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Abstract: Let 𝜋(𝑥) denote the prime counting function, i.e., the number of primes not exceeding
𝑥. The Legendre’s conjecture regarding the prime counting function states that

𝜋(𝑥) =
𝑥

log 𝑥− 𝐴(𝑥)
,

where Legendre conjectured that lim𝑥→∞𝐴(𝑥) = 1.08366..., which is the Legendre’s constant.
It is well-known that lim𝑥→∞𝐴(𝑥) = 1, and hence the Legendre’s conjecture is not true. In this
article we give various proofs of this limit and establish some generalizations.
Keywords: Primes, Prime counting function, Legendre’s constant.
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1 Introduction

The Prime Number Theorem (PNT) was first conjectured by the French mathematician Adrien-
Marie Legendre (1752–1833) as an experiential statement. In 1798, Legendre asserted that
𝜋(𝑥) = 𝑥/(𝐴 log 𝑥 − 𝐵) for constants 𝐴 and 𝐵 [6]. A decade latter, in 1808 [7] he refined his
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conjecture and formulated it by the form of

𝜋(𝑥) =
𝑥

log 𝑥− 𝐴(𝑥)
, (1)

where Legendre conjectured that 𝐴(𝑥) is a function of 𝑥 such that

lim
𝑥→∞

𝐴(𝑥) = 1.08366...,

which is the Legendre’s constant.
In 1848, Chebyshev showed that if the function 𝐴(𝑥) tended to a limit as 𝑥 → ∞, then

necessarily the limit had to be 1 [1]. In 2017, R. Farhadian obtained the numerical values of the
function 𝐴(𝑥) at points 10𝑘 for 𝑘 = 1, 2, ..., 25, and then, based on the numerical observations,
he noted that the function 𝐴(𝑥) decreases to 1 (not necessarily monotonically) [5]. In this article
we give various proofs of the limit

lim
𝑥→∞

𝐴(𝑥) = 1,

proved by Vallée Poussin in 1899, and establish some generalizations.

2 Main results

By the Legendre’s formula (1) we have

𝐴(𝑥) = log 𝑥− 𝑥

𝜋(𝑥)
. (2)

We need the following lemmas.

Lemma 2.1.

𝑥

log 𝑥

(︂
1 +

1

log 𝑥
+

𝑐1

log2 𝑥

)︂
≤ 𝜋(𝑥) ≤ 𝑥

log 𝑥

(︂
1 +

1

log 𝑥
+

𝑐2

log2 𝑥

)︂
,

where 𝑐1 = 1.8 for 𝑥 ≥ 32299 and 𝑐2 = 2.51 for 𝑥 ≥ 355991.

Proof. See [3] and [4].

Lemma 2.2. If 𝑘 is a finite real number, then

lim
𝑥→∞

log3 𝑥+ 𝑘 log2 𝑥

log3 𝑥+ log2 𝑥+ 𝑘 log 𝑥
= 1.

Proof. We have
log3 𝑥+ 𝑘 log2 𝑥

log3 𝑥+ log2 𝑥+ 𝑘 log 𝑥
=

1 + 𝑘
log 𝑥

1 + 1
log 𝑥

+ 𝑘
log2 𝑥

.
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Theorem 2.3. Given the function 𝐴(𝑥) in relation (2). Then

lim
𝑥→∞

𝐴(𝑥) = 1. (3)

Besides, we have the inequality

log3 𝑥+ 1.8 log2 𝑥

log3 𝑥+ log2 𝑥+ 1.8 log 𝑥
≤ 𝐴(𝑥) ≤ log3 𝑥+ 2.51 log2 𝑥

log3 𝑥+ log2 𝑥+ 2.51 log 𝑥
, (4)

where the inequality on the left hand holds for 𝑥 ≥ 32299 and the inequality on the right hand
holds for 𝑥 ≥ 355991.

Proof. By Lemma 1 we know that

𝑥

log 𝑥

(︂
1 +

1

log 𝑥
+

1.8

log2 𝑥

)︂
≤ 𝜋(𝑥) ≤ 𝑥

log 𝑥

(︂
1 +

1

log 𝑥
+

2.51

log2 𝑥

)︂
.

By inverting the above inequality and multiplying the inequality by 𝑥, we have

𝑥
𝑥

log 𝑥
+ 𝑥

log2 𝑥
+ 2.51𝑥

log3 𝑥

≤ 𝑥

𝜋(𝑥)
≤ 𝑥

𝑥
log 𝑥

+ 𝑥
log2 𝑥

+ 1.8𝑥
log3 𝑥

,

simplifying,

log 𝑥

1 + 1
log 𝑥

+ 2.51
log2 𝑥

≤ 𝑥

𝜋(𝑥)
≤ log 𝑥

1 + 1
log 𝑥

+ 1.8
log2 𝑥

. (5)

Clearly, if log 𝑥 minus each part of the inequality (5), then we have (see equation (2))

log 𝑥− log 𝑥

1 + 1
log 𝑥

+ 1.8
log2 𝑥

≤ 𝐴(𝑥) ≤ log 𝑥− log 𝑥

1 + 1
log 𝑥

+ 2.51
log2 𝑥

.

Consequently

log3 𝑥+ 1.8 log2 𝑥

log3 𝑥+ log2 𝑥+ 1.8 log 𝑥
≤ 𝐴(𝑥) ≤ log3 𝑥+ 2.51 log2 𝑥

log3 𝑥+ log2 𝑥+ 2.51 log 𝑥
,

that is, inequality (4). Finally, inequality (4) and Lemma 2.2 give limit (3).

In the following theorem we obtain an asymptotic formula for the function 𝐴(𝑥). An imme-
diate corollary of this asymptotic formula is the limit lim𝑥→∞𝐴(𝑥) = 1.

Theorem 2.4. Let ℎ ≥ 3 be an arbitrary but fixed positive integer. The following asymptotic
formula holds

𝐴(𝑥) =
1 +

∑︀ℎ−2
𝑘=1

(𝑘+1)!

log𝑘 𝑥
+ 𝑜

(︁
1

logℎ−2 𝑥

)︁
1 +

∑︀ℎ−1
𝑘=1

𝑘!
log𝑘 𝑥

+ 𝑜
(︁

1
logℎ−1 𝑥

)︁ .
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Proof. The following asymptotic formula for the prime counting function 𝜋(𝑥) is well-known [8]

𝜋(𝑥) =
ℎ∑︁

𝑘=1

(𝑘 − 1)!𝑥

log𝑘 𝑥
+ 𝑜

(︂
𝑥

logℎ 𝑥

)︂
, (6)

where ℎ is an arbitrary but fixed positive integer.
Therefore we have

𝑥

𝜋(𝑥)
=

log 𝑥∑︀ℎ
𝑘=1

(𝑘−1)!

log𝑘−1 𝑥
+ 𝑜

(︁
1

logℎ−1 𝑥

)︁ ,
and consequently

𝐴(𝑥) = log 𝑥− 𝑥

𝜋(𝑥)
= log 𝑥

⎛⎝1− 1∑︀ℎ
𝑘=1

(𝑘−1)!

log𝑘−1 𝑥
+ 𝑜

(︁
1

logℎ−1 𝑥

)︁
⎞⎠

= log 𝑥

∑︀ℎ
𝑘=2

(𝑘−1)!

log𝑘−1 𝑥
+ 𝑜

(︁
1

logℎ−1 𝑥

)︁
1 +

∑︀ℎ
𝑘=2

(𝑘−1)!

log𝑘−1 𝑥
+ 𝑜

(︁
1

logℎ−1 𝑥

)︁
=

1 +
∑︀ℎ

𝑘=3
(𝑘−1)!

log𝑘−2 𝑥
+ 𝑜

(︁
1

logℎ−2 𝑥

)︁
1 +

∑︀ℎ
𝑘=2

(𝑘−1)!

log𝑘−1 𝑥
+ 𝑜

(︁
1

logℎ−1 𝑥

)︁ =
1 +

∑︀ℎ−2
𝑘=1

(𝑘+1)!

log𝑘 𝑥
+ 𝑜

(︁
1

logℎ−2 𝑥

)︁
1 +

∑︀ℎ−1
𝑘=1

𝑘!
log𝑘 𝑥

+ 𝑜
(︁

1
logℎ−1 𝑥

)︁ .

Now, we give other proof that lim𝑥→∞𝐴(𝑥) = 1 using formula for the 𝑛-th prime 𝑝𝑛 and
log 𝑝𝑛. We put 𝑑𝑛 = 𝑝𝑛+1 − 𝑝𝑛.

Theorem 2.5. The following limit holds

lim
𝑥→∞

𝐴(𝑥) = 1.

Proof. The prime number theorem 𝑝𝑛 ∼ 𝑛 log 𝑛 implies the following formula for log 𝑝𝑛

log 𝑝𝑛 = log 𝑛+ log log 𝑛+ 𝑜(1). (7)

On the other hand, a consequence of the equation (see (6) with ℎ = 2)

𝜋(𝑥) =
𝑥

log 𝑥
+

𝑥

log2 𝑥
+ 𝑜

(︂
𝑥

log2 𝑥

)︂
is the following well-known formula for 𝑝𝑛 [2]

𝑝𝑛 = 𝑛 log 𝑛+ 𝑛 log log 𝑛− 𝑛+ 𝑜(𝑛). (8)

Therefore, we have (by (7) and (8))

𝐴(𝑝𝑛) = log 𝑝𝑛 −
𝑝𝑛

𝜋(𝑝𝑛)
= log 𝑝𝑛 −

𝑝𝑛
𝑛

= 1 + 𝑜(1), (9)
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and consequently

𝐴(𝑝𝑛+1) = log 𝑝𝑛+1 −
𝑝𝑛+1

𝜋(𝑝𝑛+1)
= log 𝑝𝑛+1 −

𝑝𝑛+1

𝑛+ 1
= 1 + 𝑜(1). (10)

Now, we have (by (9) and (10))

𝐴(𝑝𝑛) = 𝐴(𝑝𝑛+1 − 𝑑𝑛) = log(𝑝𝑛+1 − 𝑑𝑛)−
𝑝𝑛+1 − 𝑑𝑛

𝑛
= log 𝑝𝑛+1

+ log

(︂
1− 𝑑𝑛

𝑝𝑛+1

)︂
− 𝑝𝑛+1

𝑛+ 1
− 𝑝𝑛+1

𝑛(𝑛+ 1)
+
𝑑𝑛
𝑛

= 1 + 𝑜(1) +
𝑑𝑛
𝑛

= 1 + 𝑜(1).

Therefore

𝑑𝑛
𝑛

= 𝑜(1).

Let us consider an arbitrary sequence 𝑎𝑛 such that lim𝑛→∞ 𝑎𝑛 = ∞. For each 𝑛 there is a prime
𝑝𝑛′ such that 𝑝𝑛′ < 𝑎𝑛 ≤ 𝑝𝑛′+1. Hence 𝑎𝑛 = 𝑝𝑛′+1 − 𝑏𝑛′ , where 0 ≤ 𝑏𝑛′ < 𝑑𝑛′ . If in the sequence
𝑎𝑛 there is a subsequence of prime numbers 𝑝𝑛′+1, we have (see above) 𝐴(𝑝𝑛′+1) = 1 + 𝑜(1),
therefore, we consider the subsequence of 𝑎𝑛 such that 𝑎𝑛 ̸= 𝑝𝑛′+1 and consequently 𝜋(𝑎𝑛) = 𝑛′.
For this subsequence we have

𝐴(𝑎𝑛) = 𝐴(𝑝𝑛′+1 − 𝑏𝑛′) = log(𝑝𝑛′+1 − 𝑏𝑛′)− 𝑝𝑛′+1 − 𝑏𝑛′

𝑛′ = · · · = 1 + 𝑜(1).

Therefore for the complete sequence 𝑎𝑛 we have 𝐴(𝑎𝑛) = 1 + 𝑜(1). Consequently, by a well-
known theorem of analysis [9], we have lim𝑥→∞𝐴(𝑥) = 1.

Let 𝑘 be an arbitrary but fixed positive integer and let us consider the sequence 𝑝𝑘𝑛, that is, the
sequence of the 𝑘-th powers of the prime numbers. In particular, if 𝑘 = 1, we obtain the sequence
of primes; if 𝑘 = 2, we obtain the sequence of squares of primes, etc.

The Prime Number Theorem establishes

𝜋(𝑥) ∼ 𝑥

log 𝑥
.

Let 𝜋𝑘(𝑥) be the number of 𝑘-th powers of primes not exceeding 𝑥, that is, 𝑝𝑘𝑛 ≤ 𝑥, then
𝜋1(𝑥) = 𝜋(𝑥). The Prime Number Theorem gives

𝜋𝑘(𝑥) = 𝜋
(︀

𝑘
√
𝑥
)︀
∼

𝑘
√
𝑥

log 𝑘
√
𝑥
.

We have the following generalization of the Legendre’s formula.

Theorem 2.6. Let 𝑠 and 𝑘 be arbitrary but fixed positive integers. We have

(𝜋𝑘(𝑥))
𝑠 =

( 𝑘
√
𝑥)

𝑠

log𝑠 𝑘
√
𝑥− 𝐴𝑘,𝑠(𝑥) log

𝑠−1 𝑘
√
𝑥
,

where lim𝑥→∞𝐴𝑘,𝑠(𝑥) = 𝑠.
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Proof. We have (see (6) with ℎ = 2)

𝜋(𝑥) =
𝑥

log 𝑥
+

𝑥

log2 𝑥
+ 𝑜

(︂
𝑥

log2 𝑥

)︂
.

Therefore

𝜋𝑘(𝑥) = 𝜋
(︀

𝑘
√
𝑥
)︀
=

𝑘
√
𝑥

log 𝑘
√
𝑥
+

𝑘
√
𝑥

log2 𝑘
√
𝑥
+ 𝑜

(︂
𝑘
√
𝑥

log2 𝑘
√
𝑥

)︂
,

and consequently

(𝜋𝑘(𝑥))
𝑠 =

( 𝑘
√
𝑥)

𝑠

log𝑠 𝑘
√
𝑥

(︂
1 +

1

log 𝑘
√
𝑥
+ 𝑜

(︂
1

log 𝑘
√
𝑥

)︂)︂𝑠

=
( 𝑘
√
𝑥)

𝑠

log𝑠 𝑘
√
𝑥

(︂
1 +

𝑠

log 𝑘
√
𝑥
+ 𝑜

(︂
1

log 𝑘
√
𝑥

)︂)︂
.

Now, we have

𝐴𝑘,𝑠(𝑥) = log 𝑘
√
𝑥− 1

log𝑠−1 𝑘
√
𝑥

( 𝑘
√
𝑥)

𝑠

(𝜋𝑘(𝑥))
𝑠

= log 𝑘
√
𝑥− log 𝑘

√
𝑥

1 + 𝑠
log 𝑘√𝑥

+ 𝑜
(︁

1
log 𝑘√𝑥

)︁ = log 𝑘
√
𝑥

𝑠
log 𝑘√𝑥

+ 𝑜
(︁

1
log 𝑘√𝑥

)︁
1 + 𝑠

log 𝑘√𝑥
+ 𝑜

(︁
1

log 𝑘√𝑥

)︁
=

𝑠+ 𝑜(1)

1 + 𝑜(1)
= 𝑠+ 𝑜(1).

Corollary 2.7. We have

𝜋𝑘(𝑥) =
𝑘
√
𝑥

log 𝑘
√
𝑥− 𝐴𝑘,1(𝑥)

,

where lim𝑥→∞𝐴𝑘,1(𝑥) = 1. Besides

lim
𝑥→∞

𝐴(𝑥) = 1.

Proof. It is the case 𝑠 = 1 in the former theorem. Note that the limit 1 does not depend of 𝑘. On
the other hand, 𝐴(𝑥) = 𝐴1,1(𝑥).

In the following theorem we establish other generalization of the Legendre’s formula. We
have the asymptotic formula (see (6))

𝜋(𝑥) =
ℎ∑︁

𝑘=1

(𝑘 − 1)!𝑥

log𝑘 𝑥
+ 𝑜

(︂
𝑥

logℎ 𝑥

)︂
.

If ℎ = 1, we obtain the Prime Number Theorem

𝜋(𝑥) =
𝑥

log 𝑥
+ 𝑜

(︂
𝑥

log 𝑥

)︂
.
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The Legendre’s formula is

𝜋(𝑥) =
𝑥

log 𝑥− 𝐴(𝑥)
,

where lim𝑥→∞𝐴(𝑥) = 1.
If ℎ = 2, we obtain

𝜋(𝑥) =
𝑥

log 𝑥
+

𝑥

log2 𝑥
+ 𝑜

(︂
𝑥

log2 𝑥

)︂
.

If we put the formula

𝜋(𝑥) =
𝑥

log 𝑥
+

𝑥

log2 𝑥− 𝐴2(𝑥) log 𝑥
,

then we shall prove in the following theorem that lim𝑥→∞𝐴2(𝑥) = 2, etc.
In general, we have the following theorem.

Theorem 2.8. Let ℎ ≥ 2 be an arbitrary but fixed positive integer. We have the following formula

𝜋(𝑥) =
ℎ−1∑︁
𝑘=1

(𝑘 − 1)!𝑥

log𝑘 𝑥
+

(ℎ− 1)!𝑥

logℎ 𝑥− 𝐴ℎ(𝑥) log
ℎ−1 𝑥

,

where

lim
𝑥→∞

𝐴ℎ(𝑥) = ℎ.

Proof: We have

𝐴ℎ(𝑥) = log 𝑥− 1

logℎ−1 𝑥

(ℎ− 1)!𝑥

𝜋(𝑥)−
∑︀ℎ−1

𝑘=1
(𝑘−1)!𝑥

log𝑘 𝑥

.

On the other hand, we have the equation

𝜋(𝑥) =
ℎ+2∑︁
𝑘=1

(𝑘 − 1)!𝑥

log𝑘 𝑥
+ 𝑜

(︂
𝑥

logℎ+2 𝑥

)︂
.

Substituting this equation in the former equation we find that

𝐴ℎ(𝑥) = log 𝑥− 1

logℎ−1 𝑥

(ℎ− 1)!𝑥
(ℎ−1)!𝑥

logℎ 𝑥
+ ℎ!𝑥

logℎ+1 𝑥
+ (ℎ+1)!𝑥

logℎ+2 𝑥
+ 𝑜

(︁
𝑥

logℎ+2 𝑥

)︁
= log 𝑥

⎛⎝1− (ℎ− 1)!

(ℎ− 1)! + ℎ!
log 𝑥

+ (ℎ+1)!

log2 𝑥
+ 𝑜

(︁
1

log2 𝑥

)︁
⎞⎠

=
ℎ! + (ℎ+1)!

log 𝑥
+ 𝑜

(︁
1

log 𝑥

)︁
(ℎ− 1)! + ℎ!

log 𝑥
+ (ℎ+1)!

log2 𝑥
+ 𝑜

(︁
1

log2 𝑥

)︁ = ℎ+ 𝑜(1).

�
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Cipolla’s asymptotic formula for the 𝑛-th prime 𝑝𝑛 is [2]

𝑝𝑛 = 𝑛 log 𝑛+ 𝑛 log log 𝑛− 𝑛+
𝑟∑︁

𝑖=1

(−1)𝑖−1𝑛𝑃𝑖(log log 𝑛)

𝑖! log𝑖 𝑛
+ 𝑜

(︂
𝑛

log𝑟 𝑛

)︂
,

where 𝑟 is an arbitrary but fixed positive integer and 𝑃𝑖(𝑥) is a polynomial of degree 𝑖 and leading
coefficient (𝑖− 1)!.

Theorem 2.9. The following asymptotic formula holds

𝑝𝑛 = 𝑛 log 𝑛+ 𝑛 log log 𝑛− 𝑛+
𝑟−1∑︁
𝑖=1

(−1)𝑖−1𝑛𝑃𝑖(log log 𝑛)

𝑖! log𝑖 𝑛

+ (−1)𝑟−1 𝑛𝑃𝑟(log log 𝑛)

𝑟! log𝑟 𝑛+𝐵𝑟(𝑛)𝑟! log
𝑟−1 𝑛 log log 𝑛

,

where lim𝑛→∞𝐵𝑟(𝑛) =
𝑟

𝑟+1
.

Proof. The proof is similar to the proof of the former theorem.
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