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Abstract: A signed graph is a graph whose edges carry the weight ‘+’ or ‘−’. A signed graph
S is called signed-regular if d−(v) is same for all v ∈ V and d+(v) is same for all v ∈ V . The
problems of embedding (i, j)-signed-regular graphs in (i, j + l)-signed-regular graphs is one of
the fascinating problems from application point of view, which is dealt in this paper with insertion
of least number of vertices in S.
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1 Introduction

Embedding of the graph has regularly been studied in many areas as communications, automo-
tive, medical, military purposes and so on. Optimal distortion embedding of distance regular
graphs has been studied into Euclidean space which is extensively used to design approximation
algorithms. Even in daily life it is used extensively in cellphones, digital cameras, MP3 play-
ers, portable digital assistants and automobile antilock brake systems, etc. Seeing its importance
and its studies by various authors in the literature ([3], [8–17], [21]) we were motivated towards
working out theoretically the embedding signed-regular graphs in higher order signed-regular
graphs.

To better understand the paper, for the preliminary notation and terminology Behzad and
Chartrand [4], Harary [7], West [20] and Zaslavsky [22–24] are referred. A signed graph is an
ordered pair S = (Su, σ), where Su = (V,E) is a graph, called the underlying graph of S and
σ : E → {+,−} is a function from the edge set E of Su into the set {+,−}. σ(e) is then
said to be the sign of e. The set {e ∈ E(Su) : σ(e) = +} and {e ∈ E(Su) : σ(e) = −}
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are called the set of positive and negative edges of S, respectively. If for every edge e ∈ E(Su),
σ(e) = +(σ(e) = −), then S is said to be homogeneous, and if it is not the case, then S is said to
be heterogeneous.

Edges in the graph are said to be adjacent if they are incident to a common vertex and inde-
pendent if no two of them are adjacent. By a matching in a graph G, we mean an independent
set of edges in G. The edge independence number β1(G) of a graph G is the maximum car-
dinality of an independent set of edges. Su is said to be the complement of a graph Su when
E(Su) ∪ E(Su) = E(Kn), when V (Su) = V (Su), | V |= n and E(Su) ∩ E(Su) = Φ. A graph
is called r-regular if all its vertices are of degree r. A signed graph S is called signed-regular if
d−(v) is the same for all v ∈ V (S) and d+(v) is the same for all v ∈ V (S) (see [18]).

A u-v path in a signed graph S is an alternating sequence of vertices without repetition,
beginning with u and ending at v such that consecutive vertices in the sequence are adjacent, and
we can express it as u = v0, v1, . . . , vk = v. A path is called homogeneous if all its edges have
the same sign and heterogeneous otherwise. The number of edges in a path is called the length of
the path. Pn denotes a path of length n− 1. P−n (P+

n ) denotes all the negative (positive) path of
length n− 1.

The Cartesian product Su
1�Su

2 of two graphs Su
1 and Su

2 is a graph with vertex set
V (Su

1)×V (Su
2) and two vertices (u1, u2) and (v1, v2) are adjacent in Su

1�Su
2 if and only if u1 is

adjacent to v1 in Su
1 and u2 = v2 or u2 is adjacent to v2 in Su

2 and u1 = v1. Since in tensor prod-
uct of graphs Su

1 and Su
2, the degree of a vertex (u, v) is defined as deg(u, v) = deg(u)deg(v),

if Su
1 and Su

2 are regular, then Su
1�Su

2 is also regular.
Let S = (Su, σ) be a signed graph. S is called Cartesian product of two signed graphs

S1 = (Su
1 , σ1) and S2 = (Su

2 , σ2) if Su ∼= Su
1�S

u
2 and for any edge (u1, u2)(v1, v2) of Su,

σ((u1, u2)(v1, v2)) =

σ1(u1v1) if u2 = v2,

σ2(u2v2) if u1 = v1.

The Cartesian product of two signed graphs S1 and S2 is shown in Figure 1.
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(3, p)
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1 2

S

Figure 1. S = S1�S2.
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2 Embedding a signed regular graphs

For a graph G′, embedding of G into a graph G′ we mean that there exists a subgraph of G′ which
is isomorphic to G. It is generally denoted as G ⊆ G′ (see [1]). Embedding, G ⊆ G′ is said to be
proper or strict if G ⊂ G′. Now we embark upon the finding of the results about the embedding
of signed-regular graphs. Some of the results obtained here were presented in the IEEE sponsored
conference at Dhaka, Bangladesh [19].

Note: Henceforth, throughout the paper, we consider S = (Su, σ) to be an (i, j)-signed-regular
graph of order n.

Gardiner (see [6]) made an observation and also gave proof to the fact that in case of graph
G, when G is r-regular, it can be embedded in G�P2 which is (r+ 1)-regular graph. Embedding
of a 2-regular graph G in a 3-regular graph G = H�P2 is shown in Figure 2. Then following can
be easily observed in signed graphs.

H G

Figure 2. G = H�P2.

Remark 2.1. If a signed graph S is (i, j)-regular, then S�P−2 is (i, j + 1)-regular and contains
S as an induced sub-signed graph.

The important thing that one can think about is the optimal number of vertices to be added to
S to obtain such kind of embedding. Let the number of extra vertices added be denoted by `(S).

3 Embedding of an (i, j)-signed-regular graph
in an (i, j + 1)-signed-regular graph

Theorem 3.1. For a signed graph S, if Su has a 1-factor, then `(S) = 0.

Proof. Since Su has a 1-factor, add all the edges of 1-factor of Su in S with negative sign. Thus,
we get an (i, j + 1)-signed-regular graph without increasing the number of vertices of S. Hence
`(S) = 0.

Corollary 3.2. For S = (C2n, σ), where Cn denotes a cycle of order n, `(S) = 0.

Proof. Since C2n has a 1-factor, due to Theorem 3.1, `(S) = 0.
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Corollary 3.3. For S = (Kn,n, σ), `(S) = 0 if n is even.

Proof. Since Kn,n has a 1-factor for even values of n, due to Theorem 3.1, `(S) = 0.

Theorem 3.4. For a signed graph S, if Su has no 1-factor, then i+ 1 ≤ `(S) ≤ n.

Proof. Since Su has no 1-factor, we have to generate positive regularity i with the new added
vertices. Thus,

`(S) ≥ i+ 1. (1)

From Remark 2.1,
`(S) ≤ n. (2)

Using equations (1) and (2),
i+ 1 ≤ `(S) ≤ n.

Theorem 3.5. [5] For a graph G of order n, if δ = ∆ is even, then G has at least d n∆
2(∆+1)

e
independent edges, where δ(G) (∆(G)) denotes minimum (maximum) degree in a graph G.

IfK(i,j)
i+j+1 denotes (i, j)-signed-regular complete signed graphs of order i+j+1, then one can

think of improving the bound talked about in Theorem 3.4. Theorem 3.6 below gives the solution
to the same.

Theorem 3.6. [19] For a signed graph S having no 1-factor in Su and n and i+ j are of opposite
parity, `(S) ≤ i+ j + 1, where | V (S) |= n.

Proof. Let i + j + 1 be the vertices required to form the (i, j)-signed-regular complete graph
K

(i,j)
i+j+1. If Su is a (n− i− j − 1)-regular graph, where (n− i− j − 1) is even, then the number

of independent edges in Su ≥ n−i−j−1
2

, by Theorem 3.5.
Thus, by selecting n−i−j−1

2
independent edges e1, e2, . . . , en−i−j−1

2
in Su and increasing the

negative degree by one, inserting these independent edges in S with negative sign. The remaining
i+j+1 vertices of S are joined by a negative edge to the vertices ofK(i,j)

i+j+1 in one-to-one manner.
In a similar manner, we join all i + j + 1 vertices of S to the vertices of K(i,j)

i+j+1, illustrated in
Figure 3. Thus, the resulting signed graph is (i, j+1)-signed-regular. Hence `(S) ≤ i+j+1.

H G

Figure 3. H ⊂ G.
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Remark 3.7. Alternatively, the proof of Theorem 3.6 can be written as:

Proof. LetM be a maximum matching in Su, so that |M | = β1(Su) andA denote the set of allM -
saturated vertices. Then A = 2|M |. Now let S be a (i, j)-signed-regular graph, using the results
of Theorem 3.5, the number of independent edges in Su ≥ n−i−j−1

2
, i.e., β1(Su) ≥ n−i−j−1

2
. Let

us take β1(Su) = n−i−j−1
2

. By adding the edges of β1(Su) to S with a negative sign, the 2β1

vertices have degree (i, j + 1). For the remaining n − 2β1 vertices, i.e., i + j + 1 we have to
choose K(i,j)

i+j+1, (i, j)-regular complete signed graph. Now add a matching of i + j + 1 negative
edges joining the i + j + 1 vertices of S and a set of i + j + 1 vertices of K(i,j)

i+j+1. Thus, the
resulting signed graph is (i, j + 1)-regular. Hence, `(S) ≤ i+ j + 1.

Theorem 3.8. For a signed graph S having no 1-factor in Su and n and i + j are of opposite
parity, then `(S) = i+ 1, where | V (S) |= n and n ≥ (i+ 1)(j + 1).

Proof. By the hypothesis and Theorem 3.4, `(S) ≥ i+ 1. In order to obtain the solution first we
construct K(i,0)

i+1 . Since Su is a (n− 1− i− j)-regular graph, using Theorem 3.5, the number of
independent edges in

Su ≥ n−1−i−j
2

≥ n−1−i−j−ij
2

= n−(i+1)(j+1)
2

.

Thus, by selecting n−(i+1)(j+1)
2

independent edges e1, e2, . . . , en−(i+1)(j+1)
2

in Su and increase the
negative degree by one by inserting these independent edges in S with negative sign. Now, join
by negative edges, any j+ 1 vertices among (i+ 1)(j+ 1) unaffected vertices of S to a vertex
of K

(i,0)
i+1 and join by negative edges other j + 1 unaffected vertices of S to the other vertex

of K
(i,0)
i+1 , similarly each vertex of K(i,0)

i+1 is joined to j + 1 vertices of S. The signed graph so
obtained is (i, j + 1)-regular. Hence, `(S) = i+ 1.

Theorem 3.9. For a signed graph S having no 1-factor in Su, where n is even and i + j is
odd, such that i ≥ 1, then

`(S) =


i+ j + 1 if n = i+ j + 1, i+ j + 3, . . . , 2i+ 2j − 2,

i+ j if n = 2i+ 2j, i = 2, 4, . . . , n
2
− j,

i+ j + 1 if n = 2i+ 2j, i = 3, 5, . . . , n
2
− j.

Proof. Suppose n ≤ 2i+ 2j− 2. We shall show that `(S) = i+ j+ 1. If possible `(S) ≤ i+ j.
First we construct K(i,j−1)

i+j . In order to obtain the solution n must be at least 2(i+ j), contradict-
ing the assumption. This implies `(S) ≥ i + j + 1. Also from Theorem 3.6, `(S) ≤ i + j + 1.
Thus, from above inequalities `(S) = i+ j + 1.

Next, suppose n = 2i + 2j, i = 2, 4, . . . ,
n

2
− j. If possible `(S) ≤ i + j − 1. Now we

construct K(i,j−2)
i+j−1 . In order to obtain the required graph, n should be at least 3(i+ j− 1), which
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contradicts the assumption except for the case i = 2, j = 1. For i = 2, j = 1, we require at least
i+ 1, i.e. i+ j new vertices. Thus, `(S) ≥ i+ j.

From Theorem 3.6, `(S) ≤ i+ j + 1.
Now we construct K(i,j−1)

i+j . Join by negative edges any two vertices among 2(i + j) vertices
of S to a vertex of K(i,j−1)

i+j and join by negative edges any other two vertices of S to a vertex of
K

(i,j−1)
i+j . Hence the signed graph so obtained is (i, j + 1)-regular. Hence,

`(S) = i+ j.

Again, suppose n = 2i+ 2j, i = 3, 5, . . . ,
n

2
− j. Since i and (i+ j) both are odd, assume

`(S) ≤ i + j − 1. Now to obtain the required solution one can construct K(i,j−2)
i+j−1 . Therefore, n

should be at least 3(i + j − 1), which contradicts the assumption except for i = 3, j = 0. For
i = 3, j = 0, we require at least i+ 1, i.e., i+ j + 1 new vertices. Thus,

`(S) ≥ i+ j.

From Theorem 3.6, `(S) ≤ i+ j + 1.
Since i and (i+ j) both are odd, therefore a K(i,j−1)

i+j regular graph is not possible. Therefore,
`(S) = i+ j is not possible.

This implies,

`(S) = i+ j + 1.

The Theorem 3.9 is illustrated in Figure 4.

H G

Figure 4. H ⊂ G.

Proposition 3.10. For a signed graph S = (Kn,n, σ), if n is odd, then

`(S) =


2 if i = 1,

i+ j if i = 2, 4, . . . , i+ j − 1,

i+ j + 1 if i = 3, 5, . . . , i+ j − 2.

Theorem 3.11. [20] If G is a simple connected graph of order n with n ≥ 3 and d(v) ≥ n
2

∀v ∈ V (G), then G is a Hamiltonian graph.

Theorem 3.12. For a signed graph S if n ≥ 2i+ 2j + 2 is even, then `(S) = 0.
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Proof. Since Su is (n− 1− i− j)-regular graph of order n,

d(v) = n− (1 + i+ j)∀v ∈ V (Su)

≥ n− n
2
∀ v ∈ V (Su)

= n
2
∀ v ∈ V (Su).

Thus, d(v) ≥ n
2
∀ v ∈ V (Su). Due to Theorem 3.11, Su is a Hamiltonian graph. Since the order

of Su is even and it is Hamiltonian, Su has a 1-factor. Now due to Theorem 3.1, `(S) = 0.

Theorem 3.13. [6] Let G be a r-regular graph on n vertices. If G has no 1-factor and n, r
have the same parity, then n < 2r and `(S) = r + 2.

Theorem 3.14. For a signed graph S having no 1-factor in Su, where n is odd and i+ j is even
and i ≥ 1, then

`(S) =

i+ j + 1 if n < 3(i+ j − 1),

i+ j − (r − 2) if n = r(i+ j − k), k and r are odd.

Proof. When i and j both are odd, then the graph is not possible since n is odd. This implies i
and j both are even.

Suppose n < 3(i+ j−1), we will show that `(S) = i+ j+1. If possible `(S) < i+ j. Now
we construct K(i,j−1)

i+j . The least value n can take is 2(i+ j) to obtain an (i, j + 1)-signed-regular
graph; for if n < 2(i+ j), then we have a contradiction to the assumption. Hence,

`(S) ≥ i+ j + 1. (3)

If 2(i+j) < n < 3(i+j−1) and ` ≤ i+j−1. K(i,j−2)
i+j−1 is constructed. The least n possible is

3(i+ j− 1) for the signed graph to be an (i, j+ 1)-signed-regular, which is again a contradiction
to the assumption. Hence,

`(S) ≥ i+ j.

Since the least number of independent edges in Su ≥ n(n−i−j−1)
2(n−i−j) > n−i−j−1

2
> n−2(i+j)−1

2
.

Thus by selecting n−2(i+j)−1
2

independent edges e1, e2, . . . , en−2(i+j)−1
2

in Su and increase the neg-
ative degree by one by inserting these independent edges in S with a negative sign. Now from the
remaining 2(i+ j) + 1 vertices after joining by negative edge i+ j vertices of K(i,j−1)

i+j to 2(i+ j)

vertices of S we are left with one vertex v (say) such that d−(v) = j. Hence,

`(S) ≥ i+ j + 1. (4)

From Theorem 3.6, equation (4) and (3), we get `(S) = i+ j + 1.
Suppose n ≥ r(i + j − k), j ≥ r − 1; k = 1, 3, . . ., r = k + 2, k + 4, . . .. Now construct

K
(i,j−(r−3))
i+j−(r−2) .

The number of the independent edges in

Su ≥ n(n− (i+ j + 1))

2(n− (i+ j))
≥ n− (i+ j + 1)

2
≥ n− (r − 2)(i+ j − (r − 2))

2
,
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and r > 3.
If r = k + 2, then we construct K(i,j−(k+1))

i+j−k and n = (k + 2)(i + j − k). Thus to obtain
an (i, j + 1)-signed-regular graph one can join by a negative edge (k + 2) vertices of S to a
vertex of K(i,j−(k+1))

i+j−k and join by negative edge other (k + 2) vertices of S to the other vertex of
K

(i,j−(k+1))
i+j−k with a negative edge. The signed graph so obtained is an (i, j + 1)-signed-regular.

Hence, `(S) = i+ 1.
If r = k + 4, k + 6, . . .. Thus by selecting n−(r−2)(i+j−(r−2))

2
, r > 3 independent edges

e1, e2 . . . en−(r−2)(i+j−(r−2))
2

in Su and increasing the negative degree by one by inserting these
independent edges in S with a negative sign.

Now join by negative edges remaining (r − 2)(i + j − (r − 2)) vertices of S to the vertices
of K(i,j−(r−3))

i+j−(r−2) by joining (r − 2) vertices to a vertex of K(i,j−(r−3))
i+j−(r−2) and join by negative edges

other (r − 2) unaffected vertices of S to another vertex of K(i,j−(r−3))
i+j−(r−2) . Thus the signed graph so

obtained is an (i, j + 1)-signed-regular graph. Hence,

`(S) = i+ j − (r − 2).

Theorem 3.15. For a signed graph S having no 1-factor in Su, where n and i + j are of
same parity, then n

2
< (i+ j) ≤ n− 4 and `(S) = i+ j + 2.

Proof. It is obvious that both n and i + j should be even. Suppose `(S) ≤ i + j + 1. Now one
can construct K(i,j−1)

i+j . The least n possible is 2(i+ j) for the signed graph to be (i, j+1)-signed-
regular, which is again a contradiction to the assumption. Now we construct K(i,j)

i+j+1, and join by
negative edge i + j + 1 vertices of K(i,j)

i+j+1 to i + j + 1 vertices of S. Then we are left with one
vertex of negative degree j, which implies

`(S) ≥ i+ j + 2.

Due to Theorem 3.5, the number of independent edges in Su ≥ n−i−j−1
2

≥ n−i−j−2
2

.
Thus by selecting n−i−j−2

2
independent edges e1, e2, . . . , en−i−j−2

2
from Su and increasing the

negative degree by one by inserting these independent edges in S and join by negative edge
remaining i+ j+ 2 vertices of S to vertices of an (i, j)-signed-regular graph of i+ j+ 2 vertices.
Therefore,

`(S) = i+ j + 2.

Theorem 3.16. For a signed graph S = (Su, σ) where both n and i + j are of same parity,
if n

2
≥ (i+ j) or (i+ j) = n− 2, then `(S) = 0.

Proof. If n = 2(i+j), then Su is (i+j−1)-regular. If Su is 2-connected then Su is Hamiltonian.
While if Su is not 2-regular, then Su ∼= 2Ki+j . In either case Su has 1-factor and due to Theorem
3.1, `(S) = 0.

If n ≥ 2(i+ j + 1), then d(ui) ≥ 2(i+ j + 1)− (i+ j + 1) ≥ n
2
, for every ui ∈ Su.

Therefore Su is Hamiltonian. This implies `(S) = 0.
When n = i+ j + 2, then degree of every vertex in Su is one, which implies Su has 1-factor

and hence, `(S) = 0.

The Theorem 3.16 is illustrated in Figure 5.
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H G

Figure 5. H ⊂ G.

4 Conclusion

The proof of all the Theorems in this paper can also be worked out by an alternative method of
matching as we have shown it in the proof of Theorem 3.6. It is a well-posed problem in graph
theory in the realm of embedding that every graph can be embedded as a subgraph in a regular
graph and also it remains induced. Late B. D. Acharya in personal communication in 2012 [2]
inspired the authors to work on the following conjecture:

Conjecture-1 (B. D. Acharya): Every signed graph with maximum positive degree ∆+ and
maximum negative degree ∆− can be embedded in a (∆+ + 1,∆− + 1)-signed-regular graph.

Results which deal with the proof of the above mentioned Conjecture-1 for (i, j)-signed-regular
graph are dealt elsewhere.
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