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Abstract: This paper considers generalizations of the golden ratio based on an extension of the Pell 

recurrence relation. These include related partial difference equations. It develops generalized Pell 

and Companion-Pell numbers and shows how they can yield elegant generalizations of Fibonacci 

and Lucas identities. This sheds light on the format of the original identities, such as the Simson 

formula, to distinguish what is significant and substantial from what is incidental or accidental.  
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1 Introduction 

Each of the equations: 
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has two of its roots 1
2 (1 5)± , because each polynomial has x2 – x – 1 as factor. The positive root 

of (1.1) is numerically equal to φ, the Golden Ratio, known since the time of Euclid [1]. Simply, 

φ is the ratio of two line segments (major/minor) and simultaneously the ratio of the total line 
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length over the major line segment (that is, both ratios are equal).  For notational convenience, 

we let 1 – φ = ψ.  

Furthermore, φ is essential to a multitude of natural patterns, from sunflower florets to the 

shapes of galaxies and has been studied extensively over the centuries. In 1509 Pacioli published 

a three volume treatise on the “Divine Proportion”, that is φ. The ratio has been used in the novel 

Goldpoint Geometry [2]. We consider here some other properties of φ to generalize some well-

known second order recursive sequences. 

2 The Golden Ratio and Fibonacci numbers 

The powers of φ are related to the elements of the Fibonacci sequence, {Fn} [3]: 

 ,1−+= nn

n
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These power relations were known to Euler (1707–1783) and de Moivre (1667–1754) and 

rediscovered by Binet (1786–1856), one of the discoverers of the formula for the general term of 

the Fibonacci sequence [4]: 
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We note the corresponding formula for the general term of the Lucas sequence: 
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so that 

 ϕ=+
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n

n

n F

F 1lim , (2.5) 

which can be used in calculating Fibonacci numbers for ‘large’ n, even though φ is irrational and  

1n

n

F

F
+  is rational.  Nevertheless, the decimal patterns for the latter can have a very long interval 

before repeating; for example, where the last digits of Fn, n > 3, have a periodicity of 15 × 10m–1 

where m is the number of end digits Thus, for m = 3 the periodicity of the three end digits is 1500. 

This can lead to relatively large decimal repeat patterns for the golden ratio: 

...44583440003757073888541016399499060815278647400012523406180338134.1
1597

2584

17

18 ==
F

F
 

Stakhov [5] used Table 1 below to prove various results for nn ψϕ ± . 
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n 0 1 2 3 4 5 6 7 

nϕ
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Table 1. Stakhov’s powers of the golden ratio 

The appearance of the Lucas and Fibonacci numbers in the numerators is no accident. 

Stakhov’s context was a foundation for computer arithmetic [cf. 6], but his Table 1 also suggests 

extending, for instance,
 2

811 PQ +
in which {Pn} and {Qn} are the classical Pell {1, 2, 5, 12, …} 

and Companion-Pell {2, 2, 6, 14, 34, …} sequences respectively, which we shall attempt in the 

next section. Here we set 
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and 
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in a manner analogous to that of [7]. k ∈ Z  here is associated with generalized Pell {Pk,n} and 

Companion-Pell sequences {Qk,n} [8] which satisfy the linear homogeneous second order 

recurrence relation: 

 ,1,1,,1, ≥+= −+ nPkPP nknknk  (2.8) 

with initial conditions (for notational convenience) Pk,0 = 1, Pk,1 = k, Qk,0 = 2, Qk,1 = k, to include 

traditional Fibonacci, Lucas, Pell and Companion-Pell sequences and their generalizations as we 

see in Tables 1 and 2.  

In Horadam’s notation [9] these are {Fk,n (1, k; k, –1)}, {Lk,n (2, k; k, –1)}. These are 

extensions of [10]. The cases {wk,n (a, b; 1, –q)} are different but similar. Examples of (2.6) and 

2.7 include 
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Thus, Equations (2.6), (2.7) and (2.8) generate the traditional Binet formulas for the general 

terms [11]; that is, 
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We see then that as a generalization of (2.5): 
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For examples, from Tables 2 and 3: 

1,5 1,6 1
1

1,4 1,5

2,5 2,6 1
2

2,4 2,5

3,5 3,6 1
3

3,4 3,5

1 1 5
1.6000, 1.6250,..., 1.6180;

2

2 1 8
2.4137, 2.4142,..., 2.4142;
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3.3028, 3.3028,..., 3.3027,
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and so on. 

n→ 

k↓ 
0 1 2 3 4 5 6 

1 1 1 2 3 5 8 13 

2 1 2 5 12 29 70 169 

3 1 3 10 33 109 360 1,189 

4 1 4 17 72 305 1,292 5,473 

5 1 5 26 135 701 3,640 17,901 

6 1 6 37 228 1,405 8,658 53,353 

7 1 7 50 357 2,549 18,200 129,949 

Table 2. Some values of nkP ,  

n→ 

k↓ 
0 1 2 3 4 5 6 

1 2 1 3 4 7 11 18 

2 2 2 6 14 34 82 198 

3 2 3 11 36 119 393 1,298 

4 2 4 18 76 322 1,364 5,778 

5 2 5 27 140 727 3,775 19,602 

6 2 6 38 234 1,442 8,886 54,758 

7 2 7 51 364 2,599 18,557 132,498 

Table 3. Some values of nkP ,  
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3 Powers of the coefficient in the recurrence relation 
We can extend the recurrence relation (2.8) by, for example, considering powers of the 

coefficient. 

 ,1,1,,,,1,, ≥+= −+ nPPkP nmknmk

m

nmk  (3.1) 

with initial conditions as before, so that, for instance, {P1,m,n} ≡ {Fn}, {P2,1,n} ≡ {Pn}, the ordinary 

Pell numbers. This is an extension of [12]. We shall specifically focus on {P2,m,n} here; that is, 

 .1,2 1,,2,,21,,2 ≥+= −+ nPPP nmnm

m

nm  (3.2) 

For instance, 

n→  

m↓  
0 1 2 3 4 5 6 

1 1 2 5 12 29 70 169 

2 1 2 9 38 161 682 2,889 

3 1 2 17 138 1,121 9,106 73,969 

4 1 2 33 530 8,513 136,738 2,196,321 

Table 4. Some values of P2,m,n 

If we wish to extend to an arbitrary order matrix, r, for modifications of the van der Laan 

and Pell–Padovan sequences [13] we can use matrices 
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with a corresponding 
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and  
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The last two matrices can obviously be used to generate properties analogous to well-known 

Fibonacci sequence properties. It would also seem that for analogues of the Simson identity: 

 2 2det (1) ( 1) 1n
P × = −  (3.3) 

 2 2det (2) ( 1) 5n
P × = −  (3.4) 

2 2det (3) ( 1) 13n
P × = −  

2 2det (4) ( 1) 29n
P × = −  

so that 

 2 2det ( ) ( 1)n

mP m w× = −   

in which 

 1 12 , 0, 1.m

m mw w n w−= + ≥ =  (3.5) 

Equation (3.5) is a first order non-homogeneous difference equation with a standard solution of 

.32 1 −= +m

mw  

We note that (3.3) confirms Simson’s identity, but (3.4) and following show that it is part 

of a bigger picture. Arbitrary order extensions can also be defined by 

 , , 1 , , , , 1, 1,m

k m n k m n k m n rS k S S n+ − += + ≥  (3.6) 

with initial conditions Sk,m,n = n + 1, n = 0, 1, 2, …, r – 1. For instance, when r = 3 and k = 2, we 

get the sequences set out in Table 5: 

n→  

m↓  
0 1 2 3 4 5 6 

1 1 2 3 7 16 35 73 

2 1 2 3 13 54 219 889 

3 1 2 3 25 202 1,619 12,977 

4 1 2 3 49 786 12,579 201,313 

Table 5. Some values of S2,m,n 

From this we can see that third order analogues of the Simson identity have the formats 
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4 Concluding comments 

It can be readily confirmed that there are many elegant analogues of well-known Fibonacci and 

Lucas numbers. For instance, (allowing for the notational variations in the initial values 

 2,,, −+= nknknk FFL  (4.1) 

and 
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as a variation of Simson’s identity. Somewhat similar ideas for extensions may be found in [14].  

It is also of interest to explore some of the properties of Tables 2 and 3. For example, 

Equation (2.8) is a partial difference equation with n as the variable, and we have so far 

considered the row sequences of these tables. If however we make k the variable (that is, consider 

the column sequences), then it can be readily confirmed by calculation from Table 2 that for 

n = 0, 1, 2, it holds that 
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but is there a partial difference equation in k (or m) for all n? 

It should be noted that the Fibonacci sequence equation for the Golden Ratio Family, {ϕn} 

[15] is 

 ,11 −+ += nnn rFFF  (4.3) 

with r a structural variable from Modular Ring Theory, contrasts with Equation (2.8) where k is 

linked to the Pell sequences and Pk,n is the multiplied component. The original Golden Ratio 

Family surd is 

 
2

1 a
a

+
=ϕ  (4.4) 

with (a = 4r + 1) ∈ 41  ⊂ Z4, a modular ring, in contrast with the surds constructed here with types 

of generalized Pell numbers. Since k2 + 4 = k2 + 22, when k is odd the sum of squares must equal 

4r + 1 or a. This provides a link between the two golden ratio families, and also with primitive 

Pythagorean triples [16]. 
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