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Abstract: The work considers an equivalence relation in the set of all n x m matrices with
entries in the set [p] = {0,1,...,p — 1}. In each element of the factor-set generated by this rela-
tion, we define the concept of canonical matrix, namely the minimal element with respect to the
lexicographic order. We have found a necessary and sufficient condition for an arbitrary matrix
with entries in the set [p] to be canonical. For this purpose, the matrices are uniquely represented
by ordered n-tuples of integers.
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1 Introduction and notation

This paper presents a generalization and an improvement of the results obtained in [7].
Let k and p be integers, k& < p. By [k, p| we denote the set

k,p] ={k,k+1,...,p}
and by [p] the set
lp]=[0,p—1]={0,1,2,...,p—1}.

With M? . we will denote the set of all n x m matrices with entries in the set [p].
When p = 2, amatrix whose entries belong to the set [2] = {0, 1} is called binary (or boolean,
or (0,1)-matrix).
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When p = 3, an x n matrix H whose entries belong to the set {1, —1} = {1,2} (mod 3) is
Hadamard if HH' = n I,,, where H is the transposed matrix of H and I,, is the n x n identity
matrix. It is well known that n is necessarily 1, 2, or a multiple of four [2, 3].

When p = 3, an xn matrix W whose entries belong to the set {0,1, —1} = {0, 1,2} (mod 3)
is weighing matrix of order n with weight k, if W W7 = k I,,. For more information on applica-
tions of weighing matrices, we refer the reader to [4]. A n X n weighing matrix W with weight
k is Hadamard if k£ = n (see [1]).

A square binary matrix is called a permutation matrix, if there is exactly one 1 in every row
and every column. Let us denote the group of all n x n permutation matrices by P,. It is well
known (see [5,6]) that the multiplication of an arbitrary real or complex matrix A from the left
with a permutation matrix (if the multiplication is possible) leads to permutation of the rows of
the matrix A, while the multiplication of A from the right with a permutation matrix leads to
permutation of the columns of A.

A transposition 1s a matrix obtained from the n X n identity matrix /,, by interchanging two
rows or two columns. With 7,, C P,, we denote the set of all transpositions in P,, i.e., the set of
all n X n permutation matrices, which multiplying from the left an arbitrary n X m matrix swaps
the places of exactly two rows, while multiplying from the right an arbitrary k£ X n matrix swaps
the places of exactly two columns.

Definition 1.1. Let A, B € M? We will say that the matrices A and B are equivalent and we

nxm:

will write
A~B,

if there exist permutation matrices X € P, andY € 'P,,, such that

A= XBY.

In other words, A ~ B, if A is received from B after a permutation of some of the rows and
some of the columns of B. Obviously, the introduced relation is an equivalence relation.

In each element of the factor-set generated by the relation “~” described in Definition 1.1,
we define the concept of canonical matrix, namely the minimal element with respect to the lex-
icographic order. For this purpose, the matrices are uniquely represented by ordered n-tuples of
integers. The purpose of this work is to get a necessary and sufficient condition for an arbitrary
matrix with entries in the set [p] to be canonical. This task is solved in the particular case where
p = 2in [7]. The case where p = 3 will be useful in classification of Hadamard matrices and

weighing matrices.

p

2 Representation of matrices from M, .,

via ordered n-tuples of integers

Let A = (ai;), ., € Mhxm 1 <i<n,1 <7 <mandlet
xi:Zaijpm*j, 1=1,2,...n. (1)
j=1
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Obviously
0<z; <pm™—1 forevery 1=1,2,...n 2)

Y

and x; is a natural number written in notation in the number system with the base p whose digits
are consistently the entries of the i-th row of A.
With r(A) we will denote the ordered n-tuple

T(A) = <xlax27"'7xn>' (3)

Similarly, with ¢(A) we will denote the ordered m-tuple

C<A> - <y17y2a"'>ym>v (4)

where
n

y=d ap", 0<y <pi-1, j=12..m 5)
=1

and y; is a natural number written in notation in the number system with the base p whose digits
are consistently the entries of the i-th column of A.

It is easy to see that for every A € ML, c(A) = r(AT) and r(A) = c(AT), where AT is
the transposed matrix of A.

We consider the sets:

szm - [O7pm_1]n
= {{r1,29,...,2,) | 0< x; <p™—1,i=1,2,...n}
{r(A)| Ae M5}
and
Cﬁxm = [O7Pn—1]m
{<ylay2>aym> | Oﬁyg Spn_la .7: 1727m}
= {c(4) | Ae My}

Thus, we define the following two mappings:

. p p
re Mo = Rosm
and
. p P
C: Mnxm — Cnxm7

which are bijective and therefore
Risem = Mim = Crscon-

We will denote the lexicographic orders in RY , and in C¥ = with “<”.

Example 2.1. Let

1032
A=[02 1 0 | € M,
011 3
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Then
1 =1-440-424+3-4142.4°=1-644+0-16+3-4+2-1=718,

To=0-424+2-4241-4"40-4"=0-64+2-16+1-4+0-1= 36,
r3=0-4>+1-44+1-4"+3.4°=0-64+1-16+1-4+3-1=23,
ph=1-424+0-4140-4°=1-164+0-44+0-1= 16,

Yo =0-424+2-414+1.4°=0-16+2-4+1-1=09,
ys; =3-424+1-4'4+1.4°=3-164+1-4+1-1 =53,

Yy =2-4240-4'4+3.4°=2.1640-4+3-1 =35,

r(A) = (78,36,23),

c(A) = (16,9, 53, 35).

Theorem 2.1. Let A be an arbitrary matrix from M?_ . Then:
a)If X1, Xs,--- , X, € T, are such that

T(Xng ce XSA) < T’(XQXg . XSA) <0 < T(Xs_lXSA) < T(XSA) < T(A),

then
C(XlXQ R XSA) < C(A)

b)IfY1,Ys,--- .Y, € T, are such that
c(AV1Y5... Y)) < c(AY Y2 ... Y1) < - < c(AY1Ys) < ¢(AY)) < ¢(A),

then
r(AY1Y, ... Y;) <r(A).

Proof. a) Induction by s.

Let s = 1 and let X € 7, be a transposition which multiplying an arbitrary matrix
A = (a;;) € M? ., from the left swaps the places of the rows of A with numbers u and v
(1 € u < v < n), while the remaining rows stay in their places. In other words, if

ayjp Qi - A o Qip
Qg1 Q22 -+ A2r -+ A2y
Ayl QAu2 Qo Qym
A - . )
Qy1  Ay2 Qyr Qym
an1  Ap2 Apyr Anm
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then

@11 A2 - Al o Q1m

Q21 Qg2 -+ Agp --° O2m

Ay1 Ay Ayyr Aym

XA=1 _ . ) . ,
Ayl Au2 " Aoy Aym
Ap1 QAp2 -t App * Anm
where a;; € [p] ={0,1,...,p—1}5L1<i<n,1<j<m.
Let
T(A) = (T1, %9, ... Tyu1, Ty« o - Ty 1, Ty e+, Tiy) -
Then,
r(XA) = (21,Ta, .. . Ty, Ty e o - Ty—1, Tagy -+ 5 Ty )

Since (X A) < r(A), then according to the properties of the lexicographic order x, < x,,.
Let the representation of x,, and z, in notation in the number system with the base p (with an
eventual addition of unessential zeros in the beginning if necessary) be respectively as follows:

Ty = Q1 Qy2 * Qo * * * Aymy,

Ty = Ap1Qy2 * * - Qyr * * * Q-

Since z, < z,, then there exists an integer € {1,2,...,m}, such that a,; = a,; when
J <r,and a,, < ay-. Hence, if ¢(A) = (y1,y2, ..., Ym), c(XA) = (21,22, ..., 2m), theny; = z;
when 7 < r, while the representation of y, and z, in notation in the number system with the base
p (with an eventual addition of unessential zeros in the beginning if necessary) is respectively as
follows:

Ypr = Q1pQ2p * * * Qyu—17Qyy * * * Qyp * * * Ay
Zp = A1pQ2p =+ Ay—17Quy * * = Qug * * * Ay

Since @, < ay,, then z,. < y,., whence it follows that ¢(X A) < ¢(A).
We assume that for every s-tuple of transpositions X1, Xs, ..., X, € 7T, and for every matrix

Ae Mb. . from
r(XiXe. . . XA) <r(Xy- - XgA) < - <r(X;A) <r(A)

it follows that
C(X1X2 e XSA) < C(A)

and let X, € 7, be such that
T(XlXQ e XsXs—i-lA) < T(XQ S X$_|_1A) < < T(Xs+1A) < T(A)
According to the above proved ¢( X1 A4) < c¢(A).
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We put

A = XA
According to the induction assumption from
r( X1 X . . XA <r(Xy - XA < - <1r(XA41) <7r(4y),
it follows that
(X1 Xo X X1 A) = c(Xa Xy - XAy < c(4y) = (X1 4) < ¢(A),

with which we have proven a).
b) is proven similarly to a). O]

In effect is also the dual to Theorem 2.1 statement, in which instead of the sign “<” every-
where we put the sign “>".

Theorem 2.2. (Dual theorem) Let A be an arbitrary matrix from MY . Then:
a)lf X1, Xs, ..., X, € T, are such that

T(XlXQ .. XSA) > T(XQXg - XSA) >0 > T(XslesA) > T(XSA) > T(A),

then
C(X1X2 ce XSA) > C(A)

b)IfY1,Ys,--- .Y, € T, are such that
c(AV1Y5. .. Y,) > c(AY1Ys. .. Y q) > ... > c(AY1Y3) > ¢(AY7) > ¢(A),

then
r(AY1Ys...Y;) > r(A).

3 Semi-canonical and canonical M?_  -matrices

Definition 3.1. Let A € M? . r(A) = (x1,29,...,2,) and c(A) = (Y1, Y2, - -, Ym). We will

nxm?
call the matrix A semi-canonical, if
Ty S X < - STy,

and
Y1 <Y <o <Y

Lemma 3.1. Let A = (ay),,,, € M., be a semi-canonical matrix. Then, there exist integers
s,t, suchthat1 < s <n,1<t<mand

app=app=-=a1,=0, 1<aje1 <ajs42<--<ay, <p-—1, (6)
app=ag =-=aq =0, 1<a11<a421<-<a, <p—1L @)
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Proof. Let r(A) = (x1,x9,...x,) and c(A) = (y1,Y2,...Ym). We assume that there exist
integers p and ¢, such that 1 < p < ¢ < m, a;, > ay,. In this case y, > y,, which contra-
dicts the condition for semi-canonicity of the matrix A. We have proven (6). Similarly, we prove
(7) as well. [l

Definition 3.2. We will call the matrix A € M? . canonical matrix, if r(A) is the minimal
element with respect to the lexicographic order in the set {r(B) | B ~ A}.

Problem 3.1. For given m, n and p, find all canonical M® ., -matrices satisfying certain condi-

tions.

Particular cases of Problem 3.1 are as follows:
Problem 3.2. For given n and k, find all n x n canonical weighing matrix with weight k.
Problem 3.3. For given n, find all n x n canonical Hadamard matrices.

If the matrix A € M”_ is canonical and r(A) = (1, 22, ..., x,), then obviously

z1 <2 <L <@y, ()

From Definition 3.2 it immediately follows that there exists only one canonical binary matrix

in every class on the equivalence relation “~” (see Definition 1.1).

Lemma 3.2. [f the matrix A € MY is a canonical matrix, then A is a semi-canonical matrix.

Proof. Let A € MY be a canonical matrix and r(A) = (1,22, ...,,). Then, from (8) it
follows that 1 < 25 < -+ < x,,. Let ¢(A) = (y1,¥2, .. ., Ym). We assume that there are s and ¢
such that s < ¢ and y; > y;. Then, we swap the columns of numbers s and ¢. Thus, we obtain the
matrix A’ € M, A" # A. Obviously ¢(A") < ¢(A). From Theorem 2.1 and Theorem 2.2 it

follows that r(A") < r(A), which contradicts the minimality of r(A). O

In the next example, we will see that the opposite statement of Lemma 3.2 is not always true.

Example 3.1. We consider the matrices:

00 1 2
00 2 2

A= e M3
0200 axd
1000

and

000 2
0120

B = 3
0220 € Mixa
1000
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After immediate verification, we find that A ~ B. Furthermore, 7(A) = (5,8, 18,27),
c(A) = (1,6,45,72), r(B) = (2,15,24,27), ¢(B) = (1,15,24,54). So A and B are two equiva-
lent semi-canonical matrices, but they are not canonical. The canonical matrix in this equivalence
class is the matrix

3
€ M4,

o O O =

0 00
0 0 2
1 20
2 20
(5,8

where r(C') = (1,6, 45,72) and ¢(C) = (5,8, 18,

[\)

7).

From Example 3.1 it immediately follows that there may be more than one semi-canonical
element in a given equivalence class.

4 Necessary and sufficient conditions

for a M  -matrix to be canonical
Let A = (a;;) € MY ., 7(A) = (x1, 29, ..., x,). We introduce the following notations:

e 1;(A) = v(x;) = the number of nonzero entries in the i-throw of A, i =1,2,...n

o Zi(A)= Z(x;) = {zx € r(A)| xx = x;} —the set of all rows z;, € r(A), such that x, = z;.
By definition z; € Z(z;),i=1,2,...n

b Ci(A> = C(l”z) = ‘Zz'(A) )

Lemma 4.1. Let A = (a;;) € MY, r(A) = (x1,29,...,7,) and let 11 < 39 < -+ < 7.
J nxm

i=1,2,.. .n

Then, for each1 = 2,3, ... ,n, for which x;_, < x;, or i = 1 the condition
Z(x;) = {Zi, Tig1, - Tic(w) -1}
is fulfilled.
Proof. Trivial. O

The formulation of the following theorem will help us to construct a recursive algorithm for

obtaining all canonical M?_ -matrices.

nxm

Theorem 4.2. Let A = (a;;) € Mb .., 7(A) = (z1,29,...,2,), c(A) = (W1.Y2s -+ Um),
s =11(A), t = (1(A). Then, A is canonical if and only if the following conditions are satisfied:

Iy <wo<--- <, <p"—1;

3. If s> 1, then ym—s11 < Ym—s+2 < Yms
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4. Foreachi=2,3,...,n, v1(A) <v(A);

5. Lett < n. Let an integer i exist such that t < i < n and v;(A) = v1(A) = s. Then, we
successively get the matrices A', A" and A" in the following way:

(a) We get the matrix A’ by moving the rows from the set Z;(A) so they become first;
(b) If s = m, then A" = A'. Let s < m, A" = (a;;) and let T = {j | ay; # 0} =

4]
{u1,ug,...us}. Then, we get the matrix A" by moving successively the uy-th column

(k=1,2,...,s) from A’ so it becomes last in A”;

(c) We get the matrix A" by sorting the last s columns of A” in ascending order.
Then, r(A) < r(A").

6. Letl] <t <nand(0 < s < m. Let the matrix B € M’(ant)x(mfs) be obtained from A by
removing the first t rows and the last s columns. Then, B is canonical.

Proof. Necessity. Let A = (a;;) € M?,, be acanonical matrix and let (A) = (@1, 22, ..., ),
c(A) = (Y1, Y2, -+, Ym)-

Condition 1 follows from the fact that every canonical matrix is semi-canonical (Lemma 3.2),
sor; < 29 < --- <z, and from inequality (2).

From equation (1) and Lemma 3.1 it follows that

m » m - m o s _ 1
n=Y "= Y a3 1=t
7=1 j=m—s+1 j=m—s+1 p
and . .
.y s p’—1
— ] NI — (o — 5 _
n= Y, el Y (-1 = Do =r-t
j=m—s+1 Jj=m—s+1

Therefore, Condition 2 is true.
Condition 3 follows from the fact that every canonical matrix is semi-canonical (Lemma 3.2).
We assume that an integer i, 2 < i < n exists, such that v;(A) < v1(A) = s and let
vi(A) = u < s. Then, a matrix A" = (a;;) ~ A exists such that a}, = aj, = -+ = aj,,_, =0
and1 < aj,, 1 < @ yio < o0 <oaj,, < p— 1. We move the i-th row of A’ at first place
and we obtain a matrix A”. Obviously A” ~ A. Let r(A”) = («, 2}, ..., z!). From the above

:psfl_i_psz_i__+pu+pu*1+...+p+1>

proven Condition 2, it follows that z; > P ]
p* > p* — 1 > 2f. Therefore, x; > 27, i%)e., r(A) > r(A”), which is impossible, due to the fact
that A is canonical. Thus, Condition 4 is true.

Condition 5 comes directly from the fact that A is canonical and r(A) < r(U) for each matrix
U~ A.

Lett = (;(A) < nandlet s =vy(A) < m. From the already proved Conditions 1, 2, 4 and 5
and Lemma 4.1, it follows that A is presented in the form:

O N
AZ(BO)’ ©)
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where O is a t X (m — s) matrix, all elements of which are equal to 0, N is a ¢t X s matrix, all
elements of which are equal to each other and which are not equal to 0 and all rows of the matrix
(O N)ixm coincide with the elements of the set Z;(A), B € anft)x( C e Mf

n—t)xs*
Let B’ ~ B and let B’ be a canonical M?n_t)x(m_s)-matrix. Then, the following matrices

m—s)’

O N
A€ Miy,, and C" € M{, . exist, such that A" ~ A, ¢ ~ C, A = 5 oo ) and
(" is obtained from C' after an eventual permutation of the rows. Let r(A") = (2,25, ..., 2}).

Obviously 2, = z; forall i = 1,2,...¢. Let us assume that B’ # B, i.e., r(B’) < r(B). Let
r(B) = (041, bigas -5 bn)s 7(BY) = (b, Upgas -5 00)s 7(C) = (Crpn, Cran, oo )y 7(C7) =

(Cit1:Ciiay - - - » Cy). From assumption it follows that there exist ¢ € [t+1,n] such that b}, = by1,
biro = biyo, ..., Ui = by and b < by, ie., b +1 < b;. Then, o) = x1,25 = 2o,...,7;_; =
xi—1. Since 0 < ¢ < p®and 0 < ¢, < p®, for each i € [t + 1,n|, then x} = bip® + ¢, <
O+ Dp* 4+ =bp*+p° + ¢+ ¢ —c; < bip® +p°+p° +¢; —0 < bjp® + ¢;. Consequently
r(A") < r(A). But A is canonical, i.e., 7(A) < r(A’), which is a contradiction. Therefore,
B’ = B and B is canonical. Thus, we have proved Condition 6.
Sufficiency. Let A € M?  satisfy Conditions 1 =+ 6 and hence the conditions of Lemma 4.1
are fulfilled. Let r(A) = (z1, 29, ...,2,) and ¢(A) = (Y1, Y2, - - -, Ym)-

Ift = n, then 1 = 25 = --- = z,, and according to Condition 3 it is easy to see that A is a

canonical M?  _-matrix.

nxm

If ¢ < n and s = m, then according to Condition 1, Lemma 4.1 and Conditions 4 and 5 it is

p

s m-AtT1X.

easy to see that A is a canonical M
Letl1 <t<nand0<s<m.LetU ~ Aandlet U be a canonical M?_ -matrix. Since the

Conditions 1 =+ 6 are necessary for the canonicity of a matrix, consequently U also satisfies these
conditions. According to Condition 4,

n(U) =11(A) = s. (10)

Thus, the matrix U is represented in the form (9) and let

O N O N’
A_<BC’> and U_<B’ C”)’ (11)

Let us assume that U is obtained from A only by permutation of the columns. In this case
obviously (1(U) = (1(A) =t,n(U) =11(A) =s,0' =0,N' ~N,B' ~ Band C' ~ C.

Permutation of columns which are different each other and which belong only to the set
Y1 ={v1,v2, ..., Ym—s without permutation of different each other rows is impossible in accor-
dance with Condition 6.

Permutation of columns, which are different from each other and which belong only to the set
Yo = {Ym—ss1, Ym—s12; - - - » Ym } Without permutation of mutually different rows, is impossible in
accordance with Condition 3.

Therefore, there are k£, [ such that 1 < k < m — s < [ < m and the k-th column has become
the [-th, or the [-th column has become the k-th. Then, according to Condition 3 and equation (9)
easily see that it is impossible if we did not change the places of some rows.
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Therefore, U is obtained from A by swapping some of the rows. Without loss of generality,
we can assume that U is obtained from A in the beginning by swapping some rows, then (if it is
necessary) swapping some columns.

Permutation of rows that belong only to the set X; = {z1,x9,...,2;} = Z;(A) does not
change the matrix A because 71 = x5 = ... = 1.
Permutation of rows that belong only to the set Xy = {x;11, 4490, ...,2,} is impossible in

accordance with Condition 6.

Therefore, taking into account the Conditions 1 and 4 and Lemma 4.1, we conclude that
we have changed the first ¢ = (;(A) rows with another equal to each rows of the set Z;(A),
t+1 < 7 < n. After that, in order to obtain a matrix of kind (9), if it is necessary, we have
to change the places of some columns of the matrix A. According to Conditions 3 and 5 it
follows that r(A) < r(U). But U is canonical, i.e., 7(U) < [(A). Therefore, U = A, i.e., Ais
canonical. [
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