
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Vol. 24, 2018, No. 4, 18–25
DOI: 10.7546/nntdm.2018.24.4.18-25

Revisiting some old results
on odd perfect numbers

Jose Arnaldo Bebita Dris1 and Doli-Jane Uvales Tejada2

1 Institute of Mathematics, University of the Philippines
Carlos P. Garcia Avenue, Diliman, Quezon City, Philippines

e-mails: jbdris@upd.edu.ph, josearnaldobdris@gmail.com
2 Mathematics Department, College of Natural Sciences and Mathematics

Mindanao State University, General Santos City, Philippines
e-mail: dolijanetejada@gmail.com

Received: 1 March 2018 Revised: 9 July 2018 Accepted: 9 October 2018

Abstract: In this note, we revisit and show how some old results on odd perfect numbers follow
from assuming some unproven yet reasonable conjectures.
Keywords: Odd perfect number, Descartes–Frenicle–Sorli conjecture, Dris conjecture, abun-
dancy index, deficiency.
2010 Mathematics Subject Classification: 11A25.

1 Introduction

Let x be a natural number. We denote∑
d|x

d = σ1(x) = σ(x)

as the sum of divisors of x. Let the abundancy index of x be given by I(x) = σ(x)/x, and let the
deficiency of x be given by D(x) = 2x− σ(x). We then have the identity

D(x)

x
+
σ(x)

x
=
D(x)

x
+ I(x) = 2.
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Furthermore, notice that if z =
∏w

i=1 yi
ti is the prime factorization of z, then we have the

following formula for the sum of divisors of z:

σ(z) = σ

( w∏
i=1

yi
ti

)
=

w∏
i=1

(
σ(yi

ti)

)
=

w∏
i=1

yi
ti+1 − 1

yi − 1
,

where the yi’s are primes and w = ω(z) is the number of distinct prime factors of z. This means
that the σ function satisfies σ(AB) = σ(A)σ(B) if and only if gcd(A,B) = 1, which implies
that σ is multiplicative.

Therefore, if gcd(A,B) = 1, it follows from the formula for σ above that

I(AB) =
σ(AB)

AB
=
σ(A)σ(B)

AB
=

(
σ(A)

A

)
·
(
σ(B)

B

)
= I(A)I(B),

which proves that the abundancy index function I is also multiplicative. Finally, notice that the
deficiency function D is in general not multiplicative.

We will use, many times, the multiplicativity of the sum-of-divisors function σ and the abun-
dancy index function I to prove the results in this paper.

A natural number N1 is called perfect if σ(N1) = 2N1. (On the other hand, a natural number
N2 which satisfies σ(N2) = 2N2 − 1 is called almost perfect.) The following result (proved by
Euclid and Euler) gives a necessary and sufficient condition for an even natural number E to be
perfect.

Theorem 1. An even natural numberE is perfect if and only ifE = 2p−1(2p−1) for some integer
p which makes 2p − 1 prime.

Refer to Dickson [3] to see different proofs of Theorem 1. If a natural number of the form
2p − 1 is prime, then it is called a Mersenne prime. Notice that if 2p − 1 is prime, then p must
be prime. (The converse does not hold.) The natural numbers 6, 28, 496, and 8128 are the first
four even perfect numbers, and these correspond to the Mersenne primes 2p − 1 with p given by
2, 3, 5, and 7, respectively. It is still unknown if there are infinitely many even perfect numbers.
Also, we still do not know if there are odd perfect numbers. It is conjectured that no odd perfect
numbers exist.

If O is an odd perfect number, then Euler showed that it must have the form O = qkn2, where
q is a prime that satisfies q ≡ k ≡ 1 (mod 4) and gcd(q, n) = 1. We will call q the special or
Euler prime of O, qk the Euler factor, and n2 the non-Euler part. (Notice that both E and O have
the forms N = QKM2 where Q is prime, K ≡ 1 (mod 4), and gcd(Q,M) = 1.) Descartes,
Frenicle, and more recently Sorli [13] conjectured that k = 1 holds. Sorli predicts k = 1 after
testing large odd numbers N ′ with ω(N ′) = 8 for perfection. Subsequently, Beasley [1] reports
that “Dickson has documented Descartes’ conjecture [that k = 1] as occurring in a letter to Marin
Mersenne [on November 15,] 1638, with Frenicle’s subsequent observation occurring in 1657”.

Also, according to

1. Ochem and Rao [12], O > 101500 and

2. Nielsen [11], ω(O) ≥ 10.
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The objective of this paper is to collect some old results on odd perfect numbers which could
also be proven by assuming some unproven yet reasonable conjectures. As far as the authors are
aware, the approach to these old results presented here is new and has not appeared elsewhere.
The novelty of this new approach is that the proofs so produced are significantly shorter than the
original arguments.

2 Summary

First, we reprove the following result from our previous paper [7] on this topic. We give here a
trivial proof of the following lemma.

Lemma 1. If O = qkn2 is an odd perfect number with Euler prime q, then

σ(O/qk)

qk
=

2n2

σ(qk)
=

D(n2)

σ(qk−1)
= gcd(n2, σ(n2)).

The proof of Lemma 1 is essentially the same as that contained in [7], except that we make
use of an algebraic trick to trim it down.

Dris [4] proved the following result in his M. Sc. thesis. This was eventually published by
Dris [6]. (We shall not give an alternative/shorter proof of this theorem here.)

Theorem 2. If O = qkn2 is an odd perfect number with Euler prime q, then σ(O/qk)/qk ≥ 3.

Theorem 2 together with Lemma 1 shows that the non-Euler part n2 is not almost perfect.
The following theorem was proved by Dris and Luca [9].

Theorem 3. If O = qkn2 is an odd perfect number with Euler prime q, then σ(O/qk)/qk > 5.

Remark 1. We note that several authors have made various improvements to the proof for Theo-
rem 3 in the literature.

We give a short proof of Theorem 3 by assuming the truth of either of the following two
conjectures.

Conjecture 1. If O = qkn2 is an odd perfect number with Euler prime q, then k = 1 always
holds.

Conjecture 2. If O = qkn2 is an odd perfect number with Euler prime q, then the inequality
qk < n holds.

In fact, Conjecture 2 implies the following corollary.

Corollary 1. If O = qkn2 is an odd perfect number with Euler prime q, then the estimate

σ(O/qk)

qk
>

8

5
n >

8

5
3
√
O

holds.
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The following (weak) result appeared in [5]. (Observe that the congruence n2 − qk ≡ 0

(mod 4) holds.)

Lemma 2. IfO = qkn2 is an odd perfect number with Euler prime q, then the inequality n2−qk ≥
8 holds.

We generalize Lemma 2 in the following result, by assuming Conjecture 2 in the “proof”.

Theorem 4. If O = qkn2 is an odd perfect number with Euler prime q and n2 − qk is a power of
two, then n2 − qk = 22r+1.

In fact, assuming Conjecture 2 is true, we have the following easy corollary.

Corollary 2. If O = qkn2 is an odd perfect number with Euler prime q, then the inequality

n2 − qk > n2 − n = n(n− 1) >
3
√
O(

3
√
O − 1)

holds.

Lastly, we prove the following theorem, which follows from Theorem 4.

Theorem 5. If O = qkn2 is an odd perfect number with Euler prime q, n2− qk is a power of two,
and q is a Fermat prime, then Conjecture 1 is false.

All of the proofs given in this note are elementary. (Note that the proofs of Corollary 1 and
Corollary 2 are trivial.)

3 A trivial proof of Lemma 1

LetO = qkn2 be an odd perfect number with Euler prime q. By the definition of perfect numbers,
and using the multiplicativity of I , we have

2 = I(O) = I(qkn2) = I(qk)I(n2) =

(
σ(qk)

n2

)
·
(
σ(n2)

qk

)
,

from which it follows that i(q) = σ(n2)/qk = σ(N/qk)/qk is an integer, since gcd(qk, σ(qk)) =

1.
Consequently,

i(q) =
σ(n2)

qk
=

2n2

σ(qk)
.

Now, by setting

A = σ(n2), B = qk, C = 2n2, D = σ(qk),

we can use the algebraic identity
A

B
=
C

D
=
C − A
D −B
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to show that

i(q) =
D(n2)

σ(qk−1)
,

since D −B = σ(qk)− qk = 1 + q + . . .+ qk−1 = σ(qk−1).
The remaining part is to show that

gcd(n2, σ(n2)) =
D(n2)

σ(qk−1)

and this follows easily from
σ(n2)

qk
=

2n2

σ(qk)
=

D(n2)

σ(qk−1)

and the fact that gcd(qk, σ(qk)/2) = 1.
This finishes the proof. �

4 A short “proof” of Theorem 3

Let O = qkn2 be an odd perfect number with Euler prime q. By Lemma 1, we have

i(q) =
σ(O/qk)

qk
=

2n2

σ(qk)
=

D(n2)

σ(qk−1)
= gcd(n2, σ(n2)).

We want to show that, assuming certain unproved yet reasonable conjectures in the literature,
then i(q) > 5.

We claim that i(q) > q. The proof of i(q) 6= q is trivial, and follows from gcd(q, n) = 1.
We now give two disproofs for i(q) < q, by assuming Conjecture 2 and then Conjecture 1,

respectively.
Disproof 1: Assume that Conjecture 2 is true. Then we have qk < n (which implies q < n),

so that

q > i(q) =
σ(n2)

qk
implies that σ(n2) < q · qk < n · n = n2,

which is a contradiction.
Disproof 2: Suppose that Conjecture 1 holds. Then we have k = 1, which implies that q < n

(a result of Brown [2], albeit still unpublished as of October 2018). We obtain

q > i(q) =
σ(n2)

qk
implies that σ(n2) < q · qk = q · q = q2 < n2,

which, again, is a contradiction.
This ends the short “proof” for Theorem 3. �

5 The “proof” of Theorem 4

Let O = qkn2 be an odd perfect number with Euler prime q, and suppose that n2 − qk is a power
of two. (Assume, for the sake of arriving at a contradiction, that Conjecture 2 is true.) Since
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q ≡ k ≡ 1 (mod 4), then qk ≡ 1 (mod 4). Moreover, since n2 is a square, then n2 ≡ 1

(mod 4). It follows that n2 − qk ≡ 0 (mod 4). (Note that qk < n2 by Theorem 2.) Thus,
n2 − qk = 2t for some integer t ≥ 2 (by assumption). We shall show that t cannot be even.

To this end, suppose to the contrary that n2 − qk = 22s. Then we obtain n2 − 22s = qk, from
which it follows that

(n+ 2s)(n− 2s) = qk.

This implies that we have the simultaneous equationsn+ 2s = qk−u

n− 2s = qu
,

where u is an integer satisfying 0 ≤ u ≤ (k − 1)/2. It follows that we have the system2s+1 = qk−u − qu = qu(qk−2u − 1)

2n = qk−u + qu = qu(qk−2u + 1)
.

We then have u = 0, 2s+1 = qk−2u − 1 = qk − 1

u = 0, 2n = qk−2u + 1 = qk + 1
.

We now consider the Diophantine equation

2s+1 = qk − 1.

This can be rewritten as
qk = 2v + 1

upon setting v = s+ 1. (Note that, since 2s = t ≥ 2, then v = s+ 1 ≥ 2.) We claim that k = 1.
Suppose to the contrary that k > 1. Then we obtain the only possible solution (q, v) = (3, 3) by
Mihǎilescu’s theorem [10]. This contradicts q ≡ 1 (mod 4). Therefore, k = 1 holds, and we
have u = 0, 2s+1 = q − 1

u = 0, 2n = q + 1
.

The second equation implies that n = (q + 1)/2 < q. This contradicts Conjecture 2, which
states that qk < n (and implies that q < n). (Alternatively, if one would be willing to accept the
veracity of the recent preprint [2] by Brown, then we already have a “proof” for the inequality
q < n. Still other alternative “proofs” are given in the paper by Dris [8] and by Starni [14].)

This finishes the proof. �
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6 The proof of Theorem 5

Let O = qkn2 be an odd perfect number with Euler prime q. Suppose that q is a Fermat prime,
and that n2 − qk is a power of two. By assumption and using Theorem 4, we have

n2 − qk = 22r+1

for some integer r ≥ 2. In addition, since q ≡ 1 (mod 4) is a Fermat prime (by assumption),
then we can write

q = 2m + 1

for some integer m ≥ 2. This means that m = 2l, for some integer l ≥ 1. In other words,
q = 22

l
+ 1 is a Fermat prime. Note that it is trivial to prove that

3 | 22l−1 + 1 =
q + 1

2
.

We want to show that k 6= 1. To this end, suppose to the contrary that k = 1. It follows that

n2 − q = n2 − (22
l

+ 1) = 22r+1,

from which we obtain
n2 − 22

l

= 22r+1 + 1,

which implies that

3 |
(
n2 − 22

l

)
.

This means that 3 - n2, since l ≥ 1 and 3 - 22l .
But we know that 3 | (q + 1)/2 | n2. This contradicts 3 - n2. This finishes the proof of

Theorem 5. �

7 Concluding remarks and future research

Note that, from the inequality qk < n2, one can show that n < q implies k = 1. By the contra-
positive, k > 1 implies q < n. Therefore, Theorem 5 implies Theorem 3 (under some additional
assumptions). We also get that Theorem 5 implies Theorem 4 (again, under certain additional
assumptions). The circular argument can be avoided if an independent proof is established for the
inequality q < n. This is the subject of the preprint [2], and the papers [14] and [8].

Of course, the arguments presented in the proofs for Theorem 4 and Theorem 5 do not readily
generalize to the case when n2 − qk is not a power of two, or the case when q is not a Fermat
prime. We leave this as a problem for other researchers.

Acknowledgements

The first author thanks Carl Pomerance, Severino Gervacio, and Timothy Foo for sharing their
expertise. The authors are also indebted to the anonymous referees whose valuable feedback
helped in improving the overall style and presentation of the manuscript.

24



References

[1] Beasley, B. D. (2013) Euler and the ongoing search for odd perfect numbers, ACMS 19th
Biennial Conference Proceedings, Bethel University.

[2] Brown, P. A. (2016) A partial proof of a conjecture of Dris, preprint, https://arxiv.
org/pdf/1602.01591v1.pdf.

[3] Dickson, L. E. (1971) History of the theory of numbers, Vol. 1, 3–33, Chelsea Pub. Co., New
York.

[4] Dris, J. A. B. (2008) Solving the odd perfect number problem: Some old and new ap-
proaches, M. S. Math thesis, De La Salle University, Manila, Philippines.

[5] Dris, J. A. B. (2009) Solving the odd perfect number problem: Some new approaches, Electr.
Proc. of the 11th Science and Technology Congress, ed. L. Pajo, De La Salle University.

[6] Dris, J. A. B. (2012) The abundancy index of divisors of odd perfect numbers, J. Integ. Seq.,
15 (4), Article 12.4.4.

[7] Dris, J. A. B. (2017) Conditions equivalent to the Descartes–Frenicle–Sorli Conjecture on
odd perfect numbers, Notes on Number Theory and Discrete Mathematics, 23 (2), 12–20.

[8] Dris, J. A. B. (2017) On a curious biconditional involving divisors of odd perfect numbers,
Notes on Number Theory and Discrete Mathematics, 23 (4), 1–13.

[9] Dris, J. A. B., & Luca, F. (2016) A note on odd perfect numbers, Fibonacci Quart., 54 (4),
291–295.
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