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Abstract: In continuation of the results in [1], two new combined 3-Fibonacci sequences are
introduced. Explicit formulae for their 𝑛-th members are given. In comparison to the combined
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1 Introduction

In [1], two new combined 3-Fibonacci sequences were introduced. Here, we continue this direc-
tion of research, introducing two new 3-Fibonacci sequences that differ from the previous two
sequences in the number of initial constants in the definition. So, the series of extensions of the
nature of the Fibonacci sequence (see, e.g., [2]) is continued.

2 Main results

Let everywhere below, 𝑎, 𝑏, 𝑐 be arbitrary real numbers.
The first sequence has the form: 𝛼0 = 2𝑎, 𝛽0 = 2𝑏, 𝛾0 = 𝑐 and for each natural number 𝑛 ≥ 0:
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𝛼𝑛+1 = 𝛽𝑛 + 𝛾𝑛, 𝛽𝑛+1 = 𝛼𝑛 + 𝛾𝑛, 𝛾𝑛+1 =
𝛼𝑛+1 + 𝛽𝑛+1

2
+ 𝛾𝑛.

The first members of sequences {𝛼𝑛}∞𝑛=0, {𝛽𝑛}∞𝑛=0 and {𝛾𝑛}∞𝑛=0 are the following (Table 1).

𝑛 𝛼𝑛 𝛾𝑛 𝛽𝑛

0 2𝑎 2𝑏

0 𝑐

1 2𝑏+ 𝑐 2𝑎+ 𝑐

1 𝑎+ 𝑏+ 2𝑐

2 3𝑎+ 𝑏+ 3𝑐 𝑎+ 3𝑏+ 3𝑐

2 3𝑎+ 3𝑏+ 5𝑐

3 4𝑎+ 6𝑏+ 8𝑐 6𝑎+ 4𝑏+ 8𝑐

3 8𝑎+ 8𝑏+ 13𝑐

4 14𝑎+ 12𝑏+ 21𝑐 12𝑎+ 14𝑏+ 21𝑐

4 21𝑎+ 21𝑏+ 34𝑐

5 33𝑎+ 35𝑏+ 55𝑐 35𝑎+ 33𝑏+ 55𝑐

5 55𝑎+ 55𝑏+ 89𝑐

6 90𝑎+ 88𝑏+ 144𝑐 88𝑎+ 90𝑏+ 144𝑐

6 144𝑎+ 144𝑏+ 233𝑐

. . . . . . . . . . . .

Table 1. The first members of the sequences values of sequences
{𝛼𝑛}∞𝑛=0, {𝛽𝑛}∞𝑛=0 and {𝛾𝑛}∞𝑛=0

Let {𝐹𝑛}∞𝑛=0 be the standard Fibonacci sequence, where 𝐹0 = 0, 𝐹1 = 1, and

𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛

for each natural number 𝑛 ≥ 0.

Theorem 1. For each natural number 𝑛 ≥ 1:

𝛼𝑛 = (𝐹2𝑛−1 + (−1)𝑛)𝑎+ (𝐹2𝑛−1 − (−1)𝑛)𝑏+ 𝐹2𝑛𝑐,

𝛽𝑛 = (𝐹2𝑛−1 − (−1)𝑛)𝑎+ (𝐹2𝑛−1 + (−1)𝑛)𝑏+ 𝐹2𝑛𝑐,

𝛾𝑛 = 𝐹2𝑛𝑎+ 𝐹2𝑛𝑏+ 𝐹2𝑛+1𝑐.

Proof: We can prove the Theorem, for example, by induction. For 𝑛 = 1, the validity of the
Theorem is checked directly from the above table. Let us assume that the Theorem is valid for
some natural number 𝑛 ≥ 1. Then:

𝛼𝑛+1 = 𝛽𝑛 + 𝛾𝑛

= (𝐹2𝑛−1 − (−1)𝑛)𝑎+ (𝐹2𝑛−1 + (−1)𝑛)𝑏+ 𝐹2𝑛𝑐+ 𝐹2𝑛𝑎+ 𝐹2𝑛𝑏+ 𝐹2𝑛+1𝑐

= (𝐹2𝑛+1 − (−1)𝑛)𝑎+ (𝐹2𝑛+1 + (−1)𝑛)𝑏+ 𝐹2𝑛+2𝑐

= (𝐹2𝑛+1 + (−1)𝑛+1)𝑎+ (𝐹2𝑛+1 − (−1)𝑛+1)𝑏+ 𝐹2𝑛+2𝑐
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𝛽𝑛+1 = 𝛼𝑛 + 𝛾𝑛

= (𝐹2𝑛−1 + (−1)𝑛)𝑎+ (𝐹2𝑛−1 − (−1)𝑛)𝑏+ 𝐹2𝑛𝑐+ 𝐹2𝑛𝑎+ 𝐹2𝑛𝑏+ 𝐹2𝑛+1𝑐

= (𝐹2𝑛+1 + (−1)𝑛)𝑎+ (𝐹2𝑛+1 − (−1)𝑛)𝑏+ 𝐹2𝑛+2𝑐

= (𝐹2𝑛+1 − (−1)𝑛+1)𝑎+ (𝐹2𝑛+1 + (−1)𝑛+1)𝑏+ 𝐹2𝑛+2𝑐

𝛾𝑛+1 = 𝛼𝑛+1+𝛽𝑛+1
2

+ 𝛾𝑛

= 1
2
((𝐹2𝑛+1 + (−1)𝑛+1)𝑎+ (𝐹2𝑛+1 − (−1)𝑛+1)𝑏+ 𝐹2𝑛+2𝑐

+(𝐹2𝑛+1 − (−1)𝑛+1)𝑎+ (𝐹2𝑛+1 + (−1)𝑛+1)𝑏+ 𝐹2𝑛+2𝑐) + 𝐹2𝑛𝑎+ 𝐹2𝑛𝑏+ 𝐹2𝑛+1𝑐

= 𝐹2𝑛+1𝑎+ 𝐹2𝑛+1𝑏+ 𝐹2𝑛+2𝑐+ 𝐹2𝑛+2𝑐+ 𝐹2𝑛𝑎+ 𝐹2𝑛𝑏+ 𝐹2𝑛+1𝑐

= 𝐹2𝑛+2𝑎+ 𝐹2𝑛+2𝑏+ 𝐹2𝑛+3𝑐.

The rest formulas are checked by analogy. �

The second sequence has the form: 𝛼0 = 𝑎, 𝛽0 = 2𝑏, 𝛾0 = 2𝑐 and for each natural number 𝑛:

𝛼𝑛+1 = 𝛼𝑛 +
𝛽𝑛 + 𝛾𝑛

2
, 𝛽𝑛+1 = 𝛼𝑛+1 + 𝛾𝑛, 𝛾𝑛+1 = 𝛼𝑛+1 + 𝛽𝑛.

The first members of the sequences {𝛼𝑛}∞𝑛=0, {𝛽𝑛}∞𝑛=0 and {𝛾𝑛}∞𝑛=0 are the following (Table 2).

𝑛 𝛽𝑛 𝛼𝑛 𝛾𝑛

0 𝑎

0 2𝑏 2𝑐

1 𝑎+ 𝑏+ 𝑐

1 𝑎+ 𝑏+ 3𝑐 𝑎+ 3𝑏+ 𝑐

2 2𝑎+ 3𝑏+ 3𝑐

2 3𝑎+ 6𝑏+ 4𝑐 3𝑎+ 4𝑏+ 6𝑐

3 5𝑎+ 8𝑏+ 8𝑐

3 8𝑎+ 12𝑏+ 14𝑐 8𝑎+ 14𝑏+ 12𝑐

4 13𝑎+ 21𝑏+ 21𝑐

4 21𝑎+ 35𝑏+ 33𝑐 21𝑎+ 33𝑏+ 35𝑐

5 34𝑎+ 55𝑏+ 55𝑐

5 55𝑎+ 88𝑏+ 90𝑐 55𝑎+ 90𝑏+ 88𝑐

6 89𝑎+ 144𝑏+ 144𝑐

6 144𝑎+ 234𝑏+ 232𝑐 144𝑎+ 232𝑏+ 234𝑐

. . . . . . . . .

Table 2. The first members of the sequences values of sequences {𝛼𝑛}∞𝑛=0, {𝛽𝑛}∞𝑛=0 and {𝛾𝑛}∞𝑛=0
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Theorem 2. For each natural number 𝑛 ≥ 1:

𝛼𝑛 = 𝐹2𝑛−1𝑎+ 𝐹2𝑛𝑏+ 𝐹2𝑛𝑐,

𝛽𝑛 = 𝐹2𝑛𝑎+ (𝐹2𝑛+1 + (−1)𝑛)𝑏+ (𝐹2𝑛+1 − (−1)𝑛)𝑐,

𝛾𝑛 = 𝐹2𝑛𝑎+ (𝐹2𝑛+1 − (−1)𝑛)𝑏+ (𝐹2𝑛+1 + (−1)𝑛)𝑐.

Other new schemes, modifying the standard form of the 2- and 3-Fibonacci sequences and the
above two sequences, will be discussed in near future.
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