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Abstract: In this paper, we solve Diophantine equation in the tittle in positive integers m,n,
and a. It is shown that solutions of the equation Ln − Lm = 3 · 2a are given by L11 − L4 =

199− 7 = 3 · 26, L4 − L3 = 7− 4 = 3 · 20, L4 − L1 = 7− 1 = 3 · 2, L3 − L1 = 4− 1 = 3 · 20.

In order to prove our result, we use lower bounds for linear forms in logarithms and a version of
the Baker–Davenport reduction method in Diophantine approximation.
Keywords: Fibonacci numbers, Lucas numbers, Exponential equations, Linear forms in loga-
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1 Introduction

The Fibonacci sequence (Fn) is defined as F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.

The Lucas sequence (Ln), which is similar to the Fibonacci sequence, is defined by the same
recursive pattern with initial conditions L0 = 2, L1 = 1. These two sequences are the most
important among the second order linear recursive sequences and have been investigated by many
researchers. For a brief history of Fibonacci and Lucas sequences, one can consult reference
[6]. Firstly, square terms and, later, perfect powers in the Fibonacci and Lucas sequences have
attracted the attention of researchers. The problem of finding all perfect powers in these sequences
remained an open problem and was finally resolved in 2006 by Bugeaud, Mignotte and Siksek
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in [5]. It is shown that the perfect powers in the Fibonacci and Lucas sequences are F0 = 0,

F1 = F2 = 1, F6 = 8 = 23, F12 = 144 = 122, and L1 = 1, L3 = 4 = 22, respectively. In the
last decade, some exponential Diophantine equations containing the terms of second order linear
recursive sequences have been studied by the mathematicians. As an example, the Diophantine
equation Ln + Lm = 2a has been tackled in [3] by Bravo and Luca. Two years later, the same
authors solved Diophantine equation Fn + Fm = 2a in [4]. Meanwhile, the equation Fn + Fm +

Fl = 2a has been solved by Erich F. Bravo and John J. Bravo [2]. Lastly, in [10], the authors dealt
with the Diophantine equation un + um = wpz11 p

z2
2 · · · pzss and they solved this equation in the

case that w = 1, p1, ...p46 are all prime numbers, which is less than 200 and un is the Fibonacci
sequence or Lucas sequence. In [11] , we solved Fn − Fm = 2a. In this paper, we consider the
equation

Ln − Lm = 3 · 2a (1)

and find all solutions n,m, and a in positive integers. This study can be viewed as a continuation
of the previous works on this subject. We follow the approach and the method presented in [3].
In section 2, we introduce necessary lemmas and theorems. Then in section 3, we prove our main
theorem.

2 Auxiliary results

Lately, in many articles, to solve Diophantine equations such as the equation (1), authors have
used Baker’s theory lower bounds for a nonzero linear form in logarithms of algebraic numbers.
Since such bounds are of crucial importance in effectively solving of Diophantine equations, we
start with recalling some basic notions from algebraic number theory.

Let η be an algebraic number of degree d with minimal polynomial

a0x
d + a1x

d−1 + ...+ ad = a0

d∏
i=1

(
X − η(i)

)
∈ Z[x],

where the ai’s are relatively prime integers with a0 > 0 and η(i)’s are conjugates of η. Then

h(η) =
1

d

(
log a0 +

d∑
i=1

log
(
max

{
|η(i)|, 1

}))
(2)

is called logarithmic height of η. In particular, if η = a/b is a rational number with gcd(a, b) = 1

and b > 1, then h(η) = log (max {|a|, b}) .
The following properties of logarithmic height are found in many works stated in references:

h(η ± γ) ≤ h(η) + h(γ) + log 2, (3)

h(ηγ±1) ≤ h(η) + h(γ), (4)

h(ηs) = |s|h(η). (5)

The following theorem is deduced from Corollary 2.3 of Matveev [9], provides a large upper
bound for the subscript n in the equation (1) (also see Theorem 9.4 in [5]).
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Theorem 2.1. Assume that γ1, γ2, ..., γt are positive real algebraic numbers in a real algebraic
number field K of degree D, b1, b2, ..., bt are rational integers, and

Λ := γb11 ...γ
bt
t − 1

is not zero. Then

|Λ| > exp
(
−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1A2...At

)
,

where
B ≥ max {|b1|, ..., |bt|} ,

and Ai ≥ max {Dh(γi), | log γi|, 0.16} for all i = 1, ..., t.

The following lemma, proved by Dujella and Pethő [7], is a variation of a lemma of Baker
and Davenport [1]. And this lemma will be used to reduce the upper bound for the subscript n
in the equation (1). In the following lemma, the function || · || denotes the distance from x to the
nearest integer, that is, ||x|| = min {|x− n| : n ∈ Z} for a real number x.

Lemma 2.2. Let M be a positive integer, let p/q be a convergent of the continued fraction of the
irrational number γ such that q > 6M, and let A,B, µ be some real numbers with A > 0 and
B > 1. Let ε := ||µq|| −M ||γq||. If ε > 0, then there exists no solution to the inequality

0 < |uγ − v + µ| < AB−w,

in positive integers u, v, and w with

u ≤M and w ≥ log(Aq/ε)

logB
.

It is well known that
Ln = αn + βn, (6)

where α =
1 +
√

5

2
and β =

1−
√

5

2
, which are the roots of the characteristic equation

x2 − x− 1 = 0. The relation between Lucas number and α are given by

αn−1 ≤ Ln ≤ 2αn. (7)

for n ≥ 0. The inequality (7) can be proved by induction. It can be seen that 1 < α < 2 and
−1 < β < 0.

The following theorems are given in [5] and [8], respectively.

Theorem 2.3. If Ln = 3x2, then n = 2.

Theorem 2.4. The equation Ln = 6x2 has no solutions for n ≥ 1.
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3 Main theorem

Theorem 3.1. The only solutions of the Diophantine equation (1) in positive integers m,n, and
a with m < n, are given by

(n,m, a) ∈ {(11, 4, 6) , (4, 3, 0), ((4, 1, 1), (3, 1, 0)} ,

namely
L11 − L4 = 199− 7 = 3 · 26, L4 − L3 = 7− 4 = 3 · 20

and
L4 − L1 = 7− 1 = 3 · 2, L3 − L1 = 4− 1 = 3 · 20.

Proof. Assume that the equation (1) holds. With the help of Mathematica program, we obtain the
solutions in Theorem 3.1 for 1 ≤ m < n ≤ 200. This takes a little time. From now on, assume
that n > 200 and n−m ≥ 3. Now, let us show that a ≤ n. Using (7), we get the inequality

2a < 3 · 2a = Ln − Lm < Ln < 2αn < 2n+1,

that is, a ≤ n.

On the other hand, rearranging the equation (1) as αn− 3 · 2a = Lm− βn and taking absolute
values, we obtain

|αn − 3 · 2a| = |Lm − βn| ≤ Lm +
|β|n√

5
< 2αm +

1

2

by (7). If we divide both sides of the above inequality by αn, we get∣∣1− 3 · 2aα−n
∣∣ < 3

αn−m , (8)

where we have used the facts that α−m < 1 and n > m. Now, let us apply Theorem 2.1 with
γ1 := 3, γ2 := α, γ3 := 2 and b1 := 1, b2 := −n, b3 := a. Note that the numbers γi for
i = 1, 2, 3 are positive real numbers and elements of the field K = Q(

√
5), so D = 2. It can be

shown that the number Λ1 := 3 · 2aα−n − 1 is nonzero. For, if Λ1 = 0, then we get

3 · 2a = αn = Ln − βn > Ln − 1 > Ln − Lm = 3 · 2a,

which is impossible. Moreover, since h(γ1) = log 3, h(γ2) =
logα

2
=

0.4812...

2
and h( γ3) =

log 2 by (2), we can take A1 := 2.2, A2 := 0.5 and A3 := 1.4. Also, since a ≤ n, we can take
B := max {|a|, | − n|, 1} = n. Thus, taking into account the inequality (8) and using Theorem
2.1, we obtain

3

αn−m > |Λ1| > exp
(
−1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n) (2.2) (0.5) (1.4)

)
and so

(n−m) logα− log 3 < 1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n) (2.2) (0.5) (1.4) (9)
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Now, we try to apply Theorem 2.1 for the second time. Rearranging the equation (1) as
αn − αm − 2a = −βn + βm and taking absolute values in here, we obtain∣∣αn(1− αm−n)− 3 · 2a

∣∣ = |−βn + βm| ≤ |β|n + |β|m < 1,

where we used the fact that |β|n + |β|m < 1 for n > 200. Dividing both sides of the above
inequality by αn(1− αn−m), we get∣∣1− 3 · 2aα−n(1− αm−n)−1

∣∣ < 1

αn(1− αm−n)
. (10)

Since
αm−n =

1

αn−m <
1

α
<

2

3
,

it is seen that
1− αm−n > 1− 2

3
=

1

3
,

and therefore
1

1− αm−n < 3.

Then from (10), it follows that∣∣1− 3 · 2aα−n(1− αm−n)−1
∣∣ < 3

αn
. (11)

Thus, taking γ1 := α, γ2 := 2, γ3 := 3(1 − αm−n)−1 and b1 := −n, b2 := a, b3 := 1, we
can apply Theorem 2.1. As one can see that, the numbers γ1, γ2, and γ3 are positive real numbers
and elements of the field K = Q(

√
5), so D = 2. Since

αn − αm = Ln − βn − Fm + βm 6= 3 · 2a

for n > m, the number Λ2 := 3 · 2aα−n(1 − αm−n)−1 − 1 is nonzero. Similarly, since h(γ1) =
logα

2
=

0.4812...

2
and h( γ2) = log 2 by (2), we can take A1 := 0.5 and A2 = 1.4. Besides,

using (3), (4), and (5), we get that h(γ3) ≤ log 6 + (n − m)
logα

2
, and so we can take A3 :=

log 36 + (n −m) logα. Also, since a ≤ n, it follows that B := max {|a|, | − n|, 1} = n. Thus,
taking into account the inequality (11) and using Theorem 2.1, we obtain

3

αn
> |Λ2| > exp(−C)(1 + log 2)(1 + log n) (0.5) (1.4) (log 36 + (n−m) logα)

or
n logα− log 3 < C(1 + log 2)(1 + log n) (0.5) (1.4) (log 36 + (n−m) logα) , (12)

where C = 1.4 · 306 · 34.5 · 22. Inserting the inequality (9) into the last inequality, a computer
search with Mathematica gives us that n < 9.1 · 1027.

Now, let us try to reduce the upper bound on n applying Lemma 2.2. Let

z1 := a log 2− n logα + log 3.

116



Then
|1− ez1 | < 3

αn−m

by (8). The inequality

αn = Ln − βn > Ln − 1 > Ln − Lm = 3 · 2a

implies that z1 < 0. In that case, since
3

αn−m < 0.75 for n − m ≥ 3, it follows that e|z1| < 4.

Hence
0 < |z1| < e|z1| − 1 = e|z1| |1− ez1 | < 12

αn−m ,

or
0 < |a log 2− n logα + log 3| < 12

αn−m .

Dividing this inequality by logα, we get

0 < |a log 2

logα
− n+

log 3

logα
| < 25

αn−m . (13)

Putting γ :=
log 2

logα
and taking M := 8 · 10145, we found that q292, the denominator of the 292-nd

convergent of γ exceeds 6M. Also let us take

µ :=
log 3

logα
.

In this case, a quick computation with Mathematica gives us the inequality

ε = ||µq64|| −M ||γq64|| ≥ 0.348264.

Let A := 25, B := α, and w := n − m in Lemma 2.2. Thus, with the help of Mathematica,
we can say that the inequality (13) has no solution for n − m ≥ 147.259. So n − m ≤ 147.

Substituting this upper bound for n−m into (12), we obtain n < 3.87 · 1015.

Now, let
z2 := a log 2− n logα + log

(
3(1− αm−n)−1

)
.

In this case,

|1− ez2| < 3

αn

by (10). It is seen that
3

αn
<

1

2
for n > 200. If z2 > 0, then 0 < z2 < ez2 − 1 <

3

αn
. If z2 < 0,

then |1− ez2| = 1− ez2 < 3

αn
<

1

2
. From this, we get e|z2| < 2 and therefore

0 < |z2| < e|z2| − 1 = e|z2| |1− ez2| < 6

αn
.

In any case, the inequality

0 < |z2| <
6

αn

is true. That is,

0 <
∣∣a log 2− n logα + log

(
3(1− αm−n)−1

)∣∣ < 6

αn
.
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Dividing both sides of the above inequality by logα, we get

0 <

∣∣∣∣a( log 2

logα

)
− n+

log (3(1− αm−n)−1)

logα

∣∣∣∣ < 13 · α−n. (14)

Putting γ :=
log 2

logα
and taking M := 3.87 · 1015, we found that q44, the denominator of the 44-th

convergent of γ exceeds 6M. Also, taking

µ :=
log (3(1− αm−n)−1)

logα

with n−m ∈ [3, 719] , a quick computation using Mathematica gives us the inequality

ε = ||µq44|| −M ||γq44|| ≥ 0.499076.

Let A := 13, B := α, and w := n in Lemma 2.2. Thus, with the help of Mathematica, we
can say that the inequality (14) has no solution for n ≥ 101.212. In that case n ≤ 101. This
contradicts our assumption that n > 200. Thus, we have to consider the cases n−m = 1 and 2 to
complete the proof. By Theorems 2.3 and 2.4, if n−m = 1, then we have the equation 3 · 2a =

Lm+1 − Lm = Lm−1, which implies that (n,m, a) = (4, 3, 0) ; and if n −m = 2, then we have
the equation 3 · 2a = Lm+2 − Lm = Lm+1, which implies that (n,m, a) = (3, 1, 0) .

This completes the proof. �
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