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Fügen Torunbalcı Aydın
Yildiz Technical University

Faculty of Chemical and Metallurgical Engineering
Department of Mathematical Engineering

Davutpasa Campus, 34220, Esenler, Istanbul, Turkey
e-mails: faydin@yildiz.edu.tr, ftorunay@gmail.com

Received: 8 March 2018 Revised: 15 November 2018 Accepted: 19 November 2018

Abstract: In this paper, we defined the generalized dual Fibonacci quaternions with dual co-
efficient. Also, we investigated the relations between the generalized dual Fibonacci quaternions
with dual coefficient. Furthermore, we gave the Binet’s formulas and Cassini identities for these
quaternions.
Keywords: Fibonacci number, Generalized Fibonacci number, Fibonacci quaternion, Dual quater-
nion, Dual Fibonacci quaternion, Generalized dual Fibonacci quaternion.
2010 Mathematics Subject Classification: 11B37, 11B39, 11R52, 20G20.

1 Introduction

The quaternions are a number system that extends the complex numbers. They were first de-
scribed by the Irish mathematician William Rowan Hamilton in 1843. Hamilton [7] introduced
the set of quaternions which can be represented as

H = { q = q0 + i q1 + j q2 + k q3 | q0, q1, q2, q3 ∈ R } (1)

where

i2 = j2 = k2 = −1 , i j = −j i = k , j k = −k j = i , k i = −i k = j .
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Several authors worked on different quaternions and their generalizations (see [1, 3–6, 9, 10,
12, 13, 16]). In 1963, Horadam [10, 11] firstly introduced the n-th Fibonacci quaternion and
generalized Fibonacci quaternions, which can be represented as

HF = {Qn = Fn + i Fn+1 + j Fn+2 + k Fn+3 |Fn, n-th Fibonacci number, } (2)

where

i2 = j2 = k2 = i j k = −1 , i j = −j i = k , j k = −k j = i , k i = −i k = j

and n ≥ 1.
In 1969, Iyer [12, 13] derived many relations for the Fibonacci quaternions. Also, in 1973,

Swamy [16] considered generalized Fibonacci quaternions as a new quaternion as follows:

Pn = Hn + iHn+1 + j Hn+2 + k Hn+3 (3)

where
Hn = Hn−1 + Hn−2,

H1 = p,H2 = p+ q,

or
Hn = (p− q)Fn + qFn+1, n ≥ 1.

.

Here, Hn is the n-th generalized Fibonacci number that defined in [10] (see [16] for general-
ized Fibonacci quaternions).

Clifford [3] published his work on dual numbers in 1873. The dual numbers extend to the real
numbers has the form

d = a+ ε a∗

where ε is the dual unit and ε2, ε 6= 0. In 2009, Ata and Yaylı [2] defined dual quaternions with
dual numbers ( a+ ε b , a, b ∈ R , ε2 = 0 , ε 6= 0 ) coefficient as follows:

H(D) = {Q = A+Bi + Cj +Dk | A, B, C, D ∈ D , i2 = j2 = k2 = −1 = i j k } (4)

In 2014, Nurkan and Güven [15] defined dual Fibonacci quaternions as follows:

H(D) = {Q̃n = F̃n + iF̃n+1 + jF̃n+2 + kF̃n+3 | F̃n = Fn + εFn+1, ε
2 = 0, ε 6= 0}, (5)

where

i2 = j2 = k2 = i j k = −1 , i j = −j i = k , j k = −k j = i , k i = −i k = j

n ≥ 1 and Q̃n = Qn + εQn+1. Essentially, these quaternions in equations (4) and (5) must
be called dual coefficient quaternion and dual coefficient Fibonacci quaternions, respectively.
Majernik [14] defined dual quaternions as follows:

HD =

{
Q = a+ b i + c j + d k | a , b , c , d ∈ R, i2 = j2 = k2 = i j k = 0,

i j = −j i = j k = −k j = k i = −i k = 0

}
. (6)
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For more details on dual quaternions, see [4].
It is clear that H(D) and HD are different sets.
In 2016, Yüce and Torunbalcı Aydın [17] defined dual Fibonacci quaternions as follows:

HD = {Qn = Fn + i Fn+1 + j Fn+2 + k Fn+3 |Fn, n-th Fibonacci number}, (7)

where
i2 = j2 = k2 = i j k = 0 , i j = −j i = j k = −k j = k i = −i k = 0.

The Lucas sequence (Ln) and DL
n which is the n-th term of the dual Lucas quaternion se-

quence (DL
n ) are defined by the following recurrence relations:{

Ln+2 = Ln+1 + Ln, ∀n ≥ 0

L0 = 2, L1 = 1
(8)

and
DL

n = Ln + i Ln + j Ln+2 + k Ln+3, (9)

i2 = j2 = k2 = i j k = 0.

In 2016, Yüce and Torunbalcı Aydın [18] defined the generalized dual Fibonacci quaternions
by using generalized Fibonacci numbers as follows

QD = {Dn = Hn + iHn+1 + j Hn+2 + k Hn+3 |Hn, n-th Generalized Fibonacci number},
(10)

where
i2 = j2 = k2 = i j k = 0 , i j = −j i = j k = −k j = k i = −i k = 0.

where Hn is the n-th generalized Fibonacci number that defined in [10]
H0 = q, H1 = p, H2 = p+ q, p, q ∈ Z
Hn = Hn−1 + Hn−2, n ≥ 2

or
Hn = (p− q)Fn + q Fn+1.

(11)

Also, in 2016, Yüce and Torunbalcı Aydın [19] defined the generalized dual Fibonacci se-
quences as follows:

D0 = q + εq, D1 = p+ ε(p+ q), D2 = (p+ q) + ε(2p+ q), p, q ∈ Z
Dn = Dn−1 + Dn−2, n ≥ 2

or
Dn = (p− q + εq)Fn + (q + εp)Fn+1.

(12)

In this paper, we will define the generalized dual Fibonacci quaternions with dual coefficient
as follows:

Q̃D = {D̃n = (Hn + εHn+1) + i (Hn+1 + εHn+2) + j (Hn+2 + εHn+2) + k (Hn+3 + εHn+3) |
Hn, n-th Generalized Fibonacci number}

(13)
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where
i2 = j2 = k2 =i j k = 0 , i j = −j i = j k = −k j = k i = −i k = 0

and n ≥ 1.
Also, we will give Binet’s Formula and Cassini identities for the generalized dual Fibonacci

quaternions with dual coefficient.

2 Generalized dual Fibonacci quaternions
with dual coefficient

The generalized dual Fibonacci sequence Dn is defined as [19]

Dn = {Hn + εHn+1 , ε
2 = 0, ε 6= 0}

or
Dn = (p− q + ε q)Fn + (q + ε p)Fn+1.

. (14)

where the elements of the generalized dual Fibonacci sequence are

(Dn) : p+ ε (p+ q) , (p+ q) + ε (2p+ q), . . . , (p− q + ε q)Fn + (q + ε p)Fn+1, . . . (15)

The generalized dual Fibonacci quaternion QD is defined as [18]

QD = {Dn = Hn + iHn+1 + j Hn+2 + k Hn+3 |
Hn, n-th Generalized Fibonacci number}

(16)

where
i2 = j2 = k2 = i j k = 0 , i j = −j i = j k = −k j = k i = −i k = 0.

We can define the generalized dual Fibonacci quaternions with dual coefficient by using gen-
eralized dual Fibonacci numbers as follows

D̃n = {(Hn + εHn+1) + i (Hn+1 + εHn+2) + j (Hn+2 + εHn+3) + k (Hn+3 + εHn+4) |
Hn, n-th Generalized Fibonacci number}

(17)

where
i2 = j2 = k2 =i j k = 0 , i j = −j i = j k = −k j = k i = −i k = 0

and ε2 = 0, ε 6= 0.
Let D̃n

1
and D̃n

2
be the n-th terms of the generalized dual Fibonacci quaternion with coeffi-

cient sequence (D̃n

1
) and (D̃n

2
) such that

D̃n

1
= (Hn + εHn+1) + i (Hn+1 + εHn+2) + j (Hn+2 + εHn+3) + k (Hn+3 + εHn+4) (18)

and

D̃n

2
= (Kn + εKn+1) + i (Kn+1 + εKn+2) + j (Kn+2 + εKn+3) + k (Kn+3 + εKn+4) (19)
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Then, the addition and subtraction of the generalized dual Fibonacci quaternions with coeffi-
cient are defined by

D̃n

1
± D̃n

2
= (Hn + εHn+1) + i (Hn+1 + εHn+2) + j (Hn+2 + εHn+3) + k (Hn+3 + εHn+4)

± (Kn + εKn+1) + i (Kn+1 + εKn+2) + j (Kn+2 + εKn+3) + k (Kn+3 + εKn+4)

=[(Hn ±Kn) + ε(Hn+1 ±Kn+1)] + i [(Hn+1 ±Kn+1) + ε(Hn+2 ±Kn+2)]

+ j [(Hn+2 ±Kn+2) + ε(Hn+3 ±Kn+3)] + k [(Hn+3 ±Kn+3) + ε(Hn+4 ±Kn+4)] .
(20)

The multiplication of the generalized dual Fibonacci quaternions with coefficient is defined
by

D̃n

1
D̃n

2
= [(Hn + εHn+1) + i (Hn+1 + εHn+2) + j (Hn+2 + εHn+2) + k (Hn+3 + εHn+3)]

[(Kn + εKn+1) + i (Kn+1 + εKn+2) + j (Kn+2 + εKn+2) + k (Kn+3 + εKn+3)]

= (HnKn) + i (HnKn+1 +Hn+1Kn) + j (HnKn+2 +Hn+2Kn)

+k (HnKn+3 +Hn+3Kn)

+ε{HnKn+1 +Hn+1Kn + i (HnKn+2 +Hn+1Kn+1 +Hn+1Kn+1 +Hn+2Kn)

+j (HnKn+3 +Hn+2Kn+1 +Hn+1Kn+2 +Hn+3Kn)

+k (HnKn+4 +Hn+3Kn+1 +Hn+1Kn+3 +Hn+4Kn)}
= [HnKn + ε(HnKn+1 +Hn+1Kn+1) ]

+{ [Hn (iKn+1 + j Kn+2 + kKn+3) ]

+ε[Hn (iKn+2 + j Kn+3 + kKn+4) +Hn+1 (iKn+1 + j Kn+2 + kKn+3)]}
+{ [Kn (iHn+1 + j Hn+2 + k Hn+3) ]

+ε[Kn+1 (iHn+1 + j Hn+2 + k Hn+3) +Kn (iHn+2 + j Hn+3 + k Hn+4)]}
(21)

The scalar and the vector part of D̃n which is the n-th term of the generalized dual Fibonacci
quaternion with (D̃n) are denoted by

SD̃n
= Hn + εHn+1 and VD̃n

= i (Hn+1 + εHn+2) + j (Hn+2 + εHn+3) + k (Hn+3 + εHn+4).

(22)
Thus, the generalized dual Fibonacci quaternion D̃n

1
is given by D̃n

1
= SD̃1

n
+ VD̃1

n
. Then,

relation (21) is defined by

D̃n

1
D̃n

2
= SD̃1

n
SD̃2

n
+ SD̃1

n
VD̃2

n
+ SD̃2

n
VD̃1

n
. (23)

The conjugate of generalized dual Fibonacci quaternion D̃n is denoted by D̃n and it is

D̃n = (Hn + εHn+1)− i (Hn+1 + εHn+2)− j (Hn+2 + εHn+3)− k (Hn+3 + εHn+4) (24)

The norm of D̃n is defined as

‖D̃n‖2 = D̃n D̃n = (Hn)
2 + 2εHnHn+1. (25)

Then, we give the following theorem using statements (14), (16) and the generalized Fi-
bonacci number in [10] as follows
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HnHm +Hn+1Hm+1 = p2Fn+m+1 + 2p q Fn+m + q2Fn+m−1

= (2p− q)Hn+m+1 − eFn+m+1

. (26)

where e = p2 − p q − q2.

Theorem 1. Let Hn and D̃n be the n-th terms of generalized Fibonacci sequence (Hn) and the
generalized dual Fibonacci quaternion sequence (D̃n), respectively. In this case, for n ≥ 1 we
can give the following relations:

D̃n + D̃n+1 = D̃n+2 (27)

(D̃n)
2 = 2 (Hn + εHn+1) D̃n − (Hn + εHn+1)

2 (28)

D̃n − i D̃n+1 − j D̃n+2 − k D̃n+3 = Hn + εHn+1 (29)

D̃n D̃m + D̃n+1 D̃m+1 =(2p− q)[(2Dn+m+1 −Hn+m+1) + 2ε(2Dn+m+2 −Hn+m+2)]

− e[(2Qn+m+1 − Fn+m+1) + 2ε(2Qn+m+2 − Fn+m+2)].
(30)

where Qn+m+1 is the dual Fibonacci quaternion [17].

Proof. By

D̃n = (Hn + εHn+1) + i (Hn+1 + εHn+2) + j (Hn+2 + εHn+3) + k (Hn+3 + εHn+4) (31)

and

D̃n+1 = (Hn+1 + εHn+2)+ i (Hn+2 + εHn+3)+ j (Hn+3 + εHn+4)+ k (Hn+4 + εHn+5) (32)

we see that,

D̃n + D̃n+1 =

=(Hn + εHn+1) + i (Hn+1 + εHn+2) + j (Hn+2 + εHn+3) + k (Hn+3 + εHn+4)

+ (Hn+1 + εHn+2) + i (Hn+2 + εHn+3) + j (Hn+3 + εHn+4) + k (Hn+4 + εHn+5)

=(Hn +Hn+1) + ε (Hn+1 +Hn+2) + i [Hn+1 +Hn+2 + ε (Hn+2 +Hn+3)]

+ j [Hn+2 +Hn+3 + ε (Hn+3 +Hn+4)] + k [Hn+3 +Hn+4 + ε (Hn+4 +Hn+5)]

=(Hn+2 + εHn+3) + i (Hn+3 + εHn+4) + j (Hn+4 + εHn+5) + k (Hn+5 + εHn+6)

=D̃n+2

So (27) holds. We observe

(D̃n)
2 = (Hn + εHn+1)

2

+2 (Hn + εHn+1)[i (Hn+1 + εHn+2) + j (Hn+2 + εHn+3) + k (Hn+3 + εHn+4)]

= 2 (Hn + εHn+1)[(Hn + εHn+1) + i(Hn+1 + εHn+2)

+ j(Hn+2 + εHn+3) + k(Hn+3 + εHn+4)− (Hn + εHn+1)
2]

= 2 (Hn + εHn+1) D̃n − (Hn + εHn+1)
2.
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So (28) holds. By using conditions and the equation (16), we see that

D̃n − i D̃n+1 − j D̃n+2 − k D̃n+3 = (Hn + εHn+1) + i [(Hn+1 + εHn+2)− (Hn+1 + εHn+2)]

+j [(Hn+2 + εHn+3)− (Hn+2 + εHn+3)]

+k [(Hn+3 + εHn+4)− (Hn+3 + εHn+4)]

= Hn + εHn+1.

So (29) holds. By (21) and (26), we see that

D̃n D̃m = [HnHm + ε(HnHm+1 +Hn+1Hm)]

+i [(HnHm+1 +Hn+1Hm) + ε(HnHm+2 +Hn+1Hm+1 +Hn+1Hm+1 +Hn+2Hm)]

+j [(HnHm+2 +Hn+2Hm) + ε(HnHm+3 +Hn+2Hm+1 +Hn+1Hm+2 +Hn+3Hm)]

+k [(HnHm+3 +Hn+3Hm) + ε(HnHm+4 +Hn+3Hm+1 +Hn+1Hm+3 +Hn+4Hm)].
(33)

and
D̃n+1 D̃m+1 = [Hn+1Hm+1 + ε(Hn+1Hm+2 +Hn+2Hm+1)]

+i [(Hn+1Hm+2 +Hn+2Hm+1)

+ε(Hn+1Hm+3 +Hn+2Hm+2 +Hn+2Hm+2 +Hn+3Hm+1)]

+j [(Hn+1Hm+3 +Hn+3Hm+1)

+ε(Hn+1Hm+4 +Hn+3Hm+2 +Hn+2Hm+3 +Hn+4Hm+1)]

+k [(Hn+1Hm+4 +Hn+4Hm+1)

+ε(Hn+1Hm+5 +Hn+4Hm+2 +Hn+2Hm+4 +Hn+5Hm+1)].

(34)

So (30) holds. Finally, adding equations (33) and (34) side by side, we obtain

D̃n D̃m + D̃n+1 D̃m+1 = (2p− q)[(2Dn+m+1 −Hn+m+1) + 2 ε (2Dn+m+2 −Hn+m+2)]

−e[(2Qn+m+1 − Fn+m+1) + 2 ε (2Qn+m+2 − Fn+m+2)]

where Qn+m+1 is the dual Fibonacci quaternion [17].

Theorem 2. Let D̃n and D̃L
n be the n-th terms of the generalized dual Fibonacci quaternion se-

quence (D̃n) and the dual Lucas quaternion sequence (DL
n ), respectively. The following relations

are satisfied

D̃n−1 + D̃n+1 = p (DL
n + εDL

n+1) + q (DL
n−1 + εDL

n ) = D̃n+2 − D̃n−2. (35)

Proof. From equations (31), (32) and identities

Hn = (p− q)Fn + q Fn+1

and
Hn+1 +Hn−1 = pLn + q Ln−1

between the generalized Fibonacci number and the Lucas number, we see that

D̃n−1 + D̃n+1

=[(Hn−1 +Hn+1) + ε (Hn +Hn+2)] + i [(Hn +Hn+2) + ε (Hn+1 +Hn+3)]
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+ j [(Hn+1 +Hn+3) + ε (Hn+2 +Hn+4)] + k [(Hn+2 +Hn+4) + ε (Hn+3 +Hn+5)]

=(pLn + q Ln−1) + i (pLn+1 + q Ln) + j (pLn+2 + q Ln+1) + k (pLn+3 + q Ln+2)

+ ε[(pLn+1 + q Ln) + i (pLn+2 + q Ln+1) + j (pLn+3 + q Ln+2)

+ k (pLn+4 + q Ln+3)]

=p {(Ln + i Ln+1 + j Ln+2 + k Ln+3) + ε(Ln+1 + i Ln+2 + j Ln+3 + k Ln+4)}
+ q {(Ln−1 + i Ln + j Ln+1 + k Ln+2) + ε(Ln + i Ln+1 + j Ln+2 + k Ln+3)}

=p (DL
n + εDL

n+1) + q (DL
n−1 + εDL

n )

and

D̃n+2 − D̃n−2

=[(Hn+2 −Hn−2) + ε (Hn+3 −Hn−1)] + i [(Hn+3 −Hn−1) + ε (Hn+4 −Hn)]

+ j [(Hn+4 −Hn) + ε (Hn+5 −Hn+1)] + k [(Hn+5 −Hn+1) + ε (Hn+6 −Hn+2)]

=(pLn + q Ln−1) + i (pLn+1 + q Ln) + j (pLn+2 + q Ln+1) + k (pLn+3 + q Ln+2)

+ ε[(pLn+1 + q Ln) + i (pLn+2 + q Ln+1) + j (pLn+3 + q Ln+2)

+ k (pLn+4 + q Ln+3)]

=p{(Ln + i Ln+1 + j Ln+2 + k Ln+3) + ε (Ln+1 + i Ln+2 + j Ln+3 + k Ln+4)

+ q{(Ln−1 + i Ln + j Ln+1 + k Ln+2) + ε (Ln + i Ln+1 + j Ln+2 + k Ln+3)}
=p (DL

n + ε(DL
n+1) + q (DL

n−1 + εDL
n )

=D̃n−1 + D̃n+1. �

Theorem 3. Let D̃n be the n-th term of the generalized dual Fibonacci quaternion sequence (D̃n).
Then, we can give the following relations between these quaternions:

D̃n + D̃n = 2 (Hn + εHn+1) (36)

D̃nD̃n + D̃n−1D̃n−1 = [(2p− q)H2n−1 − e F2n−1] + 2ε[(2p− q)H2n − e F2n] (37)

D̃nD̃n + D̃n+1D̃n+1 = [(2p− q)H2n+1 − e F2n+1] + 2ε[(2p− q)H2n+2 − e F2n+2] (38)

D̃n+1D̃n+1 + D̃n−1D̃n−1 = [(2p− q)H2n − e F2n] + 2ε[(2p− q)H2n+1 − e F2n+1] (39)

(D̃n)
2 + (D̃n−1)

2 = (2p− q)[(2D2n−1 −H2n−1) + 2ε(2D2n −H2n)]

−e[(2Q2n−1 − F2n−1) + 2ε(2Q2n − F2n)]
(40)

where Q2n−1 is the dual Fibonacci quaternion [17].

Proof. By (24), we get

D̃n + D̃n = [(Hn + εHn+1) + i (Hn+1 + εHn+2) + j (Hn+2 + εHn+3) + k (Hn+3 + εHn+4)]

+[(Hn + εHn+1)− i (Hn+1 + εHn+2)− j (Hn+2 + εHn+3)− k (Hn+3 + εHn+4)]

= 2 (Hn + εHn+1) .

Then (36) holds. By (24) and (25), we get
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D̃nD̃n + D̃n−1D̃n−1 = (Hn + εHn+1)
2 + (Hn−1 + εHn)

2

= (H2
n +H2

n−1) + 2ε(HnHn+1 +Hn−1Hn)

= [(2p− q)H2n−1 − eF2n−1] + 2ε[(2p− q)H2n − eF2n]

Then (37) holds. By (24) and (25), we get

D̃nD̃n + D̃n+1D̃n+1 = (Hn + εHn+1)
2 + (Hn+1 + εHn+2)

2

= (H2
n +H2

n+1) + 2ε(HnHn+1 +Hn+1Hn+2)

= [(2p− q)H2n+1 − eF2n+1] + 2ε[(2p− q)H2n+2 − eF2n+2]

Then (38) holds. By (24) and (25), we get

D̃n+1D̃n+1 − D̃n−1D̃n−1

=(Hn+1 + εHn+2)
2 − (Hn−1 + εHn)

2

=(H2
n+1 −H2

n−1) + 2ε(Hn+1Hn+2 −Hn−1Hn)

=[(2p− q)H2n − eF2n] + 2ε[(2p− q)H2n+1 − eF2n+1]

Then (39) holds. By (25), we get

(D̃n)
2 + (D̃n−1)

2 = [(H2
n +H2

n−1) + 2ε(HnHn+1 +Hn−1Hn)]

+2i[(HnHn+1 +Hn−1Hn) + 2ε(HnHn+2 +Hn−1Hn+1 +H2
n+1 +H2

n)]

+2j[(HnHn+2 +Hn−1Hn+1)

+2ε(HnHn+3 +Hn−1Hn+2 +Hn+1Hn+2 +HnHn+1)]

+2k[(HnHn+3 +Hn−1Hn+2)

+2ε(HnHn+4 +Hn−1Hn+3 +Hn+1Hn+3 +HnHn+2)]

= [(2p− q)H2n−1 − eF2n−1] + 2i[(2p− q)H2n − eF2n]

+2j[(2p− q)H2n+1 − eF2n+1]

+2k[(2p− q)H2n+2 − eF2n+2]

+2ε{[(2p− q)H2n − eF2n] + 2i[2(2p− q)H2n+1 − 2eF2n+1]

+2j[2(2p− q)H2n+2 − 2eF2n+2] + 2k[2(2p− q)H2n+3 − 2eF2n+3]}
= (2p− q)[(2D2n−1 −H2n−1) + 2ε(2D2n −H2n)]

−e[(2Q2n−1 − F2n−1) + 2ε(2Q2n − F2n)]

where Q2n−1 is the dual Fibonacci quaternion [17]. Then (40) holds.

Theorem 4. Let D̃n be the n-th term of the generalized dual Fibonacci quaternion with dual
coefficient sequence (D̃n). Then, we have the following identities

n∑
s=1

D̃s = D̃n+2 − D̃2, (41)

p∑
s=0

D̃n+s + D̃n+1 = D̃n+p+2, (42)
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n∑
s=1

D̃2s−1 = D̃2n − D̃0, (43)

n∑
s=1

D̃2s = D̃2n+1 − D̃1. (44)

Proof. Since
∑n

t=aHt = Hn+2 −Ha+1 [10], we get

n∑
s=1

D̃s =
n∑

s=1

Hs + i

n∑
s=1

Hs+1 + j

n∑
s=1

Hs+2 + k

n∑
s=1

Hs+3

+ ε(
n∑

s=1

Hs+1 + i

n∑
s=1

Hs+2 + j

n∑
s=1

Hs+3 + k

n∑
s=1

Hs+4)

=(Hn+2 −H2) + i (Hn+3 −H3) + j (Hn+4 −H4) + k (Hn+5 −H5)

+ ε[(Hn+3 −H3) + i (Hn+4 −H4) + j (Hn+5 −H5) + k (Hn+6 −H6)]

=[(Hn+2 + εHn+3)− (H2 + εH3)] + i [(Hn+3 + εHn+4)− (H3 + εH4)]

+ j [(Hn+4 + εHn+5)− (H4 + εH5)] + k [(Hn+5) + εHn+6)− (H5 + εH6)]

=D̃n+2 − D̃2 .

Then (41) holds. We can write

p∑
s=0

D̃n+s + D̃n+1 = (Hn+p+2 −Hn+1 +Hn+1) + i (Hn+p+3 −Hn+2 +Hn+2)

+j (Hn+p+4 −Hn+3 +Hn+3) + k (Hn+p+5 −Hn+4 +Hn+4)

+ε[(Hn+p+3 −Hn+2 +Hn+2) + i (Hn+p+4 −Hn+3 +Hn+3)

+j (Hn+p+5 −Hn+4 +Hn+4) + k (Hn+p+6 −Hn+5 +Hn+5)]

= (Hn+p+2 + εHn+p+3) + i (Hn+p+3 + εHn+p+4)

+j (Hn+p+4 + εHn+p+5) + k (Hn+p+5 + εHn+p+6)

= D̃n+p+2 .

Then (42) holds. By

n∑
i=1

H2i−1 = H2n − q and
n∑

i=1

H2i = H2n+1 − p

(see [10]), we get

n∑
s=1

D̃2s−1 =(H2n − q) + i (H2n+1 − p) + j (H2n+2 − q − p) + k (H2n+3 − 2p− q)

+ ε[(H2n+1 − p) + i (H2n+2 − q − p) + j (H2n+3 − 2p− q) + k (H2n+4 − 3p− 2q)]

=[(H2n + εH2n+1) + i (H2n+1 + εH2n+2) + j (H2n+2 + εH2n+3) + k (H2n+3 + εH2n+4)]

− [(q + εp) + i (p+ εp+ q) + j (p+ q + ε2p+ q) + k (2p+ q + ε3p+ 2q)]

= D̃2n − [(H0 + εH1) + i (H1 + εH2) + j (H2 + εH3) + k (H3 + εH4)]

= D̃2n − D̃0 .
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Then (43) holds. By
n∑

i=1

H2i = H2n+1 − p [10], we get

n∑
s=1

D̃2s =

=(H2n+1 − p) + i (H2n+2 − p− q) + j (H2n+3 − 2p− q) + k (H2n+4 − 3p− 2q)

+ ε[(H2n+2 − p− q) + i (H2n+3 − 2p− q) + j (H2n+4 − 3p− 2q) + k (H2n+5 − 5p− 3q)]

=[(H2n+1 + εH2n+2) + i (H2n+2 + εH2n+3) + j (H2n+3 + εH2n+4 + k (H2n+4 + εH2n+5]

− {[p+ ε(p+ q)] + i [(p+ q) + ε(2p+ q)] + j [(2p+ q) + ε(3p+ 2q)]

+ k [(3p+ 2q) + ε(5p+ 3q)]}

= D̃2n+1 − [(H1 + εH2) + i (H2 + εH3) + j (H3 + εH4) + k (H4 + εH5)]

= D̃2n+1 − D̃1 .

Then (44) holds.

Theorem 5. Let D̃n and Qn be the n-th terms of the generalized dual Fibonacci quaternion
sequence (D̃n) and the dual Fibonacci quaternion sequence (Qn), respectively. Then, we have

Q̃n D̃n − Q̃n D̃n = 2 [HnQn − FnDn] + 2ε[HnQn+1 − FnDn+1 +Hn+1Qn − Fn+1Dn] (45)

Q̃n D̃n + Q̃n D̃n = 2FnHn + 2ε(FnHn+1 + Fn+1Hn) (46)

Q̃n D̃n − Q̃n D̃n =2 [FnDn +HnQn − 2FnHn]

+ 2 ε {[FnDn+1 +HnQn+1 − 2Fn+1Hn]

+ [Fn+1Dn +Hn+1Qn − 2FnHn+1]}

(47)

Proof. By (7) and (17), we get

Q̃n D̃n − Q̃n D̃n =

=[(Fn + εFn+1) + i (Fn+1 + εFn+2) + j (Fn+2 + εFn+3) + k (Fn+3 + εFn+4)]

[(Hn + εHn+1)− i (Hn+1 + εHn+2)− j (Hn+2 + εHn+3)− k (Hn+3 + εHn+4)]

=(2FnHn − 2FnHn) + 2 ε(FnHn+1 + Fn+1Hn − FnHn+1 − Fn+1Hn)

+ 2i (−FnHn+1 + Fn+1Hn)

+ 2 ε(−FnHn+2 + Fn+1Hn+1 − Fn+1Hn+1 + Fn+2Hn)

+ 2j (−FnHn+2 + Fn+2Hn)

+ 2 ε(−FnHn+3 + Fn+2Hn+1 − Fn+1Hn+2 + Fn+3Hn)

+ 2k (−FnHn+3 + Fn+3Hn)

+ 2 ε(−FnHn+4 + Fn+3Hn+1 − Fn+1Hn+3 + Fn+4Hn)

=− 2Fn[Hn + iHn+1 + j Hn+2 + k Hn+3]

+ 2Hn[Fn + i Fn+1 + j Fn+2 + k Fn+3]

+ ε{[−2Fn[Hn+1 + iHn+2 + j Hn+3 + k Hn+4]
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+ 2Hn[Fn+1 + i Fn+2 + j Fn+3 + k Fn+4]

+ 2Hn+1[Fn + i Fn+1 + j Fn+2 + k Fn+3]

− 2Fn+1[Hn + iHn+1 + j Hn+2 + k Hn+3]}
=− 2 [FnDn +HnQn] + 2 ε{[−FnDn+1 +HnQn+1 − Fn+1Dn +Hn+1Qn]}.

Then (45) holds. By (10) and (17), we get

Q̃n D̃n + Q̃n D̃n = (Fn + i Fn+1 + j Fn+2 + k Fn+3)

(Hn − iHn+1 − j Hn+2 − k Hn+3)

+(Fn − i Fn+1 − j Fn+2 − k Fn+3)

(Hn + iHn+1 + j Hn+2 + k Hn+3)

= (FnHn + FnHn) + ε(FnHn+1 + Fn+1Hn + FnHn+1 + Fn+1Hn)

= 2FnHn + 2ε(FnHn+1 + Fn+1Hn).

Then (46) holds. By (10) and (17), we get

Q̃n D̃n − Q̃n D̃n =

=[(Fn + εFn+1) + i (Fn+1 + εFn+2) + j (Fn+2 + εFn+3) + k (Fn+3 + εFn+4)]

[(Hn + εHn+1)− i (Hn+1 + εHn+2)− j (Hn+2 + εHn+3)− k (Hn+3 + εHn+4)]

=2 (FnHn − FnHn) + 2 ε(FnHn+1 + Fn+1Hn − FnHn+1 − Fn+1Hn)

+ 2i (FnHn+1 + Fn+1Hn) + 2 ε(FnHn+2 + Fn+1Hn+1 + Fn+1Hn+1 + Fn+2Hn)

+ 2j (FnHn+2 + Fn+2Hn) + 2 ε(FnHn+3 + Fn+1Hn+2 + Fn+2Hn+1 + Fn+3Hn)

+ 2k (FnHn+3 + Fn+3Hn) + 2 ε(FnHn+3 + Fn+1Hn+3 + Fn+3Hn+1 + Fn+4Hn)

=2Fn[Hn + iHn+1 + j Hn+2 + k Hn+3]

+ 2Hn[Fn + i Fn+1 + j Fn+2 + k Fn+3]− 4FnHn

+ ε[2Fn[Hn+1 + iHn+2 + j Hn+3 + k Hn+4]

+ 2Hn[Fn+1 + i Fn+2 + j Fn+3 + k Fn+4]− 4Fn+1Hn

+ 2Fn+1[Hn + iHn+1 + j Hn+2 + k Hn+3]

+ 2Hn+1[Fn + i Fn+1 + j Fn+2 + k Fn+3]− 4FnHn+1]

=2 [FnDn +HnQn − 2FnHn]

+ 2 ε{[FnDn+1 +HnQn+1 − 2Fn+1Hn] + [Fn+1Dn +Hn+1Qn − 2FnHn+1]}.

Then (47) holds.

Theorem 6. (Binet’s Formula). Let D̃n be the n-th terms of the generalized dual Fibonacci
quaternion with dual coefficient sequence (D̃n). For n ≥ 1, the Binet’s formulas for these quater-
nions are as follows:

D̃n =
1

α− β
(
α αn (1 + εα)− β βn (1 + εβ)

)
=

1

α− β

(
α̂ αn − β̂ βn

)
(48)
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where α̂ = α (1 + ε α) and β̂ = β (1 + ε β)

α̂ = [(p− qβ)] + ε[p (1− β) + q] + i {[p (1− β) + q] + ε[p (2− β) + q]}
+j {[p (2− β) + q] + ε[p (3− 2β) + q]}
+k {[p (3− 2β) + q] + ε[p (5− 3β) + q]}, α = 1+

√
5

2

and

β̂ = [(p− qα)] + ε[p (1− α) + q] + i {[p (1− α) + q] + ε[p (2− α) + q]}
+j {[p (2− α) + q] + ε[p (3− 2α) + q]}
+k {[p (3− 2α) + q] + ε[p (5− 3α) + q]}, β = 1−

√
5

2

Proof. The characteristic equation of recurrence relation D̃n+2 = D̃n+1 + D̃n is

t2 − t− 1 = 0.

The roots of this equation are α = 1+
√
5

2
and β = 1−

√
5

2
where α + β = 1 , α − β =√

5 , αβ = −1.
The Binet’s formulas for Fibonacci sequence, generalized Fibonacci sequence and dual Fi-

bonacci quaternion sequence, dual Fibonacci quaternion with dual coefficient sequence and gen-
eralized dual Fibonacci quaternion sequence, respectively, are as follows:

Fn =
1√
5
(αn − βn) , Hn =

1

2
√
5
( l αn − mβn) , Qn =

1√
5

(
ααn − ββn

)
Q̃n =

1√
5

(
ααn(1 + εα)− ββn(1 + εβ)

)
, Dn =

1

α− β
(
α αn − β βn

)
α = 1 + i α2 + j α3 + k α4, β = 1 + i β2 + j β3 + k β4

(see [10, 11, 15, 17, 18]).
Using recurrence relation and initial values:

D̃0 = [q + εp, p+ ε(p+ q), (p+ q) + ε(2p+ q), (2p+ q) + ε(3p+ 2q)],

D̃1 = [p+ ε(p+ q), (p+ q)ε(2p+ q), (2p+ q) + ε(3p+ 2q), (3p+ 2q) + ε(5p+ 3q)],

the Binet’s formula for D̃n is

D̃n =
1

α− β
[ α̂ αn − β̂ βn ]

where α̂ = α(1 + ε α) , β̂ = β(1 + ε β) .

Theorem 7. (Cassini’s Identity). Let D̃n be the n-th terms of the generalized dual Fibonacci
quaternion sequence (D̃n). For n ≥ 1, the Cassini-like identity for D̃n is as follows:

D̃n−1D̃n+1 − (D̃n)
2 = (−1)n e (1 + i+ 3j + 4k) (1 + ε). (49)
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Proof. By (31) and (32) we get

D̃n−1 D̃n+1 − (D̃n)
2 =

=(Hn−1 + iHn + j Hn+1 + k Hn+2) (Hn+1 + iHn+2 + j Hn+3 + k Hn+4)

− [Hn + iHn+1 + j Hn+2 + k Hn+3]
2

= [Hn−1Hn+1 −H2
n] + ε[Hn−1Hn+2 +HnHn+1 − 2HnHn+1]

+ i {[Hn−1Hn+2 +HnHn+1 − 2HnHn+1] + ε[Hn−1Hn+3 +Hn+1Hn+1 − 2Hn+1Hn+1]}
+ j {[Hn−1Hn+3 − 2HnHn+2 +H2

n+1] + ε[Hn−1Hn+4 +HnHn+3 − 2HnHn+3]}
+ k {[Hn−1Hn+4 +Hn+1Hn+2 − 2HnHn+3]

+ ε[Hn−1Hn+5 +Hn+2Hn+2 −HnHn+4 − Hn+1Hn+3]}
=(−1)n e (1 + i+ 3j + 4k) (1 + ε),

where we use identity of the generalized Fibonacci number as follows:

Hn+1Hn−1 −H2
n = (−1)n e,

Hn+2Hn−1 −HnHn+1 = (−1)n e,

Hn+3Hn−1 −Hn+1Hn+1 − 2HnHn+2 = 3 (−1)n e,

Hn+4Hn−1 −Hn+2Hn+1 − 2HnHn+3 = 4 (−1)n e,

Hn−1Hn+5 +Hn+2Hn+2 −HnHn+4 −Hn+3Hn+1 = 4 (−1)n e,

where e = p2 − p q − q2. So (49) holds.

Example 1. Let D̃1, D̃2,D̃3 and D̃4 be the generalized dual Fibonacci quaternions with dual
coefficient such that

D̃1 = [p+ ε(p+ q)] + i [(p+ q) + ε(2p+ q)] + j [(2p+ q) + ε(3p+ 2q)]

+k [(3p+ 2q) + ε(5p+ 3q)]

D̃2 = [(p+ q) + ε(2p+ q)] + i [(2p+ q) + ε(3p+ 2q)] + j [(3p+ 2q) + ε(5p+ 3q)]

+k [(5p+ 3q) + ε(8p+ 5q)]

D̃3 = [(2p+ q) + ε(3p+ 2q)] + i [(3p+ 2q) + ε(5p+ 3q)] + j [(5p+ 3q) + ε(8p+ 5q)]

+k (8p+ 5q) + ε(13p+ 8q)]

D̃4 = [(3p+ 2q) + ε(5p+ 3q)] + i [(5p+ 3q) + ε(8p+ 5q)] + j (8p+ 5q) + ε(13p+ 8q)]

+k (13p+ 8q) + ε(21p+ 13q)] .

In this case,

D̃1 D̃3 − (D̃2)
2 =

={[p+ ε(p+ q)] + i [(p+ q) + ε[2p+ q)] + j [(2p+ q) + ε(3p+ 2q)]

+ k [(3p+ 2q) + ε(5p+ 3q)]}
{[(2p+ q) + ε(3p+ 2q)] + i [(3p+ 2q) + ε(5p+ 3q)]

+ j [(5p+ 3q) + ε(8p+ 5q)] + k (8p+ 5q) + ε(13p+ 8q)]}
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− {[(p+ q) + ε(2p+ q)] + i [(2p+ q) + ε(3p+ 2q)]

+ j [(3p+ 2q) + ε(5p+ 3q)] + k [(5p+ 3q) + ε(8p+ 5q)]}2

=(p2 − p q − q2) + i (p2 − p q − q2) + j (3p2 − 3 p q − 3 q2) + k (4p2 − 4 p q − 4 q2)

= (p2 − p q − q2))(1 + i+ 3j + 4k)

=(−1)2 e (1 + i+ 3j + 4k) (1 + ε)

and

D̃2 D̃4 − (D̃3)
2 ={[(p+ q) + ε(2p+ q)] + i [(2p+ q) + ε(3p+ 2q)]

+ j [(3p+ 2q) + ε(5p+ 3q)] + k [(5p+ 3q) + ε(8p+ 5q)]}
{[(3p+ 2q) + ε(5p+ 3q)] + i [(5p+ 3q) + ε(8p+ 5q)]

+ j (8p+ 5q) + ε(13p+ 8q)] + k [(13p+ 8q) + ε(21p+ 13q)]}
− {[(2p+ q) + ε(3p+ 2q)] + i [(3p+ 2q) + ε(5p+ 3q)]

+ j [(5p+ 3q) + ε(8p+ 5q)] + k [(8p+ 5q) + ε(13p+ 8q)]}2

= (−p2 + p q + q2) + i (−p2 + p q + q2) + j (−3p2 + 3 p q + 3 q2)

+ k (−4p2 + 4 p q + 4 q2)

= (−1)3 (p2 − p q − q2))(1 + i+ 3j + 4k)

= (−1)3 e (1 + i+ 3j + 4k) (1 + ε).

3 Conclusion

Dual numbers form two dimensional commutative, associative algebra over the real numbers.
Also the algebra of dual numbers is a ring.

A quaternion with dual coefficient is an extension of dual numbers whereby the elements of
that quaternion are dual numbers. The quaternions with dual coefficient are used as an appliance
for expressing and analyzing the physical properties of rigid bodies. They are computationally
efficient approach of representing rigid transforms like translation and rotation.

In this paper, we investigated the generalized dual Fibonacci quaternions with the dual coeffi-
cient.
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