = δN , contains an arithmetic
sequence of length k [9]. A value of 22δ

−ck
has been found for N0(δ, k), where ck can be set equal

to 22k+9 [5]. For the saw-toothed trajectory with slopes between β0 and β1, the upper bound can

be selected to be N0

(
1
β1
, k
)

= 22β1
22
k+9

.

Theorem. There are elements of two-term arithmetic progressions in the saw-toothed trajectory
that can be moved so that the sequences in the set have bounded lengths.

Proof. Let N ≥ N0

(
1
β1
, k
)

and Sk,i be a progression of length k in ZN . If a point on each of

the lines representing sequences of length k is moved away a distance less than
N0

(
1
β0
,k
)
−ak,i

k
,

where ak,i is the initial term of Sk,i, then the new progression S̃`,i will have a length ` < k. If
these points are selected to be near the midpoints of the line segments, the lengths will be equal
approximately to bk

2
c.

Proceeding to the sequences of length k−1, the moving of the midpoint would reduce lengths
of those progressions to nearly k−1

2
. After 1 + 1 + 1 + · · ·+ (1 + 1) + · · · iterations, the sequences

have lengths less than or equal to k
4
, where nr, 2 ≤ r ≤ k, is the number of progressions of length

r. Fixing some bound k̄ = k
2b

, all progressions will have lengths less than or equal to k̄ after
1 + 1 + 1 + · · ·+ (1 + 1) + · · ·+ (1 + 1 + 1 + 1) + · · · steps. The number of steps will be less than
(2b−1 + 2 · 2b−2 + · · · + 2b−1) = b2b−1 = k

2k̄
log2

k
k̄
. More generally, when k

k̄
is non-integer, the

upper bound is given by
{

k
2k̄

}
log2

{
k
k̄

}
. Therefore, the number of steps to reduce the lengths

to the limiting value k̄ is much less than |S| ≤ 1
β1
N . Since the numbers nr are constrained by∑k

r=2 nrr ≤
1
β1
N , it follows that there is sufficient space,

(
1− 1

β1

)(
N0

(
1
β0
,k
)
−amax

r

)
, amongst
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the integers in ZN for the selected points to be moved such that the initial sequences are divided
into progressions of length less than or equal to k̄.

The arithmetic progressions in the new set of integers S̃ may be listed. Clearly, this set will

consist of sequences of length less than or equal to k̄ amongst the nearly |S| −
{

k
2k̄

}
log2

{
k
k̄

}
remaining elements that have not been moved. By definition, there would be no progressions

of greater length amongst these elements. The
{

k
2k̄

}
log2

{
k
k̄

}
points that have been translated

within the lattice are not correlated with these points. It is only necessary to determine the pro-
gressions amongst the integers which have been moved.

Suppose that the earlier bound with a new length for the progressions k′,N0(δ, k′), is set equal

to
{

k
2k̄

}
log2

{
k
k̄

}
. With δ = 1

β′0
and β′0 being the new lower bound for the slopes of the lines

representing the arithmetic sequences,

22(β
′
0)

22
k′+9

&

{
k

2k̄

}
log2

{
k

k̄

}
(3.1)

or

k′ =

{
log2 log2 logβ′0 log2 log2

({
k

2k̄

}
log2

{
k

k̄

})}
− 9. (3.2)

It is not necessary for there exist arithmetic progressions with lengths larger than k′ in the
configuration. If there are sequences with a greater number of elements, additional transforma-

tions amongst the
{

k
2k̄

}
log2

{
k
k̄

}
points will be sufficient to reduce the lengths to k′. Following

the previous discussion,
{
k′

2k̄

}
log2

{
k′

k̄

}
would be the maximum number of steps for an initial

reduction of the progressions to lengths less than or equal to k̄.
The sum of the maximum number of movements of integers in the set S for the arithmetic

progressions to have a length less than or equal to k̄ is{
k

2k̄

}
log2

{
k

k̄

}
+

{
k′

2k̄

}
log2

{
k′

k̄

}
+

{
k′′

2k̄

}
log2

{
k′′

k̄

}
+

{
k′′′

2k̄

}
log2

{
k′′′

k̄

}
+ · · · , (3.3)

where

k′′ =

{
log2 log2 logβ′0 log2 log2

({
k′

2k̄

}
log2

{
k′

k̄

})}
− 9

k′′′ =

{
log2 log2 logβ′′0 log2 log2

({
k′′

2k̄

}
log2

{
k′′

k̄

})}
− 9

...

(3.4)

The series terminates when the value is less than zero. Since log2 log2 log
β
(s)
0

log2 log2 x is less
than log16 x for x ≥ 1, there will be a maximum of smax terms where smax is the largest integer

such that log
(smax)
16

{
k
2k̄

}
ln2

{
k
k̄

}
> 9, and it follows that

log16smax

{
k

2k̄

}
ln2

{
k

k̄

}
> 9 (3.5)
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or

smax < log16

(({
k

2k̄

}
log2

{
k

k̄

}) 1
9

)
. (3.6)

The sum (3.3) will be less than{
k

2k̄

}
log2

{
k

k̄

}
smax <

{
k

2k̄

}
log2

{
k

k̄

}
log16

({
k

2k̄

}
log2

{
k

k̄

}) 1
9

. (3.7)

Again, this upper bound is much less than |S| ≤ 1
β1
N , and there is enough space to make the

remaining moves to construct a configuration with arithmetic progress of maximum length k̄.

4 Conclusion

It has been demonstrated how integer points on lines intersecting a saw-toothed trajectory with
bounded edges can be moved so that arithmetic progressions have a bounded maximum length.
The number of steps required for the algorithm is given, and it is found that the entire sum is still
considerably less than the lower bound for the number N necessary for existence of arithmetic
progressions of length k in a set of positive density in the natural numbers.

It is necessary to verify that the subset of integers in a set S ⊂ ZN belonging to arithmetic
sequences with k̃ elements, where k̃ > k and N ≥ N0 (δ, k), can be moved so that the progres-
sions again would be reduced to a maximum of k elements. This property may only be valid for
integers near N0(δ, k) since k might be increased for larger N . Nevertheless, the proof continues
to hold since the integers N0 (δ, k) form a sequence that tends to infinity. The estimated bound
for N0(δ, k), for which a precise value is required. incorporates this postulate.

The sets considered in this work have positive density, and the conclusions are consistent
with bounds for lengths of arithmetic progressions in finite sets of integers rather than the infinite
limit. Consequently, it may follow that a finite version of the result is necessary for the study of
arithmetic sequences.
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[3] Erdős, P. (1955). On Amicable Numbers, Publ. Math. Debrecen, 4, 108–111.
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