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Abstract: Motivated by the article in Scientific American [8], Michael A Henning and Stephen
T. Hedetniemi explored the strategy of defending the Roman Empire. Cockayne defined Roman
dominating function (RDF) on a Graph G = (V, E) to be a function f: V — {0, 1, 2} satisfying
the condition that every vertex u for which f (1) = 0. is adjacent to at least one vertex v for
which f (v) = 2. For a real valued function f: V— R the weight of f is w(f)=2, f(v). The

Roman Domination Number (RDN) denoted by yz(G) is the minimum weight among all RDF
in G. If V— D contains a Roman dominating function f v {0, 1, 2}, where D is the set of
vertices v for which £ (v) > 0. Then f! is called inverse Roman dominating function (IRDF) on a
graph G w.r.t. f. The inverse Roman domination number (IRDN) denoted by y'z(G) is the
minimum weight among all IRDF in G. In this paper we find few results of RDN and IRDN.
Keywords: Domination number, Inverse domination number, Roman domination number.
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1 Introduction

The theory of domination was introduced by Claude Berge in 1958 [1] and Ore in 1962 [6]. The
inspiration for this concept was drawn from the classical problem of covering a chessboard with
a minimal number of chess pieces. The concept of domination theory in graphs is receiving
much attention in the literature with more than hundred types of dominations being defined in
the literature. One among those hundred is the Roman domination. Constantine the Great ruled
the Roman Empire between 306 AD and 337 AD. Due to various conflicts with the neighboring
territories, the Roman Empire was under severe attack. Due to this circumstance, the resources
of the Roman Empire were completely declined. Emperor Constantine had to decide where to

142



station his four field legions to protect eight regions. This challenge was overcome by placing
the legions so that every region was either secured by its own legion or was securable by a
neighbor with two legions, one of which could be sent to the undefended regions directly in
case of conflict break out.

Ian Stewart in his article [8] argued that if Constantine had been a better mathematician,
then the Roman Empire might have lasted a little longer than it did. The better way of
deployment of legions was studied by C. S. ReVelle and K. E. Rosing through a form of zero-
one integer programming [7]. Motivated by the article written by lan Stewart, Michael A.
Henning and Stephen T. Hedetniemi explored the strategy of defending the Roman Empire.
They believed that the Roman Empire had the potential of saving the Emperor Constantine the
Great, curtailing costs of maintaining legions while still defending the Roman Empire [3]. The
deployment of legions is not the only problem associated with Roman domination. The same
sort of mathematics is useful when one needs to decide the optimal location in the town for
setting up a new fire station, a police station, hospitals, restaurants, etc. Many such optimization
problems could be modeled using the concept of Roman domination.

Let G (V, E) be a graph, A subset S cV is a domination set of G, if for any vertex
ueV —S there exist a vertex ve S such that uve E . The domination number of G, denoted
by 7(G) equals the minimum cardinality of the domination set.

A Roman dominating function (RDF) on a graph G = (V, E) is defined as a function
f:V—{0,1,2} satisfying the condition that every vertex u for which f (1) = 0 is adjacent to at
least one vertex v for which f (v) = 2. For a real-valued function f :V — R the weight of f is

w(f)=2 .y f(v). The Roman domination number (RDN) denoted by 7'r(G) is the minimum

weight among all RDF in G.
The positions of legions are kept secret in order to take advantage over their enemy’s

strategies. But if the enemies come to know the positions of the legions, then the best chance of
attack is in the places where no legions are placed, so that the time lags in moving the legions
from the adjacent regions can be taken as an advantage. Hence, if the emperor comes to know
that the enemies know their legions positions. In order to surprise the enemies and create great
damage, the question of optimal reorganizing of the legions still defending the Roman Empire
need to be answered. Hence we define the inverse Roman dominating function.

An Inverse Roman Dominating Function (IRDF) is also a Roman dominating function. If
V — D contains a Roman dominating function f 1 v — {0, 1,2}, where D is the set of vertices v
for which f (v) > 0, then £ is called Inverse Roman Dominating Function (IRDF) on a graph G,
with respect to a Roman dominating function f. The inverse Roman Domination Number
(IRDN) denoted by y'z(G) is the minimum weight among all IRDF in G. For any undefined
terms or notation in this paper, we refer Harary [2].

2 Preliminary results [4, 5]

Proposition 2.1. For any given graph G (n, m), ¥,(G) < 7'z (G).
Corollary 2.1. 7,(G)<y'r(G)<n.
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Proposition 2.2. For any complete graph Ky, with n vertices, 7,(K,)=7'x(K,)=2.

Proposition 2.3. For the classes of cycle C, with n vertices, ¥,(G)=7'x(G) = {2—1 .

3

Proposition 2.4. For the classes of paths P, with n > 2 vertices,

2%1 if n=0(mod3)

7'n(G) = [ >
[?n—‘ Otherwise

Proposition 2.5. For the classes of wheel W, with n >4 vertices, ¥'x(G) = [2(”3_ 1)—l '

Proposition 2.6. For the classes of star K, with n vertices, ¥'x(G)=n.
Proposition 2.7. For the classes of ladder G2, ¥'#r(G)=n+1.

Proposition 2.8. For any graph G of order n with maximum degree A and minimum degree 9,

[A211—|371R(G)Sn—5+1.

3 Definitions

Banana Graph: An (n,k)-banana tree is a graph obtained by connecting one leaf to each of n
copies of a k-star graph with a single root vertex that is distinct from all the stars, denoted by
B(n,k).

Lollipop Graph: An (m,n)-lollipop graph is the graph obtained by joining a complete graph K,
to path P, with a bridge, denoted by L(m,n).

Book Graph: The m book graph is defined as the graph Cartesian product S,+1 X P2, where S,
is a star graph and P, is the path graph, denoted by B;,.

Stacked Book Graph: The (m,n)-stacked book graph is defined as the graph Cartesian product
Sm+1 X Pn, where S, is a star graph and P, is the path graph, denoted by By, .. Therefore the
graph corresponding to the edges of ncopies of an m-page “book™ stacked one on top of
another and is a generalization of the book graph.

Crown Graph: A crown graph on 2n vertices is a graph with two sets of vertices {u1, u, ..., un}
and {vi, v2, ..., v»} with an edge from u; to vj whenever i # j, denoted by S 3

Bipartite Graph: A graph is said to be bipartite if its vertex set can be partitioned into two
disjoint subsets V = v U vz, such that every edge has the form e = (a,b), where a € v and

b € v, also no vertices both in v; or both in v> are adjacent.

Complete Bipartite Graph: A complete bipartite graph K., is a bipartite graph that has each
vertex from one set adjacent to each vertex of another set and no two graph vertices within the
same set are adjacent.
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4 Main results

Theorem 4.1. Let G = By. Then, yr(Bmy) =21 + 1 and ¥ (Bw) = nim.

Proof: Let ve V with deg(v) = n, deg(v) = 2, deg(v) =m — 1 and deg(v) = 1 are labeled as r1, v,
1<i<n, w,1<i<n and u;j, 1<i<n, 1< j<m-2, respectively. Let f be a yr-function with

f =(V,,V,,V,), by definition each ve V, will be adjacent to at least one vertex u € V,. Without
loss of generality, the maximum degree in G is A=m—1. Hence, f (w,.)z 2 ,1<i<n, then by
definition N(w,)=0, 1<i<n, e, f(v)=flu,)=0,Vi,j and in G with [V||=1, f(r)=1.
Therefore, y,(B,, )= 2(n)+1 =2n+1. Let f! be the inverse Roman dominating function with
fl(vi)=2, 1<i<n. As wu,r, 1<i<n forms a path P3 in which f(w,)=2,1<i<n and

£(r)=1. Therefore, f'(u;)=1, 1<i<n, 1< j<(m—2). Hence ¥k (Buma) = 2(n) + nim — 2)
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Figure 1. Banana tree B, ,, .

Theorem 4.2. Let G = L(m,n). Then,

20002 if n=0(mod3)
Ve (L(m.n))= [ijlﬁ +2  Otherwise

and

@1 +2 if n=0(mod3)
ALma)={ 3
[?_‘ +2 Otherwise

Proof: Let P, be a path with u;, 1<i<n vertices connected to a complete graph K, with v;,
1<i<n vertices along a bridge viui and f (v1) = 2.
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Consider two cases.

Case 1: If n=0(mod 3) , there exists a unique minimal Roman domination set
Dz{u3p/1Sps%}

with f (ui )=2, u,e D. Hence y, (L(m,n))=2+ [%—l For the inverse Roman dominating

function f1, let f 1(vi)z 2, for i #1. Then, there exist an unique inverse Roman domination set
D' givenby D' = {u[_l lu, € D}, with fl(u[)z 2, u,e D', therefore

7;<L<m,n»=z+[M].

3

Case 2: If n  0(mod3), there exists a minimal Roman dominating function with f (un )=1, for

n=3p—1 and f(un):O for n=3p+1, pe N.The Roman domination set is given by

Dz{u3p/lSpS§}u{un}f0r n=3p-1
or

Dz{u3p/13psg} for n=3p+1.

Hence y,(L(m,n))=2+ [@—‘ . For the inverse Roman domination function f', f'(v,)=2,
i#1. Then the inverse Roman domination set given by D' = {”;_1 lu, e D} with f 1(ui)z 2,
u,€ D', therefore yx(L(m,n))= [%—l +2. ]

Figure 2. Lollipop graph L(m,n).
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Theorem 4.3. Let G =B, . Then, ¥,(B,)=7,(B,)=4.

Proof: The graph G =B, is Cartesian product of §,,, and P,. Let f be a yg-function with
f =(V,,V,,V,), by definition each ve V, will be adjacent to at least one vertex ueV,. In By,
A(G)|:2 hence |V2|= 2, Vl|:0. Therefore
Vr (Bn )=2+2=4. For the inverse Roman dominating function f" there are n sets of P». Hence

V.,|=n, |V,|=0. Therefore, 1(B )=2n. O
|2| 1| Vr\D,

each star has one vertex with deg(v)=n,

Figure 3: Book graph B, .

Theorem 4.4. Let G =S". Then, 7,(5°)= 74(s°)=4.

Proof: Let G=S consist of two disjoint sets of vertices U = {u;}, 1<i<n and V = {v;},
1< j<n, with an edge from u; to v whenever i # j, 1 <i, j <n. Hence for Roman dominating
function f, we have f(ui)z f(vj): 2, i=j, for exactly one value of i or j, 1<i, j<n.Hence
Vr (Sf):2+2:4. For inverse Roman dominating function f ! due to symmetry of graph
fl(ui)zfl(vj)=2, i=j, for any exactly value of iorj, 1<i,j<n such that {u;, vj} ¢ D.
Hence y;(53)=2+2=4. O]

Figure 4. Crown graph S.
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Theorem 4.5: Let G = K,,,. Then, 7,(K,,,)=7.(K,,)=4.

Proof: The vertex set of the complete bipartite graph can be partitioned into two sets U = {u;},
1<i<m and V = {v;}, 1< j <n, such that each vertex from one set is adjacent to each vertex of
another set and no two graph vertices within the same set are adjacent. For Roman dominating
function f, f(u;)=2,1<i<m andf(v) =2, 1< j<n. Therefore, 7,(K, ,)=2+2=4. For the
inverse Roman dominating function f' due to symmetry of graph, f'(u;) = 2, 1<i<m and
F'09) =2, 1< j<n, such that {u;, v} & D. Hence 74(K,,,)=2+2=4. O

Figure 5. Complete bipartite graph K.

Theorem 4-6: Let G = Kml’mz’“,’mn , Mi S ng e S mpy.

2 for m,=1
a) If m =1,then ¥,(G)=2 and ¥,(G)=<3 for m,=2
4 for m,>2

b) If m, =2, th (G)=3 and 7,(G) = 3 for my=2
, then ¥ an
' K K 4 for m,>2
c) If m =3, then y,(G)= 7/11?(G) =4,

Proof: The vertex set of the complete n partite graph can be partitioned into n sets
U, :{u“,ulz,...ulml }, U, :{uﬂ,uzz,...uz%}, .U, :{unl,unz,...unmn} such that each vertex from

one set is adjacent to each vertex of another set and no two graph vertices within the same set
are adjacent. The following cases are obtained to find RDF and IRDF.

Case 1: If m; = mp = 1, then there exists a unique Roman and inverse Roman domination set
such that IDI = ID'| = 1. Without loss of generality, let f(u11) = f'(u21) = 2, therefore

Y.(G)=¥5(G)=2.1f m, =1,m, =2, then fbe a ¥, -function with £(V,,V,,V,) given Vol =
IVil = 0, IVl = 1. Without loss of generality, let f(u,,)=2, therefore ¥,(G)=2. For IRDF let
f' be 7, function with f'(V).V'.V)) given V| =0.v/[=1.;|=1. Without loss of
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generality, let f'(u,)=2, f'(u,,)=1. Therefore y,(G)=3. Similarly, if m, =1, m, >2, then

7.(G)=2.ie., f(u,)=2.For IRDF f'(u, )=2,f"(us,)=2. Therefore y,(G)=4.Hence the
result.

Case 2: Similar to Case 1, if n=m, =2, then ,(G)=%(G)=3, ie., flu)=2, flu,)=1, f'(u,)=2
[ ) =116 m =2, m, 23, then y,(G)=3, ie., flu,)=2, fluy,)=1, f'uy) f1luy)=2.
Therefore ,(G)=4. Hence the result.

Case 3: Similar to Case 1, if m, >3, then %,(G)=y,(G)=4, ie., f(u,)=f(u,)=2, and
f'(u,)= f'(u,,)=2. Hence the result. [

Theorem 4.7: Let G = B(m,n). Then, ¥,(B(m,n))=2n and y,(B(m,n))=2(m+n)-4.
Proof: The graph B(m,n) consists of a star graph S,+1 and a path graph P,. For a minimal

Roman dominating function f, each star has one vertex with deg(v)=m, A(G)Izn hence

|V2|:”’

V1| =0. Therefore, ¥, (B(m,n)) =2n . For the inverse Roman dominating function f'
we have pendant vertices of the star graph, therefore, f'(u;)=2, 1<i<(m—1) and f 1(vj ): 2,

1< j<(n-1). Hence, y;(B(m,n))=(m-1)2+2(n—-1)=2(m+n)-4. O

Figure 6. Stacked book graph B(m, n).

Proportion 4.8: For a graph G on n vertices, (G) = y,(G) iff G :Fn, and 7,(G) does not

exist.

Proof: Let G = K_n, then the vertex set in G can be partitioned into V,, V,, V, that indicates the
vertices of G for which f(u)=0, Vue V, , flv)=1, wve V, fw)=2, vwe V, respectively.
If G :Fn, then |V0| =|V2| =0. Hence |Vl| =|V| =n. Therefore, there exist no vertices in V —D

for the inverse Roman dominating function f'. Hence IRDF does not exist. ]
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Proportion 4.9: If G is a graph on n vertices with a vertex of degree n—1, then ¥(G)=1,
7.(G)=2 and 2< 7, (G)<n—-5+1.
Proof: The result follows from Proposition 2.8 [4]. ]

Proportion 4.10: If G is a graph on n vertices, then ¥,(G) = 7/;(G) iff G has two vertices of
degree n—1 or the graph G is symmetric in nature.

Proof: Let the given graph is symmetric in nature then the vertex set of G can be partitioned in

two sets V,, V,, V, and V,, V', V) for RDF and IRDF such that |V0|=‘VOl , Vl|=‘Vl1 ,
|V2|=‘V21‘. If there exist u,veV, such that deg(u)=deg(v)=n—1, then f(u)=f'(v)=2.
Hence the proof. ]

5 Open problems

Open Problem 1. Find the sufficient condition and characterize the graph for which
V2(G) < V'R(G), ¥:(G) = ¥'r(G) & ¥,(G)# V'r(G).

Open Problem 2. Find bounds of 7'x(G) for various classes of graphs and also for arbitrary
graph.
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