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Abstract: The Descartes–Frenicle–Sorli conjecture predicts that 𝑘 = 1 if 𝑞𝑘𝑛2 is an odd per-
fect number with Euler prime 𝑞. In this note, we present some further conditions equivalent to
this conjecture.
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1 Introduction

Let 𝑥 be a positive integer. Recall that we denote∑︁
𝑑|𝑥

𝑑 = 𝜎1(𝑥) = 𝜎(𝑥)

as the sum of divisors of 𝑥. Denote the abundancy index of 𝑥 by 𝐼(𝑥) = 𝜎(𝑥)/𝑥, and the
deficiency of 𝑥 by 𝐷(𝑥) = 2𝑥− 𝜎(𝑥). Note that we have the identity

𝐷(𝑥)

𝑥
+

𝜎(𝑥)

𝑥
=

𝐷(𝑥)

𝑥
+ 𝐼(𝑥) = 2.
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Note further that, if 𝑦 =
∏︀𝑤

𝑖=1 𝑧𝑖
𝑠𝑖 is the prime factorization of 𝑦, then we have the formula

𝜎(𝑦) = 𝜎

(︂ 𝑤∏︁
𝑖=1

𝑧𝑖
𝑠𝑖

)︂
=

𝑤∏︁
𝑖=1

(︂
𝜎(𝑧𝑖

𝑠𝑖)

)︂
=

𝑤∏︁
𝑖=1

𝑧𝑖
𝑠𝑖+1 − 1

𝑧𝑖 − 1
,

where 𝑤 = 𝜔(𝑦) is the number of distinct prime factors of 𝑦. This means that 𝜎 as a function
satisfies 𝜎(𝑎𝑏) = 𝜎(𝑎)𝜎(𝑏) if and only if gcd(𝑎, 𝑏) = 1, which means that 𝜎 is multiplicative.

Therefore, if gcd(𝑎, 𝑏) = 1, it follows from the above formula for 𝜎 that

𝐼(𝑎𝑏) =
𝜎(𝑎𝑏)

𝑎𝑏
=

𝜎(𝑎)𝜎(𝑏)

𝑎𝑏
=

(︂
𝜎(𝑎)

𝑎

)︂
·
(︂
𝜎(𝑏)

𝑏

)︂
= 𝐼(𝑎)𝐼(𝑏)

which shows that the abundancy index 𝐼 as a function is also multiplicative. Lastly, note that the
deficiency 𝐷 as a function is in general not multiplicative [6].

We will repeatedly use the multiplicativity of the divisor sum 𝜎 and the abundancy index 𝐼 to
derive results in this paper.

We say that a number 𝑁 is perfect if 𝜎(𝑁) = 2𝑁 . The following result (due to Euclid and
Euler) gives a necessary and sufficient condition for an even integer 𝐸 to be perfect.

Theorem 1.1. An even integer 𝐸 is perfect if and only if 𝐸 = (2𝑝 − 1)2𝑝−1 for some integer 𝑝 for
which 2𝑝 − 1 is prime.

Refer to Dickson [2] to see different proofs of Theorem 1.1. Prime numbers of the form 2𝑝−1

are called Mersenne primes, and if 2𝑝 − 1 is prime then 𝑝 must be prime. (The converse of this
last statement does not hold.) Observe that 6, 28, 496, and 8128 are examples of even perfect
numbers, and these correspond to the Mersenne primes 2𝑝 − 1 with 𝑝 given by 2, 3, 5, and 7,
respectively. We still do not know if there are infinitely many even perfect numbers. Also, it is
not known if there are odd perfect numbers. It is widely believed that no odd perfect numbers
exist.

If there is an odd perfect number 𝑂, then Euler proved that it must have the form 𝑂 = 𝑞𝑘𝑛2,
where 𝑞 is a prime satisfying 𝑞 ≡ 𝑘 ≡ 1 (mod 4) and gcd(𝑞, 𝑛) = 1. We call 𝑞 the special
or Euler prime of 𝑂, 𝑞𝑘 is the Euler factor, and 𝑛2 is the non-Euler factor. (Note that both 𝐸

and 𝑂 have the forms 𝑁 = 𝑄𝐾𝑀2, where 𝑄 is prime, 𝐾 ≡ 1 (mod 4), and gcd(𝑄,𝑀) = 1.)
Descartes, Frenicle, and subsequently Sorli [7] predicted that 𝑘 = 1 always holds. Sorli conjec-
tured 𝑘 = 1 after testing large odd numbers 𝑁 ′ with 𝜔(𝑁 ′) = 8 for perfection. More recently,
Beasley [1] reports that “Dickson has documented Descartes’ conjecture as occurring in a letter
to Marin Mersenne [on November 15,] 1638, with Frenicle’s subsequent observation occurring in
1657”.

Holdener [4] presented some conditions equivalent to the existence of odd perfect numbers.
In [3], Dris gives some conditions equivalent to the Descartes–Frenicle–Sorli Conjecture.

In this paper we reprove the following result from our previous paper [3] on this topic.

Lemma 1.1. If 𝑁 = 𝑞𝑘𝑛2 is an odd perfect number with Euler prime 𝑞, then

gcd
(︀
𝑛2, 𝜎(𝑛2)

)︀
=

𝐷(𝑛2)

𝜎(𝑞𝑘−1)
=

𝜎(𝑁/𝑞𝑘)

𝑞𝑘
.
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We shall use Lemma 1.1 to show the veracity of the following statements:

Theorem 1.2. If 𝑁 = 𝑞𝑘𝑛2 is an odd perfect number with Euler prime 𝑞, then 𝑘 = 1 if and only
if

𝜎(𝑛2)− 𝑛2 =

(︂
𝑞 − 1

2

)︂
·𝐷(𝑛2).

Theorem 1.3. If 𝑁 = 𝑞𝑘𝑛2 is an odd perfect number with Euler prime 𝑞, then 𝑘 = 1 if and only
if

𝑁 =

(︂
𝑞(𝑞 + 1)

2

)︂
·𝐷(𝑛2).

We also use Lemma 1.1 to give a new proof of the following result from Lustig [5]:

Theorem 1.4. If 𝑁 = 𝑞𝑘𝑛2 is an odd perfect number with Euler prime 𝑞, then 𝑘 = 1 if and only
if

𝑁 =
𝑛2𝜎(𝑛2)

𝐷(𝑛2)
.

All of the proofs given in this note are elementary.

2 The proof of Lemma 1.1

Let 𝑁 = 𝑞𝑘𝑛2 be an odd perfect number with Euler prime 𝑞.
Since 𝑁 is perfect, we have

𝜎(𝑞𝑘)𝜎(𝑛2) = 𝜎(𝑁) = 2𝑁 = 2𝑞𝑘𝑛2

where we have used the divisibility constraint gcd(𝑞, 𝑛) = 1 and the fact that 𝜎 is multiplicative.
It follows that 𝑞𝑘 | 𝜎(𝑛2) (because gcd

(︀
𝑞𝑘, 𝜎(𝑞𝑘)

)︀
= 1). Hence,

𝜎(𝑛2)

𝑞𝑘
=

𝜎(𝑁/𝑞𝑘)

𝑞𝑘
=

2𝑛2

𝜎(𝑞𝑘)

is an integer.
Consequently, by setting

𝐴 = 𝜎(𝑛2), 𝐵 = 𝑞𝑘, 𝐶 = 2𝑛2, 𝐷 = 𝜎(𝑞𝑘),

we can use the algebraic identity
𝐴

𝐵
=

𝐶

𝐷
=

𝐶 − 𝐴

𝐷 −𝐵

to show that
𝜎(𝑁/𝑞𝑘)

𝑞𝑘
=

𝐷(𝑛2)

𝜎(𝑞𝑘−1)
,

since 𝐷 −𝐵 = 𝜎(𝑞𝑘)− 𝑞𝑘 = 1 + 𝑞 + . . .+ 𝑞𝑘−1 = 𝜎(𝑞𝑘−1). The remaining part is to show that

gcd
(︀
𝑛2, 𝜎(𝑛2)

)︀
=

𝐷(𝑛2)

𝜎(𝑞𝑘−1)
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and this follows easily from
𝜎(𝑛2)

𝑞𝑘
=

2𝑛2

𝜎(𝑞𝑘)
=

𝐷(𝑛2)

𝜎(𝑞𝑘−1)

and the fact that gcd
(︀
𝑞𝑘, 𝜎(𝑞𝑘)/2

)︀
= 1.

This finishes the proof of Lemma 1.1. �

3 The proof of Theorem 1.2

Let 𝑁 = 𝑞𝑘𝑛2 be an odd perfect number with Euler prime 𝑞.
By Lemma 1.1, we have

𝜎(𝑛2)

𝑞𝑘
=

2𝑛2

𝜎(𝑞𝑘)
=

𝐷(𝑛2)

𝜎(𝑞𝑘−1)
.

Suppose that 𝑘 = 1. Then we obtain

𝜎(𝑛2)

𝑞
=

𝑛2

𝑞+1
2

= 𝐷(𝑛2).

Consequently, by setting

𝐴′ = 𝜎(𝑛2), 𝐵′ = 𝑞, 𝐶 ′ = 𝑛2, 𝐷′ =
𝑞 + 1

2
,

we can use the algebraic identity

𝐴′

𝐵′ =
𝐶 ′

𝐷′ =
𝐴′ − 𝐶 ′

𝐵′ −𝐷′

to show that

𝐷(𝑛2) =
𝜎(𝑛2)− 𝑛2

𝑞−1
2

,

since 𝐵′ −𝐷′ = 𝑞 − (𝑞 + 1)/2 = (𝑞 − 1)/2.
It follows that

𝜎(𝑛2)− 𝑛2 =

(︂
𝑞 − 1

2

)︂
·𝐷(𝑛2),

and this establishes one direction of Theorem 1.2.
Next, suppose that

𝜎(𝑛2)− 𝑛2 =

(︂
𝑞 − 1

2

)︂
·𝐷(𝑛2).

We get that

2

(︂
𝜎(𝑛2)− 𝑛2

)︂
=

(︂
𝑞 − 1

)︂
·
(︂
2𝑛2 − 𝜎(𝑛2)

)︂
,

which gives
2𝜎(𝑛2)− 2𝑛2 = 2𝑞𝑛2 − 2𝑛2 − 𝑞𝜎(𝑛2) + 𝜎(𝑛2).

Collecting like terms and simplifying, we obtain

(𝑞 + 1)𝜎(𝑛2) = 2𝑞𝑛2.
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This implies that

𝐼(𝑛2) =
𝜎(𝑛2)

𝑛2
=

2𝑞

𝑞 + 1
,

from which it follows that
𝐼(𝑞𝑘) =

2

𝐼(𝑛2)
=

𝑞 + 1

𝑞
.

Since 𝑞 is the Euler prime, we conclude that 𝑘 = 1.
This completes the proof of Theorem 1.2. (Note that 𝜎(𝑛2) − 𝑛2 is called the sum of the aliquot
parts of the non-Euler factor 𝑛2.) �

4 The proof of Theorem 1.3

Let 𝑁 = 𝑞𝑘𝑛2 be an odd perfect number with Euler prime 𝑞.
The proof of the biconditional

𝑘 = 1 ⇐⇒ 𝑁 =

(︂
𝑞(𝑞 + 1)

2

)︂
·𝐷(𝑛2)

follows from the fact that every odd perfect number 𝑁 = 𝑞𝑘𝑛2 can be written in the form

𝑁 =

(︂
𝑞𝑘𝜎(𝑞𝑘)

2

)︂
· 𝐷(𝑛2)

𝜎(𝑞𝑘−1)
,

and a proof of this statement follows directly from Lemma 1.1. (Note that one also needs to use
the fact that gcd

(︀
𝑞𝑘, 𝜎(𝑞𝑘−1)

)︀
= gcd

(︀
𝜎(𝑞𝑘), 𝜎(𝑞𝑘−1)

)︀
= 1.) �

5 The proof of Theorem 1.4

Let 𝑁 = 𝑞𝑘𝑛2 be an odd perfect number with Euler prime 𝑞.
First, assume that 𝑘 = 1. Then, from Lemma 1.1, we have

𝜎(𝑛2)

𝑞
= 𝐷(𝑛2)

which implies that
𝑛2𝜎(𝑛2)

𝐷(𝑛2)
= 𝑞𝑛2 = 𝑁.

This establishes one direction of Theorem 1.4.
For the other direction, suppose that

𝑞𝑘𝑛2 = 𝑁 =
𝑛2𝜎(𝑛2)

𝐷(𝑛2)
.

This implies that
𝜎(𝑛2)

𝑞𝑘
= 𝐷(𝑛2).

However, by Lemma 1.1 we know that

𝜎(𝑛2)

𝑞𝑘
=

𝐷(𝑛2)

𝜎(𝑞𝑘−1)
,
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from which it follows that
𝜎(𝑞𝑘−1) = 1.

This means that 𝑞𝑘−1 = 1, which implies that 𝑘 − 1 = 0, whence we finally derive 𝑘 = 1.
This concludes the proof of Theorem 1.4. �

6 Further research

Following the proof of Lemma 1.1, one can use the same algebraic trick to derive a plethora of
identities linking the various quantities associated with the divisors 𝑞𝑘 and 𝑛2 of an odd perfect
number 𝑞𝑘𝑛2 with Euler prime 𝑞. As the ultimate goal of this research style is to derive a con-
tradiction from among the stringent conditions that an odd perfect number must satisfy, we leave
this as a research thrust for other researchers to pursue.
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