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Abstract: An arithmetic function 𝑓 is Leibniz-additive if there is a completely multiplicative
function ℎ𝑓 such that

𝑓(𝑚𝑛) = 𝑓(𝑚)ℎ𝑓 (𝑛) + 𝑓(𝑛)ℎ𝑓 (𝑚)

for all positive integers 𝑚 and 𝑛. A motivation for the present study is the fact that Leibniz-
additive functions are generalizations of the arithmetic derivative 𝐷; namely, 𝐷 is Leibniz-
additive with ℎ𝐷(𝑛) = 𝑛. We study the basic properties of Leibniz-additive functions and, among
other things, show that a Leibniz-additive function 𝑓 is totally determined by the values of 𝑓 and
ℎ𝑓 at primes. We also find connections of Leibniz-additive functions to the usual product, compo-
sition and Dirichlet convolution of arithmetic functions. The arithmetic partial derivative is also
considered.
Keywords: Arithmetic derivative, Arithmetic partial derivative, Arithmetic function, Completely
additive function, Completely multiplicative function, Leibniz rule, Dirichlet convolution.
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1 Introduction

Let 𝑛 be a positive integer. Its arithmetic derivative 𝐷(𝑛) = 𝑛′ is defined as follows:

(i) 𝑝′ = 1 for all primes 𝑝,

(ii) (𝑚𝑛)′ = 𝑚𝑛′ +𝑚′𝑛 for all positive integers 𝑚 and 𝑛.

Given
𝑛 =

∏︁
𝑞∈P

𝑞𝜈𝑞(𝑛),

where P is the set of primes, the formula for computing the arithmetic derivative of 𝑛 is (see, e.g.,
[2, 13])

𝑛′ = 𝑛
∑︁
𝑝∈P

𝜈𝑝(𝑛)

𝑝
.

A brief summary on the history of arithmetic derivative and its generalizations to other number
sets can be found, e.g., in [2, 13, 5].

Similarly, one can define the arithmetic partial derivative (see, e.g., [7, 5]) via

𝐷𝑝(𝑛) = 𝑛′
𝑝 =

𝜈𝑝(𝑛)

𝑝
𝑛,

and the arithmetic logarithmic derivative [13] as

ld(𝑛) =
𝐷(𝑛)

𝑛
.

An arithmetic function 𝑓 is said to be additive if 𝑓(𝑚𝑛) = 𝑓(𝑚)+𝑓(𝑛), whenever gcd(𝑚,𝑛) =

1, and multiplicative if 𝑓(1) = 1 and 𝑓(𝑚𝑛) = 𝑓(𝑚)𝑓(𝑛), whenever gcd(𝑚,𝑛) = 1. Additive
and multiplicative functions are totally determined by their values at prime powers. Further, an
arithmetic function 𝑓 is said to be completely additive if 𝑓(𝑚𝑛) = 𝑓(𝑚) + 𝑓(𝑛) for all posi-
tive integers 𝑚 and 𝑛, and completely multiplicative if 𝑓(1) = 1 and 𝑓(𝑚𝑛) = 𝑓(𝑚)𝑓(𝑛) for
all positive integers 𝑚 and 𝑛. These functions are widely studied in the literature, see, e.g.,
[1, 6, 8, 9, 10, 11, 12].

We say that an arithmetic function 𝑓 is Leibniz-additive (or, L-additive, in short) if there is a
completely multiplicative function ℎ𝑓 such that

𝑓(𝑚𝑛) = 𝑓(𝑚)ℎ𝑓 (𝑛) + 𝑓(𝑛)ℎ𝑓 (𝑚) (1)

for all positive integers 𝑚 and 𝑛. Then 𝑓(1) = 0, since ℎ𝑓 (1) = 1. The property (1) may
be considered a generalized Leibniz rule. This terminology arises from the observation that the
arithmetic derivative 𝐷 is L-additive with ℎ𝐷(𝑛) = 𝑛; it satisfies the usual Leibniz rule

𝐷(𝑚𝑛) = 𝐷(𝑚)𝑛+𝐷(𝑛)𝑚

for all positive integers 𝑚 and 𝑛, and the function ℎ𝐷(𝑛) = 𝑛 is completely multiplicative. In
addition, the arithmetic partial derivative with respect to the prime 𝑝 is L-additive with ℎ𝐷𝑝(𝑛) =
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𝑛. Further, all completely additive functions 𝑓 are L-additive with ℎ𝑓 (𝑛) = 1. For example, the
logarithmic derivative of 𝑛 is completely additive, since

ld(𝑚𝑛) = ld(𝑚) + ld(𝑛).

The term “L-additive function” seems to be new in the literature, yet Chawla [3] has defined
the concept of a completely distributive arithmetic function meaning the same as we do with an
L-additive function. However, this is a somewhat misleading term, since a distributive arithmetic
function usually refers to the property that

𝑓(𝑢 * 𝑣) = (𝑓𝑢) * (𝑓𝑣), (2)

i.e., the function 𝑓 distributes over the Dirichlet convolution. This is satisfied by completely
multiplicative arithmetic functions, not by completely distributive functions as Chawla defined
them.

An arithmetic function 𝑓 is said to generalized additive [4] if there is a multiplicative func-
tion ℎ𝑓 such that (1) holds for all positive integers 𝑚 and 𝑛 with gcd(𝑚,𝑛) = 1. Chawla [3]
refers to these functions as distributive arithmetic functions. Some properties of these functions
are presented in [3, 4]. It is clear that L-additive functions is a subclass of the class of general-
ized additive functions, and, in this sense, we could refer to L-additive functions as generalized
complete additive functions. We, however, prefer the term “L-additive function”, since our main
purpose is to attain new aspects on the arithmetic derivative and the arithmetic partial derivative.
For the same reason, in this paper, we do not consider wider classes of arithmetic functions such
as generalized additive functions, or multiplicative analogues of the present concepts.

In this paper, we consider L-additive functions especially from the viewpoint that they are
generalizations of the arithmetic derivative and the arithmetic partial derivative. In Section 2,
we study basic properties of L-additive functions and thereby provide some new insight into the
arithmetic derivative and the arithmetic partial derivative. In Section 3, we study L-additivity, the
arithmetic derivative and the arithmetic partial derivative in terms of the Dirichlet convolution.

2 Basic properties

Theorem 2.1. Let 𝑓 be an arithmetic function. If 𝑓 is L-additive and ℎ𝑓 is nonzero-valued, then
𝑓/ℎ𝑓 is completely additive. Conversely, if there is a completely multiplicative nonzero-valued
function ℎ such that 𝑓/ℎ is completely additive, then 𝑓 is L-additive and ℎ𝑓 = ℎ.

Proof. If 𝑓 satisfies (1) and ℎ𝑓 is never zero, then

𝑓(𝑚𝑛)

ℎ𝑓 (𝑚𝑛)
=

𝑓(𝑚)ℎ𝑓 (𝑛) + 𝑓(𝑛)ℎ𝑓 (𝑚)

ℎ𝑓 (𝑚)ℎ𝑓 (𝑛)
=

𝑓(𝑚)

ℎ𝑓 (𝑚)
+

𝑓(𝑛)

ℎ𝑓 (𝑛)
,

verifying the first part. The second part follows by substituting ℎ𝑓 = ℎ in the above and exchang-
ing the sides of the second equation.
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Theorem 2.2. Let 𝑓 be an arithmetic function. If 𝑓 is L-additive and ℎ𝑓 is nonzero-valued, then

𝑓 = 𝑔𝑓ℎ𝑓 ,

where 𝑔𝑓 is completely additive. Conversely, if 𝑓 is of the form

𝑓 = 𝑔ℎ, (3)

where 𝑔 is completely additive and ℎ is completely multiplicative, then 𝑓 is L-additive with ℎ𝑓 =

ℎ.

Proof. If 𝑓 is L-additive such that ℎ𝑓 (𝑛) ̸= 0 for all positive integers 𝑛, then denoting 𝑔𝑓 = 𝑓/ℎ𝑓

in Theorem 2.1 we obtain 𝑓 = 𝑔𝑓ℎ𝑓 , where 𝑔𝑓 is completely additive.
Conversely, assume that 𝑓 is of the form (3). Then

𝑓(𝑚𝑛) = ℎ(𝑚)ℎ(𝑛)[𝑔(𝑚) + 𝑔(𝑛)] = (ℎ𝑔)(𝑚)ℎ(𝑛) + (ℎ𝑔)(𝑛)ℎ(𝑚)

= 𝑓(𝑚)ℎ(𝑛) + 𝑓(𝑛)ℎ(𝑚).

Example 2.1. If an arithmetic function 𝑓 satisfies the Leibniz rule

𝑓(𝑚𝑛) = 𝑓(𝑚)𝑛+ 𝑓(𝑛)𝑚 (4)

for all positive integers 𝑚,𝑛, then 𝑓(𝑛) = 𝑔𝑓 (𝑛)𝑛, where 𝑔𝑓 is completely additive. Also the
converse holds. In particular, the arithmetic derivative 𝐷 and the arithmetic partial derivative 𝐷𝑝

satisfy (4).

Theorem 2.2 shows that each L-additive function 𝑓 such that ℎ𝑓 is always nonzero can be
represented as a pair of a completely additive function 𝑔𝑓 and a completely multiplicative function
ℎ𝑓 . In this case, we write 𝑓 = (𝑔𝑓 , ℎ𝑓 ). However, if ℎ𝑓 (𝑝) = 0 for some prime 𝑝 and 𝑓(𝑝) is
nonzero, then there is not any function 𝑔𝑓 such that 𝑓 = 𝑔𝑓ℎ𝑓 and, consequently, a representation
of this kind is not possible.

On the other hand, the representation of an L-additive function as such a pair is not always
unique either. For instance, if 𝑓 and 𝑔𝑓 are identically zero, then ℎ𝑓 may be any completely
multiplicative function. The next theorem will however show that this representation is unique
whenever 𝑓 and ℎ𝑓 are nonzero for all primes. Observe that the latter condition is equivalent to
assuming that ℎ𝑓 is nonzero for all positive integers.

Theorem 2.3. If 𝑓 is L-additive such that 𝑓(𝑝) ̸= 0 and ℎ𝑓 (𝑝) ̸= 0 for all primes 𝑝, then the
representation 𝑓 = (𝑔𝑓 , ℎ𝑓 ) is unique.

Proof. Let 𝑓 = (𝑔𝑓 , ℎ𝑓 ) = (𝑔𝑓 , ℎ̃𝑓 ). Then for all primes 𝑝,

𝑓(𝑝) = 𝑔𝑓 (𝑝)ℎ𝑓 (𝑝) = 𝑔𝑓 (𝑝)ℎ̃𝑓 (𝑝).

On the other hand, by the definition of L-additivity,

𝑓(𝑝2) = 2𝑓(𝑝)ℎ𝑓 (𝑝) = 2𝑓(𝑝)ℎ̃𝑓 (𝑝),

which implies that ℎ𝑓 (𝑝) = ℎ̃𝑓 (𝑝) and, consequently, 𝑔𝑓 (𝑝) = 𝑔𝑓 (𝑝).
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Example 2.2. The arithmetic derivative can be represented as 𝐷 = (𝑔𝐷, ℎ𝐷), where 𝑔𝐷(𝑝) =

1/𝑝 = ld(𝑝) and ℎ𝐷(𝑝) = 𝑝 for all primes 𝑝. In other words, the arithmetic derivative has the
representation as the pair of the logarithmic derivative and the identity function. Similarly, for
the arithmetic partial derivative with respect to the prime 𝑝, we have 𝐷𝑝 = (𝑔𝐷𝑝 , ℎ𝐷𝑝), where
𝑔𝐷𝑝(𝑞) = 0 if 𝑞 ̸= 𝑝, 𝑔𝐷𝑝(𝑝) = 1/𝑝, and ℎ𝐷𝑝(𝑞) = 𝑞 for all primes 𝑞 (that is, ℎ𝐷𝑝 is the identity
function).

Completely additive and completely multiplicative functions are totally determined by their
values at primes as follows. Let

𝑛 = 𝑞1𝑞2 · · · 𝑞𝑟 = 𝑝𝑛1
1 𝑝𝑛2

2 · · · 𝑝𝑛𝑠
𝑠 , (5)

where 𝑞1, 𝑞2, . . . , 𝑞𝑟 are primes and 𝑝1, 𝑝2, . . . , 𝑝𝑠 are distinct primes. If 𝑓 is completely additive,
then 𝑓(1) = 0 and

𝑓(𝑛) =
𝑟∑︁

𝑖=1

𝑓(𝑞𝑖) =
𝑠∑︁

𝑖=1

𝑛𝑖𝑓(𝑝𝑖), (6)

and if 𝑓 is completely multiplicative, then 𝑓(1) = 1 and

𝑓(𝑛) =
𝑟∏︁

𝑖=1

𝑓(𝑞𝑖) =
𝑠∏︁

𝑖=1

𝑓(𝑝𝑖)
𝑛𝑖 . (7)

If 𝑓 is only L-additive, then we must also know the values of ℎ𝑓 at primes. A generalization of
(6) (and an analogue of (7)) is given below.

Theorem 2.4. Let 𝑛 be as in (5). If 𝑓 is L-additive, then

𝑓(𝑛) =
𝑟∑︁

𝑖=1

ℎ𝑓 (𝑞1) · · ·ℎ𝑓 (𝑞𝑖−1)𝑓(𝑞𝑖)ℎ𝑓 (𝑞𝑖+1) · · ·ℎ𝑓 (𝑞𝑟).

If ℎ𝑓 (𝑝1), . . . , ℎ𝑓 (𝑝𝑠) ̸= 0, then

𝑓(𝑛) = ℎ𝑓 (𝑛)
𝑟∑︁

𝑖=1

𝑓(𝑞𝑖)

ℎ𝑓 (𝑞𝑖)
= ℎ𝑓 (𝑛)

𝑠∑︁
𝑖=1

𝑛𝑖𝑓(𝑝𝑖)

ℎ𝑓 (𝑝𝑖)
.

Proof. In order to verify the first claim, it suffices to notice that

𝑓(𝑛) = 𝑓(𝑞1)ℎ𝑓 (𝑞2 · · · 𝑞𝑟) + 𝑓(𝑞2 · · · 𝑞𝑟)ℎ𝑓 (𝑞1)

= 𝑓(𝑞1)ℎ𝑓 (𝑞2) · · ·ℎ𝑓 (𝑞𝑟) + 𝑓(𝑞2 · · · 𝑞𝑟)ℎ𝑓 (𝑞1)

= 𝑓(𝑞1)ℎ𝑓 (𝑞2) · · ·ℎ𝑓 (𝑞𝑟) + ℎ𝑓 (𝑞1)
[︀
𝑓(𝑞2)ℎ𝑓 (𝑞3 · · · 𝑞𝑟) + 𝑓(𝑞3 · · · 𝑞𝑟)ℎ𝑓 (𝑞2)

]︀
= 𝑓(𝑞1)ℎ𝑓 (𝑞2) · · ·ℎ𝑓 (𝑞𝑟) + ℎ𝑓 (𝑞1)

[︀
𝑓(𝑞2)ℎ𝑓 (𝑞3) · · ·ℎ𝑓 (𝑞𝑟) + 𝑓(𝑞3 · · · 𝑞𝑟)ℎ𝑓 (𝑞2)

]︀
= · · ·

=
𝑟∑︁

𝑖=1

ℎ𝑓 (𝑞1) · · ·ℎ𝑓 (𝑞𝑖−1)𝑓(𝑞𝑖)ℎ𝑓 (𝑞𝑖+1) · · ·ℎ𝑓 (𝑞𝑟).

The rest of the theorem follows from the equation ℎ𝑓 (𝑛) = ℎ𝑓 (𝑞1) · · ·ℎ𝑓 (𝑞𝑟), which holds,
since ℎ𝑓 is completely multiplicative.
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Example 2.3. Since 𝐷(𝑝) = 1 and ℎ𝐷(𝑝) = 𝑝 for all primes 𝑝, Theorem 2.4 gives the well-known
formula

𝐷(𝑛) =
𝑟∑︁

𝑖=1

𝑞1 · · · 𝑞𝑖−1𝑞𝑖+1 · · · 𝑞𝑟 = 𝑛

𝑟∑︁
𝑖=1

1

𝑞𝑖
= 𝑛

𝑠∑︁
𝑖=1

𝑛𝑖

𝑝𝑖
.

It also implies that
𝑓(𝑝𝑘) = 𝑘ℎ𝑓 (𝑝)

𝑘−1𝑓(𝑝)

for all primes 𝑝 and nonnegative integers 𝑘. (For 𝑘 = 0, ℎ𝑓 (𝑝) must be nonzero.) In particular,
for the arithmetic derivative, this reads

𝐷(𝑝𝑘) = 𝑘𝑝𝑘−1.

For the arithmetic partial derivative 𝐷𝑝, Theorem 2.4 reduces to its definition.

Theorem 2.5. If 𝑢 is L-additive and 𝑣 is completely multiplicative, then their product function 𝑢𝑣

is L-additive with ℎ𝑢𝑣 = ℎ𝑢𝑣.

Proof. For all positive integers 𝑚 and 𝑛,

(𝑢𝑣)(𝑚𝑛) = 𝑢(𝑚𝑛)𝑣(𝑚𝑛) =
(︀
𝑢(𝑚)ℎ𝑢(𝑛) + 𝑢(𝑛)ℎ𝑢(𝑚)

)︀
𝑣(𝑚)𝑣(𝑛)

= (𝑢𝑣)(𝑚)(ℎ𝑢𝑣)(𝑛) + (𝑢𝑣)(𝑛)(ℎ𝑢𝑣)(𝑚).

Thus 𝑢𝑣 is L-additive with completely multiplicative part equaling to ℎ𝑢𝑣.

Example 2.4. The function 𝑓(𝑛) = 𝐷(𝑛)𝑛𝑘, where 𝑘 is a nonnegative integer, is L-additive with
ℎ𝑓 (𝑛) = 𝑛𝑘+1. The same property holds for the arithmetic partial derivative 𝐷𝑝, since ℎ𝐷 = ℎ𝐷𝑝 .

Theorem 2.6. If 𝑣 is L-additive and 𝑢 is completely multiplicative with positive integer values,
then their composite function 𝑣 ∘ 𝑢 is L-additive with ℎ𝑣∘𝑢 = ℎ𝑣 ∘ 𝑢 .

Proof. For all positive integers 𝑚 and 𝑛,

(𝑣 ∘ 𝑢)(𝑚𝑛) = 𝑣(𝑢(𝑚𝑛)) = 𝑣(𝑢(𝑚)𝑢(𝑛)) = 𝑣(𝑢(𝑚))ℎ𝑣(𝑢(𝑛)) + 𝑣(𝑢(𝑛))ℎ𝑣(𝑢(𝑚))

= (𝑣 ∘ 𝑢)(𝑚)(ℎ𝑣 ∘ 𝑢)(𝑛) + (𝑣 ∘ 𝑢)(𝑛)(ℎ𝑣 ∘ 𝑢)(𝑚).

It remains to show that ℎ𝑣 ∘ 𝑢 is completely multiplicative. We have

(ℎ𝑣 ∘ 𝑢)(𝑚𝑛) = ℎ𝑣(𝑢(𝑚𝑛)) = ℎ𝑣(𝑢(𝑚)𝑢(𝑛)) = ℎ𝑣(𝑢(𝑚))ℎ𝑣(𝑢(𝑛)) = (ℎ𝑣 ∘ 𝑢)(𝑚)(ℎ𝑣 ∘ 𝑢)(𝑛).

This completes the proof.

Example 2.5. Let 𝑢 be as in Theorem 2.6. Since 𝐷 is L-additive, then, by this theorem, 𝐷 ∘ 𝑢 is
L-additive with ℎ𝐷∘𝑢 = 𝑢; that is,

𝐷(𝑢(𝑚𝑛)) = 𝑢(𝑛)𝐷(𝑢(𝑚)) + 𝑢(𝑚)𝐷(𝑢(𝑛))

for all positive integers 𝑚,𝑛. In particular,

𝐷((𝑚𝑛)𝑘) = 𝑛𝑘𝐷(𝑚𝑘) +𝑚𝑘𝐷(𝑛𝑘),

where 𝑘 is a nonnegative integer. These equations follow also from the fact that 𝐷 satisfies the
Leibniz rule. The above formulas also hold for the arithmetic partial derivative 𝐷𝑝.
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3 L-additive functions in terms of the Dirichlet convolution

Above we have seen that many fundamental properties of the arithmetic derivative, e.g., the for-
mula for computing the arithmetic derivative of a given positive integer, are rooted to the fact that
𝐷 is L-additive. We complete this article by changing our point of view slightly and demonstrate
that L-additive functions can also be studied in terms of the Dirichlet convolutions.

Let 𝑢 and 𝑣 be arithmetic functions. Their Dirichlet convolution is

(𝑢 * 𝑣)(𝑛) =
∑︁
𝑑|𝑛

𝑢(𝑑)𝑣(𝑛/𝑑).

We let 𝑓(𝑢 * 𝑣) denote the product function of 𝑓 and 𝑢 * 𝑣, i.e.,

(𝑓(𝑢 * 𝑣))(𝑛) = 𝑓(𝑛)(𝑢 * 𝑣)(𝑛).

Theorem 3.1. An arithmetic function 𝑓 is completely additive if and only if

𝑓(𝑢 * 𝑣) = (𝑓𝑢) * 𝑣 + 𝑢 * (𝑓𝑣)

for all arithmetic functions 𝑢 and 𝑣.

Proof. See [11, Proposition 2].

The next theorems show that L-additive functions can also be characterized in an analogous
way.

Theorem 3.2. Let 𝑓 be an arithmetic function. If 𝑓 is L-additive and ℎ𝑓 is nonzero-valued, then

𝑓(𝑢 * 𝑣) = (𝑓𝑢) * (ℎ𝑓𝑣) + (ℎ𝑓𝑢) * (𝑓𝑣) (8)

for all arithmetic functions 𝑢 and 𝑣. Conversely, if there is a completely multiplicative nonzero-
valued function ℎ such that

𝑓(𝑢 * 𝑣) = (𝑓𝑢) * (ℎ𝑣) + (ℎ𝑢) * (𝑓𝑣) (9)

for all arithmetic functions 𝑢 and 𝑣, then 𝑓 is L-additive and ℎ𝑓 = ℎ.

Proof. Under the assumptions of the first part, Theorems 2.1 and 3.1 imply

(𝑓/ℎ𝑓 )(𝑢 * 𝑣) = (𝑓𝑢/ℎ𝑓 ) * 𝑣 + 𝑢 * (𝑓𝑣/ℎ𝑓 ).

Multiplying by ℎ𝑓 , the left-hand side becomes 𝑓(𝑢 * 𝑣). Since

ℎ𝑓 ((𝑓𝑢/ℎ𝑓 ) * 𝑣) = (𝑓𝑢) * (ℎ𝑓𝑣), ℎ𝑓 (𝑢 * (𝑓𝑣/ℎ𝑓 )) = (ℎ𝑓𝑢) * (𝑓𝑣)

by (2), the claim follows. To prove the second part, multiply (9) by 1/ℎ and perform a simple
modification of the above.
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Corollary 3.1. If 𝑢 and 𝑣 are arithmetic functions, then

𝐷(𝑢 * 𝑣) = (𝐷𝑢) * (𝑁𝑣) + (𝑁𝑢) * (𝐷𝑣),

where 𝑁(𝑛) = 𝑛.

Proof. It suffices to notice that ℎ𝐷 = 𝑁 .

On the other hand, taking 𝑢 = 𝑣, equation (8) becomes

𝑓(𝑢 * 𝑢) = 2[(𝑓𝑢) * (ℎ𝑓𝑢)].

For 𝑢 = 𝐸, where 𝐸(𝑛) = 1 for all positive integers 𝑛, this reads

𝑓𝜏 = 2(𝑓 * ℎ𝑓 ),

where 𝜏 is the divisor-number-function. Especially, we have

𝐷(𝑢 * 𝑢) = 2[(𝐷𝑢) * (𝑁𝑢)]

and, with 𝑢 = 𝐸,
𝐷𝜏 = 2(𝐷 *𝑁).

Some remarks can be made also in the opposite direction. Assume now that

𝑓𝜏 = 2(𝑓 * ℎ)

for some completely multiplicative function ℎ that is nonzero for all positive integers. Then

(𝑓/ℎ)𝜏 = 2((𝑓/ℎ) * 𝐸).

Thus, again according to [11, Proposition 2], we see that 𝑓/ℎ is completely additive, which
shows that 𝑓 is L-additive with ℎ𝑓 = ℎ. In particular, if

𝑓𝜏 = 2(𝑓 *𝑁),

then 𝑓 is L-additive with ℎ𝑓 = 𝑁 . For example, 𝐷 satisfies this condition.
All of the above results for the arithmetic derivative 𝐷 hold also for the arithmetic partial

derivative 𝐷𝑝, since ℎ𝐷 = ℎ𝐷𝑝 .
Further properties of L-additive functions in terms of the Dirichlet convolution can be derived

from the results in [8, 11]. It would be possible to obtain some properties of L-additive functions
in terms of the unitary convolution as well from the results in [8].
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