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Abstract: Let 7(z) denote the prime counting function, i.e., the number of primes not exceeding
x. The Legendre’s conjecture regarding the prime counting function states that

m(x)

B T
~logz — A(z)’

where Legendre conjectured that lim, ., A(z) = 1.08366..., which is the Legendre’s constant.
It is well-known that lim,_,., A(xz) = 1, and hence the Legendre’s conjecture is not true. In this
article we give various proofs of this limit and establish some generalizations.
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1 Introduction

The Prime Number Theorem (PNT) was first conjectured by the French mathematician Adrien-
Marie Legendre (1752-1833) as an experiential statement. In 1798, Legendre asserted that
m(x) = x/(Alogx — B) for constants A and B [6]. A decade latter, in 1808 [7] he refined his
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conjecture and formulated it by the form of

X

m(r) = Togz — A(z)’ (D

where Legendre conjectured that A(x) is a function of x such that

lim A(z) = 1.08366...,

T—00

which is the Legendre’s constant.

In 1848, Chebyshev showed that if the function A(x) tended to a limit as x — oo, then
necessarily the limit had to be 1 [1]. In 2017, R. Farhadian obtained the numerical values of the
function A(x) at points 10* for k = 1,2, ..., 25, and then, based on the numerical observations,
he noted that the function A(z) decreases to 1 (not necessarily monotonically) [5]. In this article
we give various proofs of the limit

lim A(x) =1,

T—00

proved by Vallée Poussin in 1899, and establish some generalizations.

2 Main results
By the Legendre’s formula (1) we have

T
A(z) =logx — @) (2)

We need the following lemmas.

Lemma 2.1.

T 14 i < r(@) < T . 1 n Co
w(x
log = logz  logz) — ~ logx logz  logz )’
where c; = 1.8 for x > 32299 and cy = 2.51 for x > 355991.

Proof. See [3] and [4]. O

Lemma 2.2. If k is a finite real number, then

log® x + klog® x

im — 5 =
z—oo log” x + log” xz + klogx
Proof. We have

log® z + klog® x B 1+ 1(,];3;
log®z +log?z + klogz 1+ @ + 10;%
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Theorem 2.3. Given the function A(x) in relation (2). Then

lim A(z) = 1. 3)

T—00

Besides, we have the inequality

3 2 3 2
log® z 4+ 1.8log” x < Alz) < log” x + 2.51log” x

3 2 > A\T) = 73 2 5 4)
log” x +log”x + 1.8 log x log” x 4+ log”x + 2.511log x

where the inequality on the left hand holds for x > 32299 and the inequality on the right hand
holds for x > 355991.

Proof. By Lemma 1 we know that

x 1 1.8 x 1 2.51
1+ +—5— | <7(x) < 1+ + .
log x logz  log”x log z logz  log”x

By inverting the above inequality and multiplying the inequality by x, we have

x < 2 x
gz T 10523; + 1202332 — o) T gz T 1og2x - ég—sﬂ’

simplifying,

log x x log x

B 0 STk ®

Clearly, if log x minus each part of the inequality (5), then we have (see equation (2))

log x log x

o T <A S
Consequently
log® z + 1.8log® = log® z + 2.511log*
log® z + log® x + 1.8log x s Ale) < log® x 4 log® x 4+ 2.51log z’

that is, inequality (4). Finally, inequality (4) and Lemma 2.2 give limit (3). [

In the following theorem we obtain an asymptotic formula for the function A(z). An imme-
diate corollary of this asymptotic formula is the limit lim, ., A(x) = 1.

Theorem 2.4. Let h > 3 be an arbitrary but fixed positive integer. The following asymptotic
formula holds

h—2 (k+1 1
1+ Zk 1 logh +o <1ogh*2x>

Ax) = e ; :
1+Zk 1 log T O(logh_lcc)
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Proof. The following asymptotic formula for the prime counting function 7 (z) is well-known [8]

ﬁ@):zh:wﬂ( g ) ©)

where h is an arbitrary but fixed positive integer.

Therefore we have

r log

W($) ZZ:I 152;—11); +o (10g_h1—1 x)

9

and consequently

1

x
A(x) = logrx — —— =logx | 1—
ﬂ-(I) Zk 1 1(k > +o (loghl*l‘r)

Zk 2 lok 1); +o (loghl_lx>
1+Zk 2 ot +o<logh{1 )
LT o () S o ()
1+Zk 21k > JrO(log*}*%) 1+Zh ! i 0<10gh1711‘>.

k 110g1‘

= logx

]

Now, we give other proof that lim, ,,, A(z) = 1 using formula for the n-th prime p, and
log p,. We putd,, = ppi1 — Dn.

Theorem 2.5. The following limit holds
lim A(z) =
T—>00
Proof. The prime number theorem p,, ~ nlogn implies the following formula for log p,,

log p, = logn + loglogn + o(1). (7)

On the other hand, a consequence of the equation (see (6) with h = 2)
(2) x 4 x n x
()= ——+——+0| ——
logz  log’x log? x
is the following well-known formula for p,, [2]

pn = nlogn + nloglogn —n+ o(n). (8)

Therefore, we have (by (7) and (8))
Dn Pn
Apn :logpn_ :logpn__:1+017 (9)
(Pn) e " (1)
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and consequently

Pn+1 Pn+1
A(p, =1 1l — =1 il — —— =1 1). 10
(p +1) ogp +1 7T(pn+1) ogp +1 n+ 1 + 0( ) ( )

Now, we have (by (9) and (10))

pn - dn
A(pn) = A(pns1 — dpn) = log(pps1 — dn) — % = log pn+1

dn Prn+1 Prn+1 dn dn
log (1 — — - = 1+40(1)+ = =1+ o(1).
+ og( pn+1) 1 n(n+1)+n —|—0()+n +0o(1)

Therefore

Let us consider an arbitrary sequence a,, such that lim,, ., a,, = oo. For each n there is a prime
P such that p,y < a, < p,o1. Hence a,, = ppry1 — by, where 0 < b,, < d,,v. If in the sequence
a, there is a subsequence of prime numbers p, .1, we have (see above) A(p,+1) = 1+ o(1),
therefore, we consider the subsequence of a,, such that a,, # p,+1 and consequently 7(a,,) = n'.
For this subsequence we have

n/ - bn’
A(an) = A(pn’+1 - bn/) = log(pn/+1 - bn/) - pﬂT =--=1+ 0<1)'
Therefore for the complete sequence a,, we have A(a,) = 1 4 o(1). Consequently, by a well-
known theorem of analysis [9], we have lim, ., A(z) = 1. O

Let k be an arbitrary but fixed positive integer and let us consider the sequence p*, that is, the
sequence of the k-th powers of the prime numbers. In particular, if £ = 1, we obtain the sequence
of primes; if £ = 2, we obtain the sequence of squares of primes, etc.

The Prime Number Theorem establishes

m(x)

T

~ logz’

Let m(z) be the number of k-th powers of primes not exceeding x, that is, pﬁ < z, then
m1(z) = 7(x). The Prime Number Theorem gives

m(z) = (V) ~ 105_25'

We have the following generalization of the Legendre’s formula.

Theorem 2.6. Let s and k be arbitrary but fixed positive integers. We have

(V)"

(Wk(l'))s = IOgS {C/— — Ak,s(ﬁ) logs_l {C/E’

where lim, o Ay s(x) = s.
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Proof. We have (see (6) with h = 2)

(2) T & ( x )
m(x) = o) .
logz  log’x log? x

e W Y Y
m(z) = (V) = log ¥z ' log? V o (10g2 \’“/5) ’

Therefore

and consequently

v (it ()

o 1 e
Aps(x) =log V/z — log* ™! ¥z (mg(2))”

Now, we have

s 1
]. v O k.’E+O<O kl’)
= log ¥z — o8 V' X = log v/ oz V2 lg\fl
1+1gf+0(log{“/5> 1+1gf+0<10g‘€/5>
s+ o(1)
= pu— 1_
T+ o(1) s+ o(1)
[
Corollary 2.7. We have
k
x
me(x) = Vo

log &/z — Ag1(z)’

where lim,_, . Ay 1(x) = 1. Besides

lim A(x) =

T—>00
Proof. It is the case s = 1 in the former theorem. Note that the limit 1 does not depend of k. On
the other hand, A(x) = Ay (x). O
In the following theorem we establish other generalization of the Legendre’s formula. We
have the asymptotic formula (see (6))
h

Z —l'x (:vh )

— log" z log" x

If h = 1, we obtain the Prime Number Theorem

(z) x n x
x) = 0 )
i log x log x
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The Legendre’s formula is

where lim, ., A(x) = 1.
If h = 2, we obtain

If we put the formula

— —|— ,
() logz  log?z — Ay(x)logx

then we shall prove in the following theorem that lim,_, ., A2(z) = 2, etc.
In general, we have the following theorem.

Theorem 2.8. Let h > 2 be an arbitrary but fixed positive integer. We have the following formula

h—1

-1) 'x (h—1)lx
— log x logh z — Ap(z)log" ™
where
xh_)llolo Ap(z) = h.
Proof: We have
1 (h—1lz
Ap(z) =logx —
log"™ & () = Ty (s

On the other hand, we have the equation

P log” x

Substituting this equation in the former equation we find that

h—1)!
Ah(l’) =logx — log" 1 7 (h=1)lz Al ( (hjlf'x
08 v logha.: + loghflx + logh"'éx o <10ghai2m>
h—1)!
= logz |1-— ( )

(h41)!
(h_l)'+logx+ 2 +O<log x)

log” x
| h+1) 1
h! + log x t+o logx

— =h+o(1).
0+ o ()

log x log? = log® x
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Cipolla’s asymptotic formula for the n-th prime p,, is [2]

—~ (—1)"'nP;(logl
pn:nlogn+nloglogn—n+z( ) .n (iog ogn)+0< Ti ),
— i!log'n log" n

where 7 is an arbitrary but fixed positive integer and P;(x) is a polynomial of degree 7 and leading
coefficient (i — 1)!.

Theorem 2.9. The following asymptotic formula holds
r—1

pnznlogn+nloglogn—n+z( )" 'nbi(loglogn)

— illog'n
Loy : nP.(log 1og£)1 7
rllog" n + B,(n)r!log" " nloglogn
where lim,, o0 B,(n) = 5.
Proof. The proof is similar to the proof of the former theorem. [
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