
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Vol. 24, 2018, No. 4, 59–69
DOI: 10.7546/nntdm.2018.24.4.59-69

Simple applications of continued fractions
and an elementary result on Heron’s algorithm

Antonino Leonardis
Department of Mathematics and Computer Science, Universit della Calabria

Arcavacata di Rende, Italy
e-mail: a.leonardis@gmail.com

Received: 15 January 2018 Revised: 22 September 2018 Accepted: 26 October 2018

Abstract: The paper is a continuation of the author’s previous works on continued fractions,
and has been presented at the AMS special session on Continued Fraction during the Joint Math-
ematical Meetings 2017, Atlanta GA. The first part is more introductory/educational, explaining
the importance of matricial and Diophantine methods in the topic of continued fractions. We
will begin this part discussing geometrical illusions which can arise from properties of continued
fractions and associated matrices, proving thoroughly the mathematical reasons of this fact. After
this, we will deal with the Pythagorean problem of the right-angled isosceles triangles finding
all solutions to the simple Diophantine equation l2 + (l + 1)2 = d2, which will give a “Pseudo-
Pythagoric” triangle. In the second part, recalling all the methods introduced in the first one, we
will prove a theorem (the main result), which relates continued fractions with Heron’s algorithm,
giving some examples. This theorem is proved in a complete form, which considers all possibili-
ties and its vice-versa, unlike all other minor results that can be found in the literature (see [2,3]).
Keywords: Continued fractions, Heron’s algorithm, Matrices, Fibonacci sequence, Pythagorean
triples, Diophantine equations.
2010 Mathematics Subject Classification: 11A55, 11C20, 11D09.

1 Introduction

The theory of continued fractions in the field of real numbers is very interesting as well as full
of applications. The literature deals widely with this topic, for example in the books mentioned
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in the bibliography (Cassels [1], Perron [4]). A continued fraction, in our case, will be a nested
fraction of the form:

n0 +
1

n1 +
1

n2+
1

n3+···

=: [n0, n1, . . .]

with the following conditions on the “digits” {ni ∈ Z}i∈I⊆N:

∀i > 0 : ni > 0.

The continued fraction expansion will be called finite if the ni are finitely many. Finite con-
tinued fractions represent all rational numbers in exactly two ways, where one is obtained by
the other by writing the last digit nk as (nk − 1) + 1

1
(thus substituting it with the two digits

n′k = (nk − 1), n′k+1 = 1).
On the other hand, when ni is a full sequence of integers (I = N), the continued fraction

is called infinite. Despite being indefinitely long, it always converges (or, more precisely, the
sequence of its finite truncations converges) to a limit ξ ∈ R, and – vice versa – any irrational
ξ ∈ R\Q is represented by a unique infinite continued fraction. One may ask what happens
when “digits” periodically repeat themselves or when they do not; in this case the well-known
Lagrange’s theorem ensures that an infinite continued fraction converges to a quadratic irrational
if and only if its digits definitely repeat themselves periodically.

The paper will begin with some simple applications of continued fractions, starting with ge-
ometric illusions (Fig. 1, 2 and 3) and then solving the Diophantine equation (1) which gives a
sequence of “pseudo-isosceles” right-angled triangles, that is, a good approximating solution for
the Pythagorean problem of the ratio between the diagonal and the side of a square. These appli-
cations also highlight connections with matricial methods and linear fractional transformations of
the real line, which are the restriction of a projectivity in P1(R) given indeed by a (homogeneous)
matrix. After this, we will prove a theorem on the relationship between continued fractions and
Heron’s algorithm (Theorem 4.4). This algorithm is very important in the history of mathematics,
and is a particular case of Newton’s method for approximating zeroes of a function. This main
theorem is an elementary result, but the aim of this paper is to give it an original precise statement
and an equally original proof with the already mentioned matricial methods, as well as remarking
the necessity and sufficiency of the here given conditions. For more details about the matricial
expression of a projectivity, see the Appendix A on this subject.

2 Geometrical illusions and continued fractions

We start by seeing a simple classical illusion trick tied to matrix determinants to introduce the
world of continued fractions.

2.1 “Square to rectangle” illusions

Let’s start by recalling the classical Fibonacci illusion (Fig. 1):
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(a) Decomposition of an 8 × 13 rectangle
apparently using 4 triangles and two 5× 5

squares.

(b) Decomposition similar to the former
one, but a 5 × 5 square is replaced by a
3× 8 rectangle.

Figure 1. Fibonacci illusion

We see that there is a “missing square” (5×5 = 3×8+1); this happens because the four points
on the diagonal are not actually aligned but instead form a parallelogram with area exactly 1.
Indeed, this area is given by the absolute value of the determinant of a 2×2 matrix (the one whose
columns represent the sides of the parallelogram); in this case we find the matrix via the continued
fraction approximation of the golden ratio (see section “atricial methods” below), and the theory
of continued fractions ensures us that these matrices have determinant ±1. Approximating the
square root of 2, we get indeed a similar example:

(a) Decomposition of a 12 × 17 rectangle
apparently using 4 triangles and two 7× 7

squares.

(b) Decomposition similar to the former
one, but a 7 × 7 square is replaced by a
5× 10 rectangle.

Figure 2. Papersheet illusion

In this case we have 7×7 = 5×10−1. We will name the latter papersheet illusion, recalling
that the ratio between sides of a common sheet of paper is approximately

√
2.

2.2 Matricial methods

See also Appendix A.
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We recall that, considering the (symmetric) matrix â0 =
(
n0 1
1 0

)
as a P1 projectivity (that is,

a linear fractional transformation), it is matter of a bit of calculations to prove that [n0, n1, n2, . . .] =

n̂0[n1, n2, . . .] for every continued fraction.
Indeed, if x = [n1, n2, . . .] =

p
q
, we have immediately:

n̂0
p

q
=
n0p+ q

p+ 0q
= n0 +

q

p
= n0 +

1

x
.

We will associate the j-th approximant [n0, n1, . . . , nj−1] with the matricial composition (“ap-
proximant matrix”) n̂0 · n̂1 · · · n̂j−1.

Remark 2.1. The first column of the latter matrix is exactly the homogeneous vector in P1 rep-
resenting [n0, n1, . . . , nj−1]. Moreover, the second column is1 the same as the first column of
n̂0 · n̂1 · · · n̂j−2 · I2, thus represents n̂0 · n̂1 · · · n̂j−2.

We know that the continued fraction of the golden ratio λ =

√
5 + 1

2
is:

λ = [1, 1, 1, . . .] = [1]

and truncating this expression we get the good approximations ensured by Dirichlet’s lemma
(see [1]):

[1]→
(
1 1
1 0

)
;

[1, 1]→
(
1 1
1 0

)2

=

(
2 1
1 1

)
;

[1, 1, 1]→
(
1 1
1 0

)3

=

(
3 2
2 1

)
;

[1, 1, 1, 1]→
(
1 1
1 0

)4

=

(
5 3
3 2

)
;

[1, 1, 1, 1, 1]→
(
1 1
1 0

)5

=

(
8 5
5 3

)
;

[1, 1, 1, 1, 1, 1]→
(
1 1
1 0

)6

=

(
13 8
8 5

)
.

As we can see, the ratio between the elements of the first column (which is the numerical value
of the truncation) is the quotient of two consecutive Fibonacci numbers. The fifth matrix gives
us the area of the parallelogram involved in the Fibonacci illusion (as remarked before, by taking
the absolute value of its determinant).

1Indeed,
(
1
0

)
is both the second column of n̂j−1 and the first column of I2 =

(
1 0
0 1

)
.
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In the case of
√
2 = [1, 2, 2, 2, . . .] = [1, 2] we have similarly:

[1]→
(
1 1
1 0

)
;

[1, 2]→
(
3 1
2 1

)
;

[1, 2, 2]→
(
7 3
5 2

)
;

[1, 2, 2, 2]→
(
17 7
12 5

)
;

[1, 2, 2, 2, 2]→
(
41 17
29 12

)
.

Subtracting in the fourth matrix (whose first column gives the sides of the bigger rectangle) the

second column from the first we obtain the matrix
(
10 7
7 5

)
and the relative small parallelogram

of area 1 involved in the papersheet illusion. To have a similar result with the original matrix one
should consider a 24× 17 rectangle.

2.3 “Four triangles” illusions

A similar illusion can be made with an incorrect decomposition of the big rectangle in four trian-
gles:

(a) The area of the four triangles seems to
be 5 × 8 + 5 × 13 = 105 but the whole
rectangle has area 8× 13 = 104.

(b) The area of the four triangles seems to
be 7 × 12 + 7 × 17 = 203 but the whole
rectangle has area 12× 17 = 204.

Figure 3. Triangles illusion

Here the parallelogram issue is even more clear, as the surface in it is exactly the difference
between the apparent area of the rectangle and the real one.

2.4 Generalized illusion

Summing up, we have:
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Result 2.2. Any 2×2 matrix with determinant±1 and entries in N, as the ones given by continued
fractions’ approximation, creates the illusions described above. Indeed, one has to draw the
parallelogram with sides given by the column of the matrix, the Cartesian rectangle (i.e., whose
sides are aligned with Cartesian axes) with same diagon al as the parallelogram, and complete the
figure as we did in the Fibonacci and papersheet case.

More precisely, setting the bottom-left corner of the rectangle as the origin of the Cartesian
plane, the two points on the diagonal are given by the two columns of the chosen matrix (consid-
ered as vectors in Z2), and the whole diagonal is exactly the sum of these two vectors (so that the
dimensions of the whole rectangle are given by the coordinates of this vectorial sum).

3 Pseudo-Pythagorean triangles

It is well known that there is no isosceles right-angled triangle with integral (or rational) sides.
We can though find approximated solutions to this Pythagorean dilemma.

Pythagorean disciples were left astonished discovering that there is no right-angled isosceles
triangle with integer (and, consequently, neither rational) sides. Still, as the Pythagoreans did
with music tones, we can try to use (Diophantine) approximation. Irrationality of

√
2 cannot be

overcome, but still we can look for a sequence of approximating solutions: let us see how.
We will call “Pseudo-Pythagoric triangle” a right-angled one with integer sides such that the

two catheti differ by only one unit (that is, almost isosceles). This means solving the Diophantine
equation:

l2 + (l + 1)2 = d2, (1)

which is equivalent by elementary calculations (or using norm properties for the Gaussian integer
l + i(l + 1) multiplied by i + 1) to 1 + (2l + 1)2 = 2d2. Setting k = 2l + 1, we can reduce to
solving the following Pell’s equation:

k2 − 2d2 = −1,

which is well known to be related to continued fractions (as studied in the author’s Ph.D. thesis).

This equation has solutions given by the odd powers of 1+
√
2, writing them as k+d

√
2. For

example, these are the first three solutions:

k = 1, d = 1→ 12 + 02 = 12;

k = 7, d = 5→ 32 + 42 = 52;

k = 41, d = 29→ 202 + 212 = 292.

As we can see, k/d is also an approximation given by the continued fraction expansion of
√
2

(the first, the third, etc.). This is not random, as continued fractions are well-known to be strictly
related to Pell’s equations (one can see the author’s Ph.D. thesis for a detailed summary of this
connection).
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Remark 3.1. One may also try to get approximations of an isosceles right triangle by giving
up another condition, i.e., integrality of the hypothenuse. In this case, the Pell’s equation gives
2l2 − d2 = ±1, and the solutions are given again (this time without any parity restriction) by the
continued fraction approximants d/l of

√
2.

4 Heron’s algorithm and continued fractions

The algorithm of Heron, a particular case of Newton’s method for finding approximated solutions
to an equation, is strictly tied to continued fractions in some particular case.

We recall the following definition which uses elementary basic results (not proven here):

Definition 4.1 (Heron’s algorithm). Let x ∈ Qa be an absolute rational number which is not the
square of another rational number. Let a0 >

√
x be an approximation of the latter expression,

which we suppose not to be already rational (so x is not a square). We obtain then by recursion
the following sequences:

bi =
x

ai
,

ai+1 =
ai + bi

2
.

Notice that the bi converge to
√
x from below and the ai converge to

√
x from above. Then

the intervals [bi, ai] have as intersection exactly {
√
x} ⊂ R. We say that {ai}i∈N is the Heron’s

algorithm sequence obtained starting with a0. We may also accept a0 <
√
x, in which case the

first couple (a0, b0) is just swapped and the rest follows smoothly in the same way. Specifically,
we will take a0 = b

√
xc.

Remark 4.2 (Matricial Heron’s algorithm). Let A0 =

(
a0 x
1 a0

)
, and consider the recursion:

Ai+1 = A2
i .

Then one can prove by induction and direct calculation that Ai must have the form
(
n xd
d n

)
for all i ∈ N, where moreover we get the usual Heron’s sequences from the columns of these
matrices:

ai = Ai

(
1
0

)
=
n

d
;

bi = Ai

(
0
1

)
=
xd

n
.

Remark 4.3 (Preliminary notations). We use the following notations:

• we write ξ :=
√
x;

• we write ξj for the j-th approximant [n0, . . . , nj−1] of ξ;
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• let ψ be the real number n0 + ξ, which has purely periodic continued fraction (see [4])
[2n0, n1, . . .];

• we write ψj for the j-th approximant [2n0, . . . , nj−1] of ψ;

• let ci := a0 + ai;

• let S = 0̂ be the swap matrix
(
0 1
1 0

)
(related to taking reciprocal in P1);

• let Tn be the translation matrix
(
1 n
0 1

)
(related to adding in P1);

• let Mj := n̂0 · n̂1 · · · n̂j−1, i.e. the matrix associated to ξj;

• let M ′
j := Tn0 ·Mj = Tn0 · Tn0 · S · Tn1 · S · · · · Tnj

· S = T2n0 · S · Tn1 · S · · · · Tnj
· S =

2̂n0 · n̂1 · · · n̂j , i.e. the matrix associated to ψj .

Notice that n̂j = Tnj
· S = T

nj

1 · S.

We may prove the following:

Main Theorem 4.4. Suppose ξ has continued fraction expansion [n0 = b
√
xc , n1, n2, . . .] with

period of length 1 or 2. Apply Heron’s algorithm to a0 := n0 obtaining a sequence {a0, a1, . . .}.
Then ai is the 2i-th approximant via the continued fraction. Vice versa, if the continued fraction
has period length greater than 3, applying in the same way Heron’s algorithm does not give the
same sequence of approximants.

Proof 4.4. The case i = 0 is already true by hypothesis. From the period assumption, we have for
some λ ∈ N the following improper2 continued fraction:

ξ = [a0, λ, a0, 0] = a0 +
1

λ+ 1
a0+ξ

.

By elementary calculations this gives the equality3 λ =
2a0

x− a20
. Thus the case i = 1 follows from

the following calculation:

ξ2 = a0 +
1

λ
=

2a20
2a0

+
x− a20
2a0

=
a0
2

+
x

2a0
= a1.

Moreover, M := â0 · λ̂ · â0 is classically known4 to be a symmetric matrix of the form
(
xd n
n d

)
,

with
n

d
= [a0, λ] = ξ2, as already observed in Remark 2.1. Then, with the notations for matricial

Heron’s algorithm, we have:
A1 =M · S = â0 · λ̂ · â0 · 0̂.

2 Proper continued fractions have nonzero digits; notice that in this case [a0, 0, y] = a0 +
1

0+1/y = a0 + y.
3 As a side note, we observe that the period length is 1 exactly when x− a20 = 1, i.e., when x is the successor of

a square.
4 As any palindrome product of symmetric matrices would be.
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Then we know that Ai = (M · S)2i−1 for all i ∈ N, but the latter is just the matrix M2i · Ta0 ,
whose first column is the same as M2i . First column of Ai represents ai ∈ P1, first column of Mj

represents ξj ∈ P1, thus we have ai = ξ2i , proving the direct theorem.

One could also take the matrices:

C1 = 2̂a0 · λ̂;
Ci+1 = C2

i .

whose first columns represent5 ci ∈ P1. In this case, one gets an alternative proof observing that
Ci =M ′

2i and deducing ci = ψ2i .
For the vice versa, the alternative proof is the easiest to turn over: we see that if c1 = [α, β]

and c2 = [α, β, γ, δ] we must have that:

α̂ · β̂ · α̂ · β̂ =
(
α̂ · β̂

)2
= α̂ · β̂ · γ̂ · δ̂

that is, for the uniqueness of continued fractions, α = γ and β = δ; in a similar way all even digits
of the continued fraction of ψ are α and all odd ones are β, thus the period length is necessarily a
divisor of 2. �

Let us see some simple examples:

Example 4.5 (Period length 1). Approximating ξ =
√
2, we have:

a0 = 1;

a1 = 3/2 = [1, 2];

a2 = 17/12 = [1, 2, 2, 2];

a3 = 577/408 = [1, 2, 2, 2, 2, 2, 2, 2];

...

Indeed, ξ = [1, 2] and theorem’s thesis holds in this case.

Example 4.6 (Period length 2). Approximating ξ =
√
6, we have:

a0 = 2;

a1 = 5/2 = [2, 2];

a2 = 49/20 = [2, 2, 4, 2];

a3 = 4801/1960 = [2, 2, 4, 2, 4, 2, 4, 2];

...

Indeed, ξ = [2, 2, 4] and theorem’s thesis holds in this case.

5 This fact follows from the identity Ci = Ta0
·Ai · T−a0

, where the last multiplication does not change the first
column, while the first translates by +a0, i.e. sends ai ∈ P1 to ci ∈ P1.
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Example 4.7 (Period length > 2). Approximating ξ =
√
7, we have:

a0 = 2;

a1 = 11/4 = [2, 1, 3];

a2 = 233/88 = [2, 1, 1, 1, 5, 5];

...

Indeed, ξ = [2, 1, 1, 1, 4] and theorem’s thesis does not hold in this case, confirming the necessity
of the period length condition.

Appendix A: Linear Fractional Transformations (LFTs)
and projectivities

We recall that the projective line P1 = P1(F) over a given base field F (usually the field of real
numbers R) is constructed associating to any non-zero vector

(
x
y

)
in F2 the ratio x/y, possibly∞

when denominator is zero, of its coordinates; thus we add a point to the usual line, and any point
of this completed line is associated with an equivalency class of non-zero vectors of the plane by
means of proportionality.

We say that two invertible matrices with entries in the given base field F are (projectively)
equivalent when they are proportional:(

a b
c d

)
∼=
(
λa λb
λc λd

)
and we will use the expression “homogeneous matrix” to describe an equivalence class of such
matrices; when a homogeneous matrix has a non-zero determinant, it gives a transformation
called projectivity by applying it to a point of the projective line considered as a vector: changing
a representative matrix with a proportional one, the ratio of the resulting vector’s coordinates is
preserved, thus the transformation is well-defined.

Considering only the finite part of the line, projectivities give rise to the group of Linear
Fractional Transformations (LFTs), that is the following applied to the field element

(
x
1

)
:

f(x) =
ax+ b

cx+ d
,

which is defined everywhere with the exception of at most one point (the value for which the
denominator vanishes), sent to infinity by the associated projectivity.

In this paper we use extensively these definitions, observing that adding a “digit” at the begin-
ning of a continued fraction expansion has the effect of applying a projectivity/LFT to the number
represented by the expansion and exploiting this fact in order to have cleaner proofs.
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