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1 Introduction and notation

This paper presents a generalization and an improvement of the results obtained in [7].
Let k and p be integers, k ≤ p. By [k, p] we denote the set

[k, p] = {k, k + 1, . . . , p}

and by [p] the set
[p] = [0, p− 1] = {0, 1, 2, . . . , p− 1} .

WithMp
n×m we will denote the set of all n×m matrices with entries in the set [p].

When p = 2, a matrix whose entries belong to the set [2] = {0, 1} is called binary (or boolean,
or (0,1)-matrix).
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When p = 3, a n × n matrix H whose entries belong to the set {1,−1} ≡ {1, 2} (mod 3) is
Hadamard if HHT = n In, where HT is the transposed matrix of H and In is the n× n identity
matrix. It is well known that n is necessarily 1, 2, or a multiple of four [2, 3].

When p = 3, a n×nmatrixW whose entries belong to the set {0, 1,−1} ≡ {0, 1, 2} (mod 3)

is weighing matrix of order n with weight k, if W W T = k In. For more information on applica-
tions of weighing matrices, we refer the reader to [4]. A n × n weighing matrix W with weight
k is Hadamard if k = n (see [1]).

A square binary matrix is called a permutation matrix, if there is exactly one 1 in every row
and every column. Let us denote the group of all n × n permutation matrices by Pn. It is well
known (see [5, 6]) that the multiplication of an arbitrary real or complex matrix A from the left
with a permutation matrix (if the multiplication is possible) leads to permutation of the rows of
the matrix A, while the multiplication of A from the right with a permutation matrix leads to
permutation of the columns of A.

A transposition is a matrix obtained from the n × n identity matrix In by interchanging two
rows or two columns. With Tn ⊂ Pn we denote the set of all transpositions in Pn, i.e., the set of
all n× n permutation matrices, which multiplying from the left an arbitrary n×m matrix swaps
the places of exactly two rows, while multiplying from the right an arbitrary k × n matrix swaps
the places of exactly two columns.

Definition 1.1. Let A,B ∈Mp
n×m. We will say that the matrices A and B are equivalent and we

will write
A∼B,

if there exist permutation matrices X ∈ Pn and Y ∈ Pm, such that

A = XBY.

In other words, A ∼ B, if A is received from B after a permutation of some of the rows and
some of the columns of B. Obviously, the introduced relation is an equivalence relation.

In each element of the factor-set generated by the relation “∼” described in Definition 1.1,
we define the concept of canonical matrix, namely the minimal element with respect to the lex-
icographic order. For this purpose, the matrices are uniquely represented by ordered n-tuples of
integers. The purpose of this work is to get a necessary and sufficient condition for an arbitrary
matrix with entries in the set [p] to be canonical. This task is solved in the particular case where
p = 2 in [7]. The case where p = 3 will be useful in classification of Hadamard matrices and
weighing matrices.

2 Representation of matrices fromMp
n×m

via ordered n-tuples of integers

Let A = (aij)n×m ∈M
p
n×m, 1 ≤ i ≤ n, 1 ≤ j ≤ m and let

xi =
m∑
j=1

aijp
m−j, i = 1, 2, . . . n. (1)
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Obviously
0 ≤ xi ≤ pm − 1 for every i = 1, 2, . . . n (2)

and xi is a natural number written in notation in the number system with the base p whose digits
are consistently the entries of the i-th row of A.

With r(A) we will denote the ordered n-tuple

r(A) = 〈x1, x2, . . . , xn〉. (3)

Similarly, with c(A) we will denote the ordered m-tuple

c(A) = 〈y1, y2, . . . , ym〉, (4)

where

yj =
n∑
i=1

aijp
n−i, 0 ≤ yj ≤ pn − 1, j = 1, 2, . . .m (5)

and yj is a natural number written in notation in the number system with the base p whose digits
are consistently the entries of the i-th column of A.

It is easy to see that for every A ∈ Mp
n×m, c(A) = r(AT ) and r(A) = c(AT ), where AT is

the transposed matrix of A.
We consider the sets:

Rp
n×m = [0, pm − 1]n

= {〈x1, x2, . . . , xn〉 | 0 ≤ xi ≤ pm − 1, i = 1, 2, . . . n}
= {r(A) | A ∈Mp

n×m}
and

Cpn×m = [0, pn − 1]m

= {〈y1, y2, . . . , ym〉 | 0 ≤ yj ≤ pn − 1, j = 1, 2, . . .m}
= {c(A) | A ∈Mp

n×m}
Thus, we define the following two mappings:

r :Mp
n×m → R

p
n×m

and
c :Mp

n×m → C
p
n×m,

which are bijective and therefore

Rp
n×m
∼=Mp

n×m
∼= Cpn×m.

We will denote the lexicographic orders inRp
n×m and in Cpn×m with “<”.

Example 2.1. Let

A =

 1 0 3 2

0 2 1 0

0 1 1 3

 ∈M4
3×4.
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Then
x1 = 1 · 43 + 0 · 42 + 3 · 41 + 2 · 40 = 1 · 64 + 0 · 16 + 3 · 4 + 2 · 1 = 78,

x2 = 0 · 43 + 2 · 42 + 1 · 41 + 0 · 40 = 0 · 64 + 2 · 16 + 1 · 4 + 0 · 1 = 36,

x3 = 0 · 43 + 1 · 42 + 1 · 41 + 3 · 40 = 0 · 64 + 1 · 16 + 1 · 4 + 3 · 1 = 23,

y1 = 1 · 42 + 0 · 41 + 0 · 40 = 1 · 16 + 0 · 4 + 0 · 1 = 16,

y2 = 0 · 42 + 2 · 41 + 1 · 40 = 0 · 16 + 2 · 4 + 1 · 1 = 9,

y3 = 3 · 42 + 1 · 41 + 1 · 40 = 3 · 16 + 1 · 4 + 1 · 1 = 53,

y4 = 2 · 42 + 0 · 41 + 3 · 40 = 2 · 16 + 0 · 4 + 3 · 1 = 35,

r(A) = 〈78, 36, 23〉,

c(A) = 〈16, 9, 53, 35〉.

Theorem 2.1. Let A be an arbitrary matrix fromMp
n×m. Then:

a) If X1, X2, · · · , Xs ∈ Tn are such that

r(X1X2 . . . XsA) < r(X2X3 . . . XsA) < · · · < r(Xs−1XsA) < r(XsA) < r(A),

then
c(X1X2 . . . XsA) < c(A).

b) If Y1, Y2, · · · , Yt ∈ Tm are such that

c(AY1Y2 . . . Yt) < c(AY1Y2 . . . Yt−1) < · · · < c(AY1Y2) < c(AY1) < c(A),

then
r(AY1Y2 . . . Yt) < r(A).

Proof. a) Induction by s.
Let s = 1 and let X ∈ Tn be a transposition which multiplying an arbitrary matrix

A = (aij) ∈ Mp
n×m from the left swaps the places of the rows of A with numbers u and v

(1 ≤ u < v ≤ n), while the remaining rows stay in their places. In other words, if

A =



a11 a12 · · · a1r · · · a1m
a21 a22 · · · a2r · · · a2m

...
...

...
...

au1 au2 · · · aur · · · aum
...

...
...

...
av1 av2 · · · avr · · · avm

...
...

...
...

an1 an2 · · · anr · · · anm


,
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then

XA =



a11 a12 · · · a1r · · · a1m
a21 a22 · · · a2r · · · a2m

...
...

...
...

av1 av2 · · · avr · · · avm
...

...
...

...
au1 au2 · · · aur · · · aum

...
...

...
...

an1 an2 · · · anr · · · anm


,

where aij ∈ [p] = {0, 1, . . . , p− 1}, 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Let

r(A) = 〈x1, x2, . . . xu−1, xu, . . . xv−1, xv, . . . , xn〉.

Then,
r(XA) = 〈x1, x2, . . . xu−1, xv, . . . xv−1, xu, . . . , xn〉.

Since r(XA) < r(A), then according to the properties of the lexicographic order xv < xu.
Let the representation of xu and xv in notation in the number system with the base p (with an
eventual addition of unessential zeros in the beginning if necessary) be respectively as follows:

xu = au1au2 · · · aur · · · aum,

xv = av1av2 · · · avr · · · avm.

Since xv < xu, then there exists an integer r ∈ {1, 2, . . . ,m}, such that auj = avj when
j < r, and avr < aur. Hence, if c(A) = 〈y1, y2, . . . , ym〉, c(XA) = 〈z1, z2, . . . , zm〉, then yj = zj
when j < r, while the representation of yr and zr in notation in the number system with the base
p (with an eventual addition of unessential zeros in the beginning if necessary) is respectively as
follows:

yr = a1ra2r · · · au−1raur · · · avr · · · anr,

zr = a1ra2r · · · au−1ravr · · · aur · · · anr.

Since avr < aur, then zr < yr, whence it follows that c(XA) < c(A).
We assume that for every s-tuple of transpositions X1, X2, . . . , Xs ∈ Tn and for every matrix

A ∈Mp
n×m from

r(X1X2 . . . XsA) < r(X2 · · ·XsA) < · · · < r(XsA) < r(A)

it follows that
c(X1X2 . . . XsA) < c(A)

and let Xs+1 ∈ Tn be such that

r(X1X2 . . . XsXs+1A) < r(X2 · · ·Xs+1A) < · · · < r(Xs+1A) < r(A).

According to the above proved c(Xs+1A) < c(A).
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We put

A1 = Xs+1A.

According to the induction assumption from

r(X1X2 . . . XsA1) < r(X2 · · ·XsA1) < · · · < r(XsA1) < r(A1),

it follows that

c(X1X2 · · ·XsXs+1A) = c(X1X2 · · ·XsA1) < c(A1) = c(Xs+1A) < c(A),

with which we have proven a).
b) is proven similarly to a).

In effect is also the dual to Theorem 2.1 statement, in which instead of the sign “<” every-
where we put the sign “>”.

Theorem 2.2. (Dual theorem) Let A be an arbitrary matrix fromMp
n×m. Then:

a) If X1, X2, . . . , Xs ∈ Tn are such that

r(X1X2 . . . XsA) > r(X2X3 . . . XsA) > . . . > r(Xs−1XsA) > r(XsA) > r(A),

then
c(X1X2 . . . XsA) > c(A).

b) If Y1, Y2, · · · , Yt ∈ Tm are such that

c(AY1Y2 . . . Yt) > c(AY1Y2 . . . Yt−1) > . . . > c(AY1Y2) > c(AY1) > c(A),

then
r(AY1Y2 . . . Yt) > r(A).

3 Semi-canonical and canonicalMp
n×m-matrices

Definition 3.1. Let A ∈ Mp
n×m, r(A) = 〈x1, x2, . . . , xn〉 and c(A) = 〈y1, y2, . . . , ym〉. We will

call the matrix A semi-canonical, if

x1 ≤ x2 ≤ · · · ≤ xn

and
y1 ≤ y2 ≤ · · · ≤ ym.

Lemma 3.1. Let A = (ast)n×m ∈ M
p
n×m be a semi-canonical matrix. Then, there exist integers

s, t, such that 1 ≤ s ≤ n, 1 ≤ t ≤ m and

a11 = a12 = · · · = a1s = 0, 1 ≤ a1,s+1 ≤ a1,s+2 ≤ · · · ≤ a1m ≤ p− 1, (6)

a11 = a21 = · · · = at1 = 0, 1 ≤ at+1,1 ≤ at+2,1 ≤ · · · ≤ an1 ≤ p− 1. (7)
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Proof. Let r(A) = 〈x1, x2, . . . xn〉 and c(A) = 〈y1, y2, . . . ym〉. We assume that there exist
integers p and q, such that 1 ≤ p < q ≤ m, a1p ≥ a1q. In this case yp > yq, which contra-
dicts the condition for semi-canonicity of the matrix A. We have proven (6). Similarly, we prove
(7) as well.

Definition 3.2. We will call the matrix A ∈ Mp
n×m canonical matrix, if r(A) is the minimal

element with respect to the lexicographic order in the set {r(B) | B ∼ A}.

Problem 3.1. For given m, n and p, find all canonicalMp
n×m-matrices satisfying certain condi-

tions.

Particular cases of Problem 3.1 are as follows:

Problem 3.2. For given n and k, find all n× n canonical weighing matrix with weight k.

Problem 3.3. For given n, find all n× n canonical Hadamard matrices.

If the matrix A ∈Mp
n×m is canonical and r(A) = 〈x1, x2, . . . , xn〉, then obviously

x1 ≤ x2 ≤ . . . ≤ xn. (8)

From Definition 3.2 it immediately follows that there exists only one canonical binary matrix
in every class on the equivalence relation “∼” (see Definition 1.1).

Lemma 3.2. If the matrix A ∈Mp
n×m is a canonical matrix, then A is a semi-canonical matrix.

Proof. Let A ∈ Mp
n×m be a canonical matrix and r(A) = 〈x1, x2, . . . , xn〉. Then, from (8) it

follows that x1 ≤ x2 ≤ · · · ≤ xn. Let c(A) = 〈y1, y2, . . . , ym〉. We assume that there are s and t
such that s ≤ t and ys > yt. Then, we swap the columns of numbers s and t. Thus, we obtain the
matrix A′ ∈ Mp

n×m, A′ 6= A. Obviously c(A′) < c(A). From Theorem 2.1 and Theorem 2.2 it
follows that r(A′) < r(A), which contradicts the minimality of r(A).

In the next example, we will see that the opposite statement of Lemma 3.2 is not always true.

Example 3.1. We consider the matrices:

A =


0 0 1 2

0 0 2 2

0 2 0 0

1 0 0 0

 ∈M3
4×4

and

B =


0 0 0 2

0 1 2 0

0 2 2 0

1 0 0 0

 ∈M3
4×4.
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After immediate verification, we find that A ∼ B. Furthermore, r(A) = 〈5, 8, 18, 27〉,
c(A) = 〈1, 6, 45, 72〉, r(B) = 〈2, 15, 24, 27〉, c(B) = 〈1, 15, 24, 54〉. So A and B are two equiva-
lent semi-canonical matrices, but they are not canonical. The canonical matrix in this equivalence
class is the matrix

C =


0 0 0 1

0 0 2 0

1 2 0 0

2 2 0 0

 ∈M3
4×4,

where r(C) = 〈1, 6, 45, 72〉 and c(C) = 〈5, 8, 18, 27〉.

From Example 3.1 it immediately follows that there may be more than one semi-canonical
element in a given equivalence class.

4 Necessary and sufficient conditions
for aMp

n×m-matrix to be canonical

Let A = (aij) ∈Mp
n×m, r(A) = 〈x1, x2, . . . , xn〉. We introduce the following notations:

• νi(A) = ν(xi) = the number of nonzero entries in the i-th row of A, i = 1, 2, . . . n.

• Zi(A) = Z(xi) = {xk ∈ r(A)| xk = xi} – the set of all rows xk ∈ r(A), such that xk = xi.
By definition xi ∈ Z(xi), i = 1, 2, . . . n.

• ζi(A) = ζ(xi) = |Zi(A)|, i = 1, 2, . . . n.

Lemma 4.1. Let A = (aij) ∈ Mp
n×m, r(A) = 〈x1, x2, . . . , xn〉 and let x1 ≤ x2 ≤ · · · ≤ xn.

Then, for each i = 2, 3, . . . , n, for which xi−1 < xi, or i = 1 the condition

Z(xi) = {xi, xi+1, . . . , xi+ζ(xi)−1}

is fulfilled.

Proof. Trivial.

The formulation of the following theorem will help us to construct a recursive algorithm for
obtaining all canonicalMp

n×m-matrices.

Theorem 4.2. Let A = (aij) ∈ Mp
n×m, r(A) = 〈x1, x2, . . . , xn〉, c(A) = 〈y1, y2, . . . , ym〉,

s = ν1(A), t = ζ1(A). Then, A is canonical if and only if the following conditions are satisfied:

1. x1 ≤ x2 ≤ · · · ≤ xn ≤ pm − 1;

2.
ps − 1

p− 1
≤ x1 ≤ ps − 1;

3. If s > 1, then ym−s+1 ≤ ym−s+2 ≤ ym;
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4. For each i = 2, 3, . . . , n, ν1(A) ≤ νi(A);

5. Let t < n. Let an integer i exist such that t < i ≤ n and νi(A) = ν1(A) = s. Then, we
successively get the matrices A′, A′′ and A′′′ in the following way:

(a) We get the matrix A′ by moving the rows from the set Zi(A) so they become first;

(b) If s = m, then A′′ = A′. Let s < m, A′ = (a′ij) and let Υ = {j | a′1 j 6= 0} =

{u1, u2, . . . us}. Then, we get the matrix A′′ by moving successively the uk-th column
(k = 1, 2, . . . , s) from A′ so it becomes last in A′′;

(c) We get the matrix A′′′ by sorting the last s columns of A′′ in ascending order.

Then, r(A) ≤ r(A′′′).

6. Let 1 ≤ t < n and 0 ≤ s < m. Let the matrix B ∈ Mp
(n−t)×(m−s) be obtained from A by

removing the first t rows and the last s columns. Then, B is canonical.

Proof. Necessity. LetA = (aij) ∈Mp
n×m be a canonical matrix and let r(A) = 〈x1, x2, . . . , xn〉,

c(A) = 〈y1, y2, . . . , ym〉.
Condition 1 follows from the fact that every canonical matrix is semi-canonical (Lemma 3.2),

so x1 ≤ x2 ≤ · · · ≤ xn and from inequality (2).
From equation (1) and Lemma 3.1 it follows that

x1 =
m∑
j=1

a1jp
m−j =

m∑
j=m−s+1

a1jp
m−j ≥

m∑
j=m−s+1

1 · pm−j =
ps − 1

p− 1

and

x1 =
m∑

j=m−s+1

a1jp
m−j ≤

m∑
j=m−s+1

(p− 1)pm−j = (p− 1)
ps − 1

p− 1
= ps − 1.

Therefore, Condition 2 is true.
Condition 3 follows from the fact that every canonical matrix is semi-canonical (Lemma 3.2).
We assume that an integer i, 2 ≤ i ≤ n exists, such that νi(A) < ν1(A) = s and let

νi(A) = u < s. Then, a matrix A′ = (a′i j) ∼ A exists such that a′i 1 = a′i 2 = · · · = a′im−u = 0

and 1 ≤ a′im−u+1 ≤ a′im−u+2 ≤ · · · ≤ a′im ≤ p − 1. We move the i-th row of A′ at first place
and we obtain a matrix A′′. Obviously A′′ ∼ A. Let r(A′′) = 〈x′′1, x′′2, . . . , x′′n〉. From the above

proven Condition 2, it follows that x1 ≥
ps − 1

p− 1
= ps−1 + ps−2 + ·+ pu + pu−1 + · · ·+ p+ 1 >

pu > pu − 1 ≥ x′′1. Therefore, x1 > x′′1, i.e., r(A) > r(A′′), which is impossible, due to the fact
that A is canonical. Thus, Condition 4 is true.

Condition 5 comes directly from the fact that A is canonical and r(A) ≤ r(U) for each matrix
U ∼ A.

Let t = ζ1(A) < n and let s = ν1(A) < m. From the already proved Conditions 1, 2, 4 and 5
and Lemma 4.1, it follows that A is presented in the form:

A =

(
O N

B C

)
, (9)
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where O is a t × (m − s) matrix, all elements of which are equal to 0, N is a t × s matrix, all
elements of which are equal to each other and which are not equal to 0 and all rows of the matrix
(O N)t×m coincide with the elements of the set Z1(A), B ∈Mp

(n−t)×(m−s), C ∈M
p
(n−t)×s.

Let B′ ∼ B and let B′ be a canonical Mp
(n−t)×(m−s)-matrix. Then, the following matrices

A′ ∈ Mp
n×m and C ′ ∈ Mp

(n−t)×s exist, such that A′ ∼ A, C ′ ∼ C, A′ =

(
O N

B′ C ′

)
, and

C ′ is obtained from C after an eventual permutation of the rows. Let r(A′) = 〈x′1, x′2, . . . , x′n〉.
Obviously x′i = xi for all i = 1, 2, . . . t. Let us assume that B′ 6= B, i.e., r(B′) < r(B). Let
r(B) = 〈bt+1, bt+2, . . . , bn〉, r(B′) = 〈b′t+1, b

′
t+2, . . . , b

′
n〉, r(C) = 〈ct+1, ct+2, . . . , cn〉, r(C ′) =

〈c′t+1, c
′
t+2, . . . , c

′
n〉. From assumption it follows that there exist i ∈ [t+1, n] such that b′t+1 = bt+1,

b′t+2 = bt+2, . . . , b
′
i−1 = bi−1 and b′i < bi, i.e., b′i + 1 ≤ bi. Then, x′1 = x1, x

′
2 = x2, . . . , x

′
i−1 =

xi−1. Since 0 ≤ ck < ps and 0 ≤ c′i < ps, for each i ∈ [t + 1, n], then x′i = b′ip
s + c′i ≤

(b′i + 1)ps + c′i = bip
s + ps + c′i + ci − ci ≤ bip

s + ps + ps + ci − 0 < bip
s + ci. Consequently

r(A′) < r(A). But A is canonical, i.e., r(A) ≤ r(A′), which is a contradiction. Therefore,
B′ = B and B is canonical. Thus, we have proved Condition 6.
Sufficiency. Let A ∈ Mp

n×m satisfy Conditions 1 ÷ 6 and hence the conditions of Lemma 4.1
are fulfilled. Let r(A) = 〈x1, x2, . . . , xn〉 and c(A) = 〈y1, y2, . . . , ym〉.

If t = n, then x1 = x2 = · · · = xn and according to Condition 3 it is easy to see that A is a
canonicalMp

n×m-matrix.
If t < n and s = m, then according to Condition 1, Lemma 4.1 and Conditions 4 and 5 it is

easy to see that A is a canonicalMp
n×m-matrix.

Let 1 ≤ t < n and 0 ≤ s < m. Let U ∼ A and let U be a canonicalMp
n×m-matrix. Since the

Conditions 1 ÷ 6 are necessary for the canonicity of a matrix, consequently U also satisfies these
conditions. According to Condition 4,

ν1(U) = ν1(A) = s. (10)

Thus, the matrix U is represented in the form (9) and let

A =

(
O N

B C

)
and U =

(
O′ N ′

B′ C ′

)
, (11)

Let us assume that U is obtained from A only by permutation of the columns. In this case
obviously ζ1(U) = ζ1(A) = t, ν1(U) = ν1(A) = s, O′ = O, N ′ ∼ N , B′ ∼ B and C ′ ∼ C.

Permutation of columns which are different each other and which belong only to the set
Y1 = {y1, y2, . . . , ym−s} without permutation of different each other rows is impossible in accor-
dance with Condition 6.

Permutation of columns, which are different from each other and which belong only to the set
Y2 = {ym−s+1, ym−s+2, . . . , ym} without permutation of mutually different rows, is impossible in
accordance with Condition 3.

Therefore, there are k, l such that 1 ≤ k ≤ m− s < l ≤ m and the k-th column has become
the l-th, or the l-th column has become the k-th. Then, according to Condition 3 and equation (9)
easily see that it is impossible if we did not change the places of some rows.
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Therefore, U is obtained from A by swapping some of the rows. Without loss of generality,
we can assume that U is obtained from A in the beginning by swapping some rows, then (if it is
necessary) swapping some columns.

Permutation of rows that belong only to the set X1 = {x1, x2, . . . , xt} = Z1(A) does not
change the matrix A because x1 = x2 = . . . = xt.

Permutation of rows that belong only to the set X2 = {xt+1, xt+2, . . . , xn} is impossible in
accordance with Condition 6.

Therefore, taking into account the Conditions 1 and 4 and Lemma 4.1, we conclude that
we have changed the first t = ζ1(A) rows with another equal to each rows of the set Zj(A),
t + 1 ≤ j ≤ n. After that, in order to obtain a matrix of kind (9), if it is necessary, we have
to change the places of some columns of the matrix A. According to Conditions 3 and 5 it
follows that r(A) ≤ r(U). But U is canonical, i.e., r(U) ≤ l(A). Therefore, U = A, i.e., A is
canonical.
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