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1 Introduction

In mathematical literature, there are definitions for a number of arithmetic functions. In the
present paper, we use some of these arithmetic function, which for the natural number

n =
k∏
i=1

pαi
i , (1)

k, α1, . . . , αk, k ≥ 1 being natural numbers and p1, . . . , pk being different primes, are defined by:

ϕ(n) =
k∏
i=1

pαi−1
i (pi − 1), ϕ(1) = 1,
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ψ(n) =
k∏
i=1

pαi−1
i (pi + 1), ϕ(1) = 1,

σ(n) =
k∏
i=1

pαi+1
i − 1

pi − 1
, σ(1) = 1

ω(n) = k, ω(1) = 1

(see, e.g. [5, 7]). Also, we use the following notations for the above n:

mult(1) = 1, mult(n) =
k∏
i=1

pi,

set(1) = ∅, set(n) = {p1, . . . , pk}.

In the present paper, a new arithmetic function will be defined and some of its basic properties
are studied.

2 Definition and properties of function SF

Let us define for the natural number n given by (1)

SF (1) = 1,

SF (n) =
n

mult(n)
.mult

(
n

mult(n)

)
. (2)

We call this function “Squarefull factor”.
Let for n there exist a set In = {i1, . . . , is} for 0 ≤ s ≤ k with elements i1, . . . , is satisfying

the inequality i1 < · · · < is and let αi1 = · · · = αis = 1.

Obviously, if I = {1, 2, . . . , k}, then αi1 , . . . , αis ≥ 2. Therefore, the following new repre-
sentation of function S is possible.

Theorem 1. For the natural number n given by (1)

SF (n) =
k∏

j = 1

j 6∈ I

pαi
i . (3)

Proof. If I = ∅, then no power α will be equal to 1, i.e., for each i (1 ≤ i ≤ k) : αi > 1 or αi ≥ 2.

Therefore, pi is a divisor of n
mult(n)

with power αi−1 and it has power 1 inmult
(

n
mult(n)

)
. Hence,

in the right-hand side of (2) pi has a degree αi, as well as in the right-hand side of (3).
If I 6= ∅, i.e., if there exist i1, . . . , is with the above property, the prime numbers pi1 , . . . , pis

are not present in n
mult(n)

and, therefore, they are not present in the right-hand side of (2), as well
as in the right-hand side of (3).

Corollary 1. For each squarefree number n:

SF (n) = 1.
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Corollary 2. For each natural number n:

SF (n) ≤ n

and an equality exists only if n is squarefull.

Corollary 3. For every two natural numbers m, k ≥ 2:

SF (mk) = mk.

Theorem 2. Function SF is multiplicative.
Proof. Let (m,n) = 1 be valid for the two natural numbers m,n. Then

mult(mn) = mult(m)mult(n)

and

SF (mn) =
mn

mult(mn)
.mult

(
mn

mult(mn)

)
=

m

mult(m)
.

n

mult(n)
.mult

(
m

mult(m)
.

n

mult(n)

)
=

m

mult(m)
.mult

(
m

mult(m)

)
.

n

mult(n)
.mult

(
n

mult(n)

)
= SF (m)SF (n).

A shorter proof of this theorem is based on the fact that functions mult(n) and

A(n) =
n

mult(n)

are multiplicative functions, and for (a, b) = 1 one has (A(a), A(b)) = 1. �

In the Table 1, the first 60 values of function SF are given.

n SF (n) n SF (n) n SF (n) n SF (n)

1 1 16 16 31 1 46 1

2 1 17 1 32 32 47 1

3 1 18 9 33 1 48 16

4 4 19 1 34 1 49 49

5 1 20 4 35 1 50 25

6 1 21 1 36 36 51 1

7 1 22 1 37 1 52 4

8 8 23 1 38 1 53 1

9 9 24 8 39 1 54 27

10 1 25 25 40 8 55 1

11 1 26 1 41 1 56 8

12 4 27 27 42 1 57 1

13 1 28 4 43 1 58 1

14 1 29 1 44 4 59 1

15 1 30 1 45 9 60 4

Table 1. The first 60 values of function SF
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3 Inequalities with participation of function SF

Theorem 3. For each natural number n ≥ 2:

SF (n) ≤ ψ(n)− n

mult(n)
. (4)

Proof. Let n be a prime number. Then

SF (n) = 1 ≤ n = (n+ 1)− 1 = ψ(n)− n

mult(n)
.

Let n = pm, where p is a prime number and m ≥ 2 is a natural number. Then

SF (n) =
pm

mult(pm)
.mult

(
pm

mult(pm)

)

=
pm

p
.mult

(
pm

p

)
= pm−1.mult(pm−1) = pm = pm−1(p+ 1)− pm−1

= ψ(n)− n

mult(n)
.

Let us assume that (4) be valid for some natural number n and let p be a prime number.
If p 6∈ set(n), then from Theorem 2 it follows that

SF (np) = SF (n)SF (p) = SF (n)

≤ ψ(n)− n

mult(n)

≤ p

(
ψ(n)− n

mult(n)

)
≤ ψ(n)(p+ 1)− np

mult(n)

≤ ψ(np)− np

mult(n)p

≤ ψ(np)− np

mult(np)
.

If p ∈ set(n), then mult(np) = mult(n), and

SF (np) =
np

mult(np)
.mult

(
np

mult(np)

)

=
np

mult(n)
.mult

(
np

mult(n)

)
= p.

n

mult(n)
.mult

(
n

mult(n)

)
= SF (n)p ≤ p

(
ψ(n)− n

mult(n)

)
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= ψ(np)− np

mult(n)
= ψ(np)− np

mult(np)
.

Another proof of this theorem is the following. Using the value of ψ(n) given by the prime
factorization of n per (1), the inequality (4) can be reduced to:

mult(pα1−1
1 · · · pαr−1)

r + 1 ≤ (p1 + 1) · · · (pr + 1). (5)

As the left-hand side of (5) is less than or equal to p1 · · · pr, inequality (5) follows by the
following inequality:

p1 · · · pr + 1 ≤ (p1 + 1) · · · (pr + 1). (6)

Inequality (6) is well-known, and follows easily, e.g., by mathematical induction. There is an
equality in (6) only for r = 1.

It is immediate that, there is an equality in relation (4) only if n = pa, where p is a prime and
a ≥ 2 (i.e., a squarefull number, with a single prime divisor). �

Corollary 4. For each natural number n:

SF (n) ≤ σ(n)− n

mult(n)
.

From Corollary 4 one gets also

SF (n) ≤ n2

ϕ(n)
− n

mult(n)
.

Let min(n) = min(set(n)). Then the following theorem is valid.

Theorem 4. For each natural number n ≥ 2:

SF (n) < ϕ(n)

(
1− 1

min(n)

)−ω(n)
. (7)

Proof. We see directly that

SF (n)

ϕ(n)
=

n
mult(n)

.mult
(

n
mult(n)

)
k∏
i=1

pαi−1
i (pi − 1)

=
mult

(
n

mult(n)

)
k∏
i=1

(pi − 1)

≤

k∏
i=1

pi

k∏
i=1

(pi − 1)

=
k∏
i=1

1

1− 1
pi

≤
(
1− 1

min(n)

)−ω(n)
. �

Theorem 5. For each natural number n:

SF (n) <
π2

6
.
ϕ(n)ψ(n)

n
(8)
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Proof. From definition of function ψ we have

n

ψ(n)
=

k∏
i=1

1

1 + 1
pi

.

Now, we obtain
k∏
i=1

1

1− 1
pi

=
k∏
i=1

1
1+ 1

pi

1
1− 1

p2
i

.

Let P be the set of all primes. Then
k∏
i=1

1

1− 1
p2i

<
∏
p∈P

1

1− 1
p2

= ζ(2) =
π2

6
.

Therefore, inequality (8) follows.
This inequality is the best possible, as can be seen by taking n = (p1 · · · pr)2, where now

pi ∈ P is the i-th prime number, then for this particular n one has

nSF (n)

ϕ(n)ψ(n)
=

r∏
i=1

1

1− 1
p2i

having the limit, as r tends to∞, exactly ζ(2) = π2

6
.

In [1, 2, 4] the following function is defined for n from (1):

δ(n) =
k∑
i=1

αip
α1
1 · · · p

αi−1

i−1 p
αi−1
i p

αi+1

i+1 · · · p
αk
k .

Theorem 6. For each natural number n:

SF (n) ≤ δ(n). (10)

Proof. Let n be a prime number. Then

SF (n) = 1 = δ(n).

Let us assume that (10) be valid for some natural number n and let p be a prime number.
If p 6∈ set(n), then from Theorem 2 it follows that

SF (np) = SF (n)SF (p) = SF (n) ≤ δ(n) ≤ δ(n)p+ n = δ(np).

If p ∈ set(n), then as in the proof of Theorem 3:

SF (np) = SF (n)p ≤ pδ(n) < δ(n)p+ n = δ(np). �

In [3] the following function is defined for n from (1):

RF (n) =
k∏
i=1

pαi−1
i =

n

mult(n)
.

Some of its properties are discussed in [6]. From (2) it follows directly that for each natural
number n:

RF (n) ≤ SF (n).
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4 Conclusion

In near future, other propertiers of function SF will be discussed. For example, at the moment an
Open problem is: What is the relation between function SF and the other arithmetic functions.
On the other hand, we can introduce the following new arithmetic function.

t(n) = mult(ϕ(n)). (11)

One has t(1) = 1, t(2) = 1, t(2k) = 2 for any k ≥ 2 and

t(pk) = p.mult(p− 1)

for any odd prime p. Particularly, one has

t(pk) ≥ 2p.

On the other hand, one has t(n) ≤ ϕ(n) ≤ n− 1 for any n ≥ 2.
Now, it is immediate that,

mult(ab) ≤ mult(a).mult(b)

for any a, b ≥ 1.
Let (u, v) = 1. Then we get

t(uv) = mult(ϕ(u).ϕ(v)) ≤ mult(ϕ(u)).mult(ϕ(v)),

by the above property. Therefore, we get:

t(uv) ≤ t(u).t(v)

for any (u, v) = 1.
We have used also that the function ϕ is multiplicative. Using relation (11), we get that for

the prime factorization (1) from the article, one has:

t(n) ≤
∏
p/n

p.mult(p− 1).

Perhaps, other properties of this function could be established, too.
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