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Abstract: Motivated by the article in Scientific American [8], Michael A Henning and Stephen 

T. Hedetniemi explored the strategy of defending the Roman Empire. Cockayne defined Roman 

dominating function (RDF) on a Graph G = (V, E) to be a function f : V → {0, 1, 2} satisfying 

the condition that every vertex u for which f (u) = 0.  is adjacent to at least one vertex v for 

which f (v) = 2. For a real valued function f : V → R  the weight of f  is ( ) ( ).v Vw f f v∈=∑  The 

Roman Domination Number (RDN) denoted by γR (G) is the minimum weight among all RDF 

in G. If V – D contains a Roman dominating function  f 1 : V → {0, 1, 2}, where D is the set of 

vertices v for which f (v) > 0. Then f 1 is called inverse Roman dominating function (IRDF) on a 

graph G w.r.t. f. The inverse Roman domination number (IRDN) denoted by γ1
R(G) is the 

minimum weight among all IRDF in G. In this paper we find few results of RDN and IRDN. 

Keywords: Domination number, Inverse domination number, Roman domination number. 
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1 Introduction 

The theory of domination was introduced by Claude Berge in 1958 [1] and Ore in 1962 [6]. The 

inspiration for this concept was drawn from the classical problem of covering a chessboard with 

a minimal number of chess pieces. The concept of domination theory in graphs is receiving 

much attention in the literature with more than hundred types of dominations being defined in 

the literature. One among those hundred is the Roman domination. Constantine the Great ruled 

the Roman Empire between 306 AD and 337 AD. Due to various conflicts with the neighboring 

territories, the Roman Empire was under severe attack. Due to this circumstance, the resources 

of the Roman Empire were completely declined. Emperor Constantine had to decide where to 
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station his four field legions to protect eight regions. This challenge was overcome by placing 

the legions so that every region was either secured by its own legion or was securable by a 

neighbor with two legions, one of which could be sent to the undefended regions directly in 

case of conflict break out. 

Ian Stewart in his article [8] argued that if Constantine had been a better mathematician, 

then the Roman Empire might have lasted a little longer than it did. The better way of 

deployment of legions was studied by C. S. ReVelle and K. E. Rosing through a form of zero-

one integer programming [7]. Motivated by the article written by Ian Stewart, Michael A. 

Henning and Stephen T. Hedetniemi explored the strategy of defending the Roman Empire. 

They believed that the Roman Empire had the potential of saving the Emperor Constantine the 

Great, curtailing costs of maintaining legions while still defending the Roman Empire [3]. The 

deployment of legions is not the only problem associated with Roman domination. The same 

sort of mathematics is useful when one needs to decide the optimal location in the town for 

setting up a new fire station, a police station, hospitals, restaurants, etc. Many such optimization 

problems could be modeled using the concept of Roman domination. 

Let G (V, E) be a graph, A subset VS ⊆  is a domination set of G, if for any vertex 

SVu −∈  there exist a vertex Sv ∈  such that Euv ∈ . The domination number of G, denoted 

by )(Gγ  equals the minimum cardinality of the domination set. 

A Roman dominating function (RDF) on a graph G = (V, E) is defined as a function 

f : V → {0, 1, 2}  satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at 

least one vertex v for which f (v) = 2. For a real-valued function RVf →:  the weight of f is 

( ) ( ).v Vw f f v∈=∑  The Roman domination number (RDN) denoted by γ1R(G) is the minimum 

weight among all RDF in G. 

The positions of legions are kept secret in order to take advantage over their enemy’s 

strategies. But if the enemies come to know the positions of the legions, then the best chance of 

attack is in the places where no legions are placed, so that the time lags in moving the legions 

from the adjacent regions can be taken as an advantage. Hence, if the emperor comes to know 

that the enemies know their legions positions. In order to surprise the enemies and create great 

damage, the question of optimal reorganizing of the legions still defending the Roman Empire 

need to be answered. Hence we define the inverse Roman dominating function. 

An Inverse Roman Dominating Function (IRDF) is also a Roman dominating function. If 

DV −  contains a Roman dominating function f 1: V → {0, 1, 2}, where D is the set of vertices v 

for which f (v) > 0, then f 1 is called Inverse Roman Dominating Function (IRDF) on a graph G, 

with respect to a Roman dominating function f. The inverse Roman Domination Number 

(IRDN) denoted by γ1R(G) is the minimum weight among all IRDF in G. For any undefined 

terms or notation in this paper, we refer Harary [2]. 

2 Preliminary results [4, 5] 

Proposition 2.1. For any given graph G (n, m), )()( 1 GG RR γγ ≤ .  

Corollary 2.1.  nGG RR ≤≤ )()( 1γγ . 
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Proposition 2.2.  For any complete graph Kn, with n vertices, 2)()( 1 == nRnR KK γγ . 

Proposition 2.3.  For the classes of cycle Cn with n vertices, 
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Proposition 2.4.  For the classes of paths Pn with n > 2 vertices, 
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Proposition 2.5. For the classes of wheel Wn with 4≥n  vertices, 
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Proposition 2.6. For the classes of star K1,n–1 with n  vertices, nGR =)(1γ . 

Proposition 2.7. For the classes of ladder G2,n, 1)(1 += nGRγ . 

Proposition 2.8. For any graph G of order n with maximum degree ∆  and minimum degree δ, 

1)(
1

2 1 +−≤≤






+∆
δγ nG

n
R . 

3 Definitions 

Banana Graph: An (n,k)-banana tree is a graph obtained by connecting one leaf to each of n 

copies of a k-star graph with a single root vertex that is distinct from all the stars, denoted by 

B(n,k).  

Lollipop Graph: An (m,n)-lollipop graph is the graph obtained by joining a complete graph Km 

to path Pn with a bridge, denoted by L(m,n).  

Book Graph: The m book graph is defined as the graph Cartesian product Sm+1  × P2, where Sm 

is a star graph and 2P  is the path graph, denoted by Bm. 

Stacked Book Graph: The (m,n)-stacked book graph is defined as the graph Cartesian product 

Sm+1  × Pn, where Sm is a star graph and Pn is the path graph, denoted by Bm,n. Therefore the 

graph corresponding to the edges of n copies of an m-page “book” stacked one on top of 

another and is a generalization of the book graph. 

Crown Graph: A crown graph on 2n vertices is a graph with two sets of vertices {u1, u2, …, un} 

and {v1, v2, …, vn} with an edge from ui to vj whenever i ≠ j, denoted by 
0

n
S . 

Bipartite Graph: A graph is said to be bipartite if its vertex set can be partitioned into two 

disjoint subsets V = v1 ∪ v2, such that every edge has the form e = (a,b), where a ∈ v1 and  

b ∈ v2 also no vertices both in v1 or both in v2 are adjacent. 

Complete Bipartite Graph: A complete bipartite graph Km,n is a bipartite graph that has each 

vertex from one set adjacent to each vertex of another set and no two graph vertices within the 

same set are adjacent. 
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4 Main results 

Theorem 4.1. Let G = Bm,n. Then, γR(Bm,n) = 2n + 1 and 1
Rγ (Bm,n) = nm. 

Proof: Let Vv ∈  with deg(v) = n, deg(v) = 2, deg(v) = m – 1 and deg(v) = 1 are labeled as r1, vi, 

ni ≤≤1 , iw , ni ≤≤1  and ui,j, ni ≤≤1 , 21 −≤≤ mj , respectively. Let f be a γR-function with 

( )210 ,, VVVf = , by definition each 0Vv ∈  will be adjacent to at least one vertex 2Vu ∈ . Without 

loss of generality, the maximum degree in G is 1−=∆ m . Hence, ( ) niwf i ≤≤= 1,2 , then by 

definition ( ) 0=iwN , ni ≤≤1 , i.e., ( ) ( ) jiufvf iji ,,0 ∀==  and in G with 11 =V , ( ) 11 =rf . 

Therefore, ( ) 1212)( , +=+= nnB mnRγ . Let f  

1 be the inverse Roman dominating function with 

( ) ,21 =ivf ni ≤≤1 . As iiuw 1r , ni ≤≤1  forms a path P3 in which ( ) 2=iwf , ni ≤≤1  and 

( ) 11 =rf . Therefore, ( ) 11 =ijuf , ,1 ni ≤≤ ( )21 −≤≤ mj . Hence 1
Rγ (Bm,n) = 2(n) + n(m – 2)  

= nm. � 

 

 
 

Figure 1. Banana tree mnB , . 
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Proof: Let Pn be a path with ui, ni ≤≤1  vertices connected to a complete graph Km with vi, 

ni ≤≤1  vertices along a bridge v1u1 and f (v1) = 2. 
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Consider two cases. 

Case 1: If ( )3mod0≡n , there exists a unique minimal Roman domination set 
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Case 2: If n ≢ ( )3mod0 , there exists a minimal Roman dominating function with ( ) 1=nuf , for 

13 −= pn  and ( ) 0=nuf  for 13 += pn , Np ∈ . The Roman domination set is given by 
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Figure 2. Lollipop graph ( )nmL , . 
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Theorem 4.3. Let nBG = . Then, ( ) =nR Bγ ( ) 41 =nR Bγ . 

Proof:  The graph nBG =  is Cartesian product of 1+nS  and 2P . Let f  be a γR-function with 

( )210 ,, VVVf = , by definition each 0Vv ∈  will be adjacent to at least one vertex 2Vu ∈ . In Bn, 

each star has one vertex with ( ) nv =deg , ( ) 2=∆ G  hence 22 =V , 01 =V . Therefore 

( ) 422 =+=nR Bγ . For the inverse Roman dominating function f 1 there are n sets of P2. Hence 

nV =2 , 01 =V . Therefore, ( ) nBnR 21 =γ . � 

 

 
 

Figure 3: Book graph nB . 

Theorem 4.4. Let 0

nSG = . Then, ( ) =0

nR Sγ ( ) 401 =nR Sγ . 

Proof: Let 0

nSG =  consist of two disjoint sets of vertices U = {ui}, ni ≤≤1  and V = {vj}, 

nj ≤≤1 , with an edge from ui to vj whenever ji ≠ , i≤1 , nj ≤ . Hence for Roman dominating 

function f, we have ( ) ( ) 2== ji vfuf , ji = , for exactly one value of i  or j , nji ≤≤ ,1 . Hence 

( ) 4220 =+=nR Sγ . For inverse Roman dominating function f 1 due to symmetry of graph 

( ) ( ) 211 == ji vfuf , i = j,  for any exactly value of i or j, nji ≤≤ ,1  such that {ui, vj} ∉ D. 

Hence ( ) 42201 =+=nR Sγ . � 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Crown graph 0
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Theorem 4.5: Let nmKG ,= . Then, ( ) ( ) 4,

1

, == nmRnmR KK γγ . 

Proof: The vertex set of the complete bipartite graph can be partitioned into two sets U = {ui},  

mi ≤≤1  and V = {vj}, nj ≤≤1 , such that each vertex from one set is adjacent to each vertex of 

another set and no two graph vertices within the same set are adjacent. For Roman dominating 

function f, ( ) 2=iuf , mi ≤≤1  and f (vj) = 2, nj ≤≤1 . Therefore, ( ) 422, =+=nmR Kγ . For the 

inverse Roman dominating function f 1 due to symmetry of graph, f 1(ui) = 2, mi ≤≤1  and 

f 1(vj) = 2, nj ≤≤1 , such that {ui, vj} ∉ D. Hence ( ) 422,

1 =+=nmR Kγ . � 

 

 
Figure 5. Complete bipartite graph Km,n. 

Theorem 4.6: Let G = Km1,m2,…,mn
 , m1 ≤ m2 ≤ … ≤ mn. 

a) If 11 =m , then 2)( =GRγ  and 
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c) If 31 ≥m , then .4)()( 1 == GG RR γγ  

Proof: The vertex set of the complete n partite graph can be partitioned into n sets 

{ }
1112111 ...,, muuuU = , { }

2222212 ...,, muuuU = , …, { }
nnmnnn uuuU ...,, 21=  such that each vertex from 

one set is adjacent to each vertex of another set and no two graph vertices within the same set 

are adjacent. The following cases are obtained to find RDF and IRDF. 

 

Case 1: If m1 = m2 = 1, then there exists a unique Roman and inverse Roman domination set 

such that |D| = |D1| = 1. Without loss of generality, let f (u11) = f 1(u21) = 2, therefore 

2)()( 1 == GG RR γγ . If 11 =m , 22 =m , then
 
f be a Rγ -function with ( )210 ,, VVVf
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generality, let ( ) 221

1 =uf , ( ) 122

1 =uf . Therefore 3)(1 =GRγ . Similarly, if 11 =m , 22 >m , then 

2)( =GRγ . i.e., ( ) 211 =uf . For IRDF ( ) 221

1 =uf , ( ) 231

1 =uf . Therefore 4)(1 =GRγ . Hence the 

result. 
 

Case 2: Similar to Case 1, if =1m 22 =m , then )(GRγ 3)(1 == GRγ , i.e., ( ) 211 =uf , ( ) 112 =uf , ( ) ,221

1 =uf  

( ) 122

1 =uf . If 21 =m , 32 ≥m , then 3)( =GRγ , i.e., ( ) ,211 =uf  ( ) 112 =uf , ( ),21

1 uf  ( ) 231

1 =uf . 

Therefore 4)(1 =GRγ . Hence the result. 
 

Case 3: Similar to Case 1, if 31 ≥m , then 4)()( 1 == GG RR γγ , i.e., ( ) ( ) 22111 == ufuf , and 

( ) ( ) .222

1

12

1 == ufuf   Hence the result. � 

 

Theorem 4.7: Let ( )nmBG ,= . Then, ( )( ) nnmBR 2, =γ  and  ( )( ) ( ) 42,1 −+= nmnmBRγ . 

Proof: The graph ( )nmB ,  consists of a star graph Sm+1 and a path graph Pn. For a minimal 

Roman dominating function f, each star has one vertex with ( ) mv =deg , ( ) nG =∆  hence 

nV =2 , 01 =V . Therefore, ( )( ) nnmBR 2, =γ . For the inverse Roman dominating function 1f   

we have pendant vertices of the star graph, therefore, ( ) 21 =iuf , ( )11 −≤≤ mi  and ( ) 21 =jvf , 

( )11 −≤≤ nj . Hence, ( )( ) ( ) ( ) ( ) 421221,1 −+=−+−= nmnmnmBRγ .         � 

 

 
 

Figure 6. Stacked book graph ( )nmB , . 

 

Proportion 4.8: For a graph G on n vertices, )()( GG Rγγ =  iff
 nKG = , and )(1 GRγ  does  not 

exist. 

Proof: Let nKG = , then the vertex set in G can be partitioned into 0V , 1V , 2V  that indicates  the 

vertices of G for which ( ) 0=uf , 0Vu ∈∀  , ( ) 1=vf , 1Vv ∈∀
, 

( ) 2=wf , 2Vw∈∀
 
respectively. 

If nKG = , then 020 == VV . Hence nVV ==1 . Therefore, there exist no vertices in DV −  

for the inverse Roman dominating function 1f . Hence IRDF does not exist.  � 
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Proportion 4.9: If G is a graph on n vertices with a vertex of degree 1−n , then 1)( =Gγ , 

2)( =GRγ  and 1)(2 1 +−≤≤ δγ nGR . 

Proof: The result follows from Proposition 2.8 [4]. � 

 

Proportion 4.10: If G is a graph on n vertices, then )()( 1 GG RR γγ =  iff G has two vertices of 

degree 1−n  or the graph G is symmetric in nature. 

Proof: Let the given graph is symmetric in nature then the vertex set of G can be partitioned in 

two sets 0V , 1V , 2V  and 1

0V , 1

1V , 1

2V  for RDF and IRDF such that 1

00 VV = , 1

11 VV = , 

1

22 VV = . If there exist Vvu ∈, , such that ( ) ( ) 1degdeg −== nvu , then ( ) ( ) 21 == vfuf . 

Hence the proof. � 

5 Open problems 

Open Problem 1. Find the sufficient condition and characterize the graph for which 

)()( 1 GG RR γγ ≤ , )()( 1 GG RR γγ =  & )()( 1 GG RR γγ ≠ . 

Open Problem 2. Find bounds of )(1 GRγ  for various classes of graphs and also for arbitrary 

graph. 
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